15 research outputs found

    Personalized Search Via Neural Contextual Semantic Relevance Ranking

    Full text link
    Existing neural relevance models do not give enough consideration for query and item context information which diversifies the search results to adapt for personal preference. To bridge this gap, this paper presents a neural learning framework to personalize document ranking results by leveraging the signals to capture how the document fits into users' context. In particular, it models the relationships between document content and user query context using both lexical representations and semantic embeddings such that the user's intent can be better understood by data enrichment of personalized query context information. Extensive experiments performed on the search dataset, demonstrate the effectiveness of the proposed method.Comment: Contextual, Personalization, Search, Semantics, LLM, embeddin

    A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion

    Get PDF
    Users may strive to formulate an adequate textual query for their information need. Search engines assist the users by presenting query suggestions. To preserve the original search intent, suggestions should be context-aware and account for the previous queries issued by the user. Achieving context awareness is challenging due to data sparsity. We present a probabilistic suggestion model that is able to account for sequences of previous queries of arbitrary lengths. Our novel hierarchical recurrent encoder-decoder architecture allows the model to be sensitive to the order of queries in the context while avoiding data sparsity. Additionally, our model can suggest for rare, or long-tail, queries. The produced suggestions are synthetic and are sampled one word at a time, using computationally cheap decoding techniques. This is in contrast to current synthetic suggestion models relying upon machine learning pipelines and hand-engineered feature sets. Results show that it outperforms existing context-aware approaches in a next query prediction setting. In addition to query suggestion, our model is general enough to be used in a variety of other applications.Comment: To appear in Conference of Information Knowledge and Management (CIKM) 201

    Why People Search for Images using Web Search Engines

    Get PDF
    What are the intents or goals behind human interactions with image search engines? Knowing why people search for images is of major concern to Web image search engines because user satisfaction may vary as intent varies. Previous analyses of image search behavior have mostly been query-based, focusing on what images people search for, rather than intent-based, that is, why people search for images. To date, there is no thorough investigation of how different image search intents affect users' search behavior. In this paper, we address the following questions: (1)Why do people search for images in text-based Web image search systems? (2)How does image search behavior change with user intent? (3)Can we predict user intent effectively from interactions during the early stages of a search session? To this end, we conduct both a lab-based user study and a commercial search log analysis. We show that user intents in image search can be grouped into three classes: Explore/Learn, Entertain, and Locate/Acquire. Our lab-based user study reveals different user behavior patterns under these three intents, such as first click time, query reformulation, dwell time and mouse movement on the result page. Based on user interaction features during the early stages of an image search session, that is, before mouse scroll, we develop an intent classifier that is able to achieve promising results for classifying intents into our three intent classes. Given that all features can be obtained online and unobtrusively, the predicted intents can provide guidance for choosing ranking methods immediately after scrolling

    Learning to Attend, Copy, and Generate for Session-Based Query Suggestion

    Full text link
    Users try to articulate their complex information needs during search sessions by reformulating their queries. To make this process more effective, search engines provide related queries to help users in specifying the information need in their search process. In this paper, we propose a customized sequence-to-sequence model for session-based query suggestion. In our model, we employ a query-aware attention mechanism to capture the structure of the session context. is enables us to control the scope of the session from which we infer the suggested next query, which helps not only handle the noisy data but also automatically detect session boundaries. Furthermore, we observe that, based on the user query reformulation behavior, within a single session a large portion of query terms is retained from the previously submitted queries and consists of mostly infrequent or unseen terms that are usually not included in the vocabulary. We therefore empower the decoder of our model to access the source words from the session context during decoding by incorporating a copy mechanism. Moreover, we propose evaluation metrics to assess the quality of the generative models for query suggestion. We conduct an extensive set of experiments and analysis. e results suggest that our model outperforms the baselines both in terms of the generating queries and scoring candidate queries for the task of query suggestion.Comment: Accepted to be published at The 26th ACM International Conference on Information and Knowledge Management (CIKM2017

    Efficient Neural Query Auto Completion

    Full text link
    Query Auto Completion (QAC), as the starting point of information retrieval tasks, is critical to user experience. Generally it has two steps: generating completed query candidates according to query prefixes, and ranking them based on extracted features. Three major challenges are observed for a query auto completion system: (1) QAC has a strict online latency requirement. For each keystroke, results must be returned within tens of milliseconds, which poses a significant challenge in designing sophisticated language models for it. (2) For unseen queries, generated candidates are of poor quality as contextual information is not fully utilized. (3) Traditional QAC systems heavily rely on handcrafted features such as the query candidate frequency in search logs, lacking sufficient semantic understanding of the candidate. In this paper, we propose an efficient neural QAC system with effective context modeling to overcome these challenges. On the candidate generation side, this system uses as much information as possible in unseen prefixes to generate relevant candidates, increasing the recall by a large margin. On the candidate ranking side, an unnormalized language model is proposed, which effectively captures deep semantics of queries. This approach presents better ranking performance over state-of-the-art neural ranking methods and reduces \sim95\% latency compared to neural language modeling methods. The empirical results on public datasets show that our model achieves a good balance between accuracy and efficiency. This system is served in LinkedIn job search with significant product impact observed.Comment: Accepted at CIKM 202

    The Role of the User\u27s Browsing and Query History for Improving MPC-generated Query Suggestions

    Get PDF
    In this paper we use the user\u27s recent web browsing history in order to provide better query suggestions in an information retrieval system. We have built a Chrome browser plugin that collects each web page visited by a user and submits it to our query suggestion server for indexing, thus building a personal history profile for each user. We then analyze if future queries submitted by a user to the search engine can be predicted from web pages visited by that user inthe past (i.e. his recent browsing history) or from queries submitted by that user in the past (i.e. his recent query history). The contribution of this paper is a method of using this personal history profile for reordering the query suggestions offered by Google when the user searches information on Google, moving query suggestions more relevant to the user\u27s information need to the front positions in the Google provided query suggestions list. We have collected browsing history log data for over 4 months from several users who installed our Chrome plugin on their local computers and then we performed an offline evaluation test that shows that our personalized query suggestion system improves the MRR (i.e. Mean Reciprocal Rank) score of Google query suggestions by approximately 0.04 (i.e. improves Google\u27s MRR score by 12 percents)

    Why people search for images using web search engines

    Get PDF
    What are the intents or goals behind human interactions with image search engines? Knowing why people search for images is of major concern to Web image search engines because user satisfaction may vary as intent varies. Previous analyses of image search behavior have mostly been query-based, focusing on what images people search for, rather than intent-based, that is, why people search for images. To date, there is no thorough investigation of how different image search intents affect users' search behavior. In this paper, we address the following questions: (1) Why do people search for images in text-based Web image search systems? (2) How does image search behavior

    Constructing an Interaction Behavior Model for Web Image Search

    Full text link
    User interaction behavior is a valuable source of implicit relevance feedback. In Web image search a different type of search result presentation is used than in general Web search, which leads to different interaction mechanisms and user behavior. For example, image search results are self-contained, so that users do not need to click the results to view the landing page as in general Web search, which generates sparse click data. Also, two-dimensional result placement instead of a linear result list makes browsing behaviors more complex. Thus, it is hard to apply standard user behavior models (e.g., click models) developed for general Web search to Web image search. In this paper, we conduct a comprehensive image search user behavior analysis using data from a lab-based user study as well as data from a commercial search log. We then propose a novel interaction behavior model, called grid-based user browsing model (GUBM), whose design is motivated by observations from our data analysis. GUBM can both capture users' interaction behavior, including cursor hovering, and alleviate position bias. The advantages of GUBM are two-fold: (1) It is based on an unsupervised learning method and does not need manually annotated data for training. (2) It is based on user interaction features on search engine result pages (SERPs) and is easily transferable to other scenarios that have a grid-based interface such as video search engines. We conduct extensive experiments to test the performance of our model using a large-scale commercial image search log. Experimental results show that in terms of behavior prediction (perplexity), and topical relevance and image quality (normalized discounted cumulative gain (NDCG)), GUBM outperforms state-of-the-art baseline models as well as the original ranking. We make the implementation of GUBM and related datasets publicly available for future studies.Comment: 10 page
    corecore