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Abstract—This paper proposes a deep-neural-network-based
semi-supervised method for polarimetric synthetic aperture radar
(PolSAR) data classification. The proposed method focuses on
achieving a well-trained deep neural network (DNN) when the
amount of the labeled samples is limited. In the proposed method,
the probability vectors, where each entry indicates the probability
of a sample associated with a category, are first evaluated for
the unlabeled samples, leading to an augmented training set.
With this augmented training set, the parameters in the DNN
are learned by solving the optimization problem, where the log-
likelihood cost function and the class probability vectors are used.
To alleviate the “salt-and-pepper” appearance in the classification
results of PolSAR images, the spatial interdependencies are
incorporated by introducing a Markov random field (MRF) prior
in the prediction step. The experimental results on two realistic
PoISAR images demonstrate that the proposed method effectively
incorporates the spatial interdependencies and achieves the good
classification accuracy with a limited number of labeled samples.

Index Terms—Polarimetric synthetic aperture radar (PolSAR),
semi-supervised classification, deep neural networks, remote
sensing.

I. INTRODUCTION

Terrain classification is an important application of polari-
metric synthetic aperture radar (PolSAR). PolSAR acquires
multi-channel data by different combinations of horizontal and
vertical polarization, which can provide the useful information
about the physical scattering characteristics to accurately iden-
tify terrain types [1]. Furthermore, in view of the ability of
radar waves to penetrate through clouds, PoISAR can always
receive backscattered signals from the ground, facilitating a
complete interpretation of areas of interest.

Recently, deep neural networks (DNNs) have become pop-
ular in classification tasks of PoISAR images. Many effective
methods have been developed based on multilayer autoen-
coders [2], [3], stacked sparse autoencoders [4], Wishart-
autoencoders, Wishart-convolutional-autoencoders [5], and
deep convolutional neural networks [6]. These methods lever-
age the power of DNNs in extracting discriminative features
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for subsequent supervised classification, leading to a signifi-
cant improvement on the classification performance over con-
ventional methods. However, in view of both the complicated
structures of DNNs and the nature of supervised classification
in these DNN-based methods, their performance could be
heavily dependent on the amount of training samples.

For the supervised classification of a large-scale PoISAR
image, manually labeling a large number of samples for
training costs a lot of resources. The use of the limited number
of labeled samples presents a challenge to achieve well-trained
DNNs, producing unreliable classification results. To address
this limitation, a DNN can be learned based on both the labeled
samples and the unlabeled samples, leading to semi-supervised
classification methods for PolSAR images [7]-[10].

In view of the active imaging mechanism, PolSAR images
present a granular noise pattern, which always results in
the “salt-and-pepper” appearance in classification results and
significantly degrades the classification performance. To alle-
viate the “salt-and-pepper” effect, the abovementioned semi-
supervised methods incorporate the spatial interdependencies.
Specifically, the semi-supervised method for feature extraction
of PolSAR data constructs the spatial groups by combining
neighboring pixels [7]. In addition, the average of the feature
vectors (including polarimetric features and the elements from
PolSAR data as the entries) for the local pixels is exploited
to suppress the “salt-and-pepper” effect [8], [10]. Although
the scheme of averaging neighboring pixels incorporates the
spatial interdependencies, the resulting features fail to preserve
the complete information, leading to the loss of details in the
classification results.

In this paper, we propose a semi-supervised DNN-and-
MRF-based method (SSDNN-MRF) for PoISAR image classi-
fication. Different from [10], which only selects the unlabeled
samples with high confidence to enlarge the training set for the
DNN, our proposed method exploits all the unlabeled samples.
Thus, the operation to select credible samples is eliminated,
simplifying the procedure of the semi-supervised classification
methods. To this end, the class probability vector associated
with each unlabeled sample is first evaluated. In view of
the label uncertainty for the augmented data, the training for
the DNN is performed based on a log-likelihood function,
which can directly deal with the class probability vectors. To



incorporate the spatial interdependencies, the average feature
vector associated with a local region is fed to the DNN in
the method of Geng er al [10], and is used to represent
the spatial group in the graph-based methods [7], [8]. These
methods incorporate the spatial interdependencies through the
input features. In contrast, the proposed method considers the
spatial interdependencies on the labels and leaves the input
features untouched, which preserves the complete information
of the input features.

II. PRELIMINARIES
A. PolSAR Data and Polarimetric Features

PolSAR acquires multi-channel data by different combi-
nations of transmitting and receiving polarization (e.g., hor-
izontal and vertical polarization). The PolSAR data vector is
given by S = [Shn, Shv, Svn, Svu]t, where the superscript
T is the transpose operator, and the subscripts i and v
indicate the horizontal polarization and the vertical polariza-
tion. Sp, represents the backscattered signal with horizontal
transmitting polarization and vertical receiving polarization.
For a reciprocal media, the PolSAR data vector reduces to
S = [Shi,V2Shy, Sue]T in the Lexicographic bases and
transforms to & = 1/v/2[Snn + Svu, Shh — Suw, 2Sh,]7 in
the Pauli bases [1]. The multilook PolSAR covariance and
coherency matrix are the second-order statistics, which are
derived for speckle reduction by averaging n neighboring
pixels,ie, C= 23"  S;SH and T= 13"  k;k. Here,
H is the Hermitian transpose operator.

By factorizing the PolSAR data of these types into the
combination of bases associated with physical scattering mod-
els, target decomposition (TD) theorems were proposed to
extract additional information [1], [11], [12]. The Krogager
decomposition analyzes the contribution of the sphere, diplane,
and helix targets to the vector S [13]. Based on the multilook
polarimetric matrices, the Freeman-Durden decomposition ex-
tracts the polarimetric parameters for the volume, double-
bounce, and surface scattering [14]. The polarimetric features
from TD theorems provide insights into the physical scattering
mechanisms over illuminating areas, and facilitate the physical
interpretation of PoISAR images.

B. Deep Neural Networks and Backpropagation

A DNN has an architecture of multiple hidden layers, where
each hidden layer adopts the outputs from the previous layer as
its inputs and yields its outputs by passing a weighted sum of
its inputs through a non-linear function [15]. For classification
tasks, a DNN aims to map input features to target labels.

To obtain this mapping, a L-layer DNN can be discrimina-
tively trained by solving mingw,y 1,3 C(hr,Y) [15], where
h; and Y respectively indicate the output of the DNN and
the underlying discrete labels, and C(-,-) is a cost function to
evaluate the discrepancy between them. {W;} and {b;} are
the weight matrices and the bias vectors used for the feed-
forward procedure. Specifically, the outputs of the [-th hidden
layer h; (I = 1,2,--- , L) are evaluated by h; = f;(Z;), where

Z; = h;_1W; + b; and the equation of f;(-) is a non-linear
activation function.

The weights {W;} and the biases {b;} are commonly
learned based on stochastic gradient descent (SGD) and back-
propagation [15]. The backpropagation procedure computes
the derivatives of the cost function with respect to the weights
and the biases. By backpropagating the error derivatives from
the output layer to the input layer, the gradients of the outputs
over the weights and the biases [see (2) and (3)] are obtained
using the chain rule, and SGD can be applied to update {W;}
and {b;}. With N samples involved for the evaluation of the
gradients, the backpropagation equations are given by [16]
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where o and the superscript T perform the element-wise
product and the transpose operation. f/(Z;) = ag(zzll), and

sum(-) is the summation over the N training samples.

III. METHODOLOGY

In the proposed method for semi-supervised classification
of PolSAR images, polarimetric features from TD theorems
are collected as the input for a DNN. The input vectors
are formulated by stacking 48 features from 10 different TD
approaches [17]. This adopted feature set is shown to provide
useful information for the effective interpretation of PoISAR
images [17].

The proposed method (i.e., SSDNN-MRF) can be imple-
mented by alternatively performing the prediction and the
backpropagation procedure. In the prediction step, the aug-
mented training set is achieved and the spatial interdepen-
dencies are incorporated. In the subsequent backpropagation
procedure, the parameters in the DNN are learned.

A. Augmenting Training Set and Incorporating Spatial Inter-
dependencies

Training set is enlarged by adding all the unlabeled samples,
each of which is associated with a class probability vector. To
achieve these probability vectors, the L-layer DNN exploits
a softmax layer in the rear to perform the classification task.
This softmax layer for M categories provides the output h7 =
[RPY B2 .. R?M] where
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Here, hTL”;l is obtained for an unlabeled sample by the feed-
forward procedure in the DNN. A% can be interpreted as the
probability of a sample belonging to the ¢-th category.

To 1ncorR0rate the spatial interdependencies, a MRF prior
(Y” =i; Y9 B) is imposed on h7, leading to the probabil-
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where h7¢ can be found in (4). Y™ is the estimated label of
pixel n, and the estimated labels of its neighbors are denoted
by Y. The MRF prior takes the form of [18]
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Here, 6()77”,2') =1 if and only if ym = 1; otherwise, 0.

The discrete label for each unlabeled sample is deter-
mined by identifying the largest element in p,, ie., Y =
argmax; ppn;. Compared with the discrete labels by this
criterion, the probability vectors by (5) better preserve the label
uncertainty of the augmented data.

B. Learning the DNN

To learn the DNN, the log-likelihood cost function is
used in the optimization problem, which allows for the label
uncertainty of the augmented data. Given an index set £ for
labeled samples and an index set 4 for augmented data, the
optimization problem takes the form of
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where Cyp = JAe + KAg. Ae and Mg are the balance

parameters for data sets £ and &l h’L” and p,; can be found
from (4) and (5). € is a regularization parameter. | o ||z
performs the Frobenius norm.

The backpropagation equations for this optimization prob-
lem are given in element-wise form by
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The biases and the weights can be updated by (b)) =
(b= — b 9¢ "and (WF)®) = (Wik)t=1 — naa,clik, where
the superscrlpts t — 1 and t respectively indicate the previous
and current iteration. 7 is the learning rate.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The propose method is tested based on two realistic POISAR
images, referred to as “Foulum” and “Flevoland”. The super-
vised DNN (SDNN), the SSDNN, and the proposed method
adopt the same DNN architecture as the SRDNN method, i.e.,
two hidden layers with 150 and 40 units.

For data set “Foulum”, 1000 samples per category are used
for training. The classification maps are presented in Fig. 1.
The average values for producer’s accuracy, overall accuracy
(OA), and kappa coefficient (k) over 10 independent tests are
reported in Table I. The experimental results demonstrate the
advantage of the proposed method over the multi-step method
(i.e., “SSDNN+MF"). Moreover, the higher OA and & of the
proposed method over the SDNN and the SSDNN reveal that
the proposed method benefits from exploiting the unlabeled
data and incorporating the contextual information.

For data set “Flevoland”, all the compared methods use
1% of the underlying labels (a total of 1564 samples for 15
categories). The experimental results are presented in Fig. 2
and Table II. Since we cannot find the codes for the SNC and
the SRDNN, their classification maps and accuracy values are
from references [7] and [10]. Compared with the SNC and the
SRDNN method, the improved performance has been achieved
by the proposed method. The proposed method augments
the training set with all the unlabeled data as well as their
class probability vectors (instead of discrete labels) so as
to consider the label uncertainty. In addition, the proposed
method eliminates the procedure of selecting samples, which
simplifies the procedure of the semi-supervised method.

TABLE I
CLASSIFICATION ACCURACY WITH THE FOULUM DATA SET.

Producer’s Accuracy (%)
Class Supervised ~ Semi-supervised ~Semi-supervised
DNN SSDNN SSDNN+MF Proposed

Water 83.88 95.36 95.56 96.10
Coniferous 87.82 85.39 86.74 88.80
Winter Wheat 89.59 99.87 99.93 99.73
Oats 90.11 98.75 99.16 99.82
Rye 56.69 99.50 99.70 99.90
Buildings 35.60 87.07 89.45 91.23
OA(%) 76.54 90.24 91.29 92.65
K 0.6699 0.8640 0.8785 0.8971

V. CONCLUSION

A DNN-based semi-supervised method has been proposed
for PoISAR image classification. All the unlabeled samples
as well as the labeled samples were exploited to train the
DNN, which overcame the limitation of a small number of
labeled samples. The proposed method incorporated the spatial
interdependencies through the MRF prior to alleviate the “salt-
and-pepper” effect in the classification results. The improved
results over the SDNN and SSDNN method have verified the
effectiveness of the proposed method in exploiting the unla-
beled data and in incorporating the spatial interdependencies.
The good performance of the proposed method implies the
potential of the DNN in the semi-supervised classification of
the PolSAR image.
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Fig. 1. (a) Pauli RGB image of “Foulum”. (b) Ground truth. (c) Legend. (d) Supervised DNN method. (¢) SSDNN method. (f) “SSDNN+MF”. The SSDNN
followed by a post-processing step using the mode filter (MF). (g) The proposed method.
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Fig. 2. (a) Pauli RGB image of “Flevoland”. (b) Ground truth. (c) Legend. (d) SDNN method. (¢) SSDNN method. (f) SNC method [7]. (g2) SRDNN method
[10]. (h) The proposed method.

CLASSIFICATION ACCURACY WITH THE FLEVOLAND DATA SET.

TABLE I

Producer’s Accuracy (%)

Gl SDNN SSDNN SNC[7] SRDNN [10] Proposed
Stembeans || 82.80 9297 9235 97.08 98.09
Rapeseed 75.98 78.04 69.19 91.81 94.08
Baresoil | 7886  93.68  92.11 93.92 96.51
Potatoes 6483 8784 8553 94.19 98.03
Beet 6384 9226  96.66 9238 96.91
Wheat 2 4766 8498 7162 89.65 90.42
Peas 7563 9590  91.83 94.52 98.14
Lucerne 7801 9469 9278 95.55 97.71
Wheat 3 85.64 9396 8933 97.60 99.60
Grass 5411 8386  50.54 87.26 81.35
Barley 5373 8871 6445 9757 99.12
Wheat 7741 8655  83.83 9552 96.16
Buildings || 4804 7149  73.63 81.74 79.47
Forest 7627 8633 9044 97.31 93.68
Water 9671 9926  97.60 99.53 99.79
OA(%) 7328 8045 8464 94.66 95.99
K 0.7086  0.8851 = 0.9418 0.9563
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