4,060 research outputs found

    DualMatch: Robust Semi-Supervised Learning with Dual-Level Interaction

    Full text link
    Semi-supervised learning provides an expressive framework for exploiting unlabeled data when labels are insufficient. Previous semi-supervised learning methods typically match model predictions of different data-augmented views in a single-level interaction manner, which highly relies on the quality of pseudo-labels and results in semi-supervised learning not robust. In this paper, we propose a novel SSL method called DualMatch, in which the class prediction jointly invokes feature embedding in a dual-level interaction manner. DualMatch requires consistent regularizations for data augmentation, specifically, 1) ensuring that different augmented views are regulated with consistent class predictions, and 2) ensuring that different data of one class are regulated with similar feature embeddings. Extensive experiments demonstrate the effectiveness of DualMatch. In the standard SSL setting, the proposal achieves 9% error reduction compared with SOTA methods, even in a more challenging class-imbalanced setting, the proposal can still achieve 6% error reduction. Code is available at https://github.com/CWangAI/DualMatchComment: 14 pages, 8 figures, Accepted by ECMLPKDD 202

    A deep-neural-network-based hybrid method for semi-supervised classification of polarimetric SAR data

    Get PDF
    This paper proposes a deep-neural-network-based semi-supervised method for polarimetric synthetic aperture radar (PolSAR) data classification. The proposed method focuses on achieving a well-trained deep neural network (DNN) when the amount of the labeled samples is limited. In the proposed method, the probability vectors, where each entry indicates the probability of a sample associated with a category, are first evaluated for the unlabeled samples, leading to an augmented training set. With this augmented training set, the parameters in the DNN are learned by solving the optimization problem, where the log-likelihood cost function and the class probability vectors are used. To alleviate the “salt-and-pepper” appearance in the classification results of PolSAR images, the spatial interdependencies are incorporated by introducing a Markov random field (MRF) prior in the prediction step. The experimental results on two realistic PolSAR images demonstrate that the proposed method effectively incorporates the spatial interdependencies and achieves the good classification accuracy with a limited number of labeled samples

    Semi-Supervised Learning by Augmented Distribution Alignment

    Full text link
    In this work, we propose a simple yet effective semi-supervised learning approach called Augmented Distribution Alignment. We reveal that an essential sampling bias exists in semi-supervised learning due to the limited number of labeled samples, which often leads to a considerable empirical distribution mismatch between labeled data and unlabeled data. To this end, we propose to align the empirical distributions of labeled and unlabeled data to alleviate the bias. On one hand, we adopt an adversarial training strategy to minimize the distribution distance between labeled and unlabeled data as inspired by domain adaptation works. On the other hand, to deal with the small sample size issue of labeled data, we also propose a simple interpolation strategy to generate pseudo training samples. Those two strategies can be easily implemented into existing deep neural networks. We demonstrate the effectiveness of our proposed approach on the benchmark SVHN and CIFAR10 datasets. Our code is available at \url{https://github.com/qinenergy/adanet}.Comment: To appear in ICCV 201

    Exploring Object Relation in Mean Teacher for Cross-Domain Detection

    Full text link
    Rendering synthetic data (e.g., 3D CAD-rendered images) to generate annotations for learning deep models in vision tasks has attracted increasing attention in recent years. However, simply applying the models learnt on synthetic images may lead to high generalization error on real images due to domain shift. To address this issue, recent progress in cross-domain recognition has featured the Mean Teacher, which directly simulates unsupervised domain adaptation as semi-supervised learning. The domain gap is thus naturally bridged with consistency regularization in a teacher-student scheme. In this work, we advance this Mean Teacher paradigm to be applicable for cross-domain detection. Specifically, we present Mean Teacher with Object Relations (MTOR) that novelly remolds Mean Teacher under the backbone of Faster R-CNN by integrating the object relations into the measure of consistency cost between teacher and student modules. Technically, MTOR firstly learns relational graphs that capture similarities between pairs of regions for teacher and student respectively. The whole architecture is then optimized with three consistency regularizations: 1) region-level consistency to align the region-level predictions between teacher and student, 2) inter-graph consistency for matching the graph structures between teacher and student, and 3) intra-graph consistency to enhance the similarity between regions of same class within the graph of student. Extensive experiments are conducted on the transfers across Cityscapes, Foggy Cityscapes, and SIM10k, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, we obtain a new record of single model: 22.8% of mAP on Syn2Real detection dataset.Comment: CVPR 2019; The codes and model of our MTOR are publicly available at: https://github.com/caiqi/mean-teacher-cross-domain-detectio
    • …
    corecore