26 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 1, MARCH 2019

The Role of the User’s Browsing and Query History
for Improving MPC-generated Query Suggestions

Toan Badarinza, Adrian Sterca, and Florian Mircea Boian

Abstract—In this paper we present a way of using the very
recent user’s browsing history and query history, in order to
improve the query suggestions mechanism used by an information
retrieval system. In order to collect this kind of data, we have
built a Chrome browser plugin that monitors user’s web activity
and stores that data so that we can create a better personal profile
for each user. We then analyzed if future queries submitted by
a user to the search engine can be predicted from web pages
visited by that user in the past (i.e. his recent browsing history)
or from queries submitted by that user in the past (i.e. his recent
query history). The contribution of this paper is twofold: a) an
evaluation of the relevancy of the user’s recent browsing and
query history to future queries submitted by this user and b) a
method for personalizing the query suggestions offered by the
Google search engine. More specifically, we are using the user’s
personal (browsing) history profile in order to reorder query
suggestions offered by the Google search engine (i.e. we move
query suggestions more relevant to the user’s information need
to the front positions in the Google provided query suggestions
list).

Index Terms—information retrieval, query suggestion, query
auto-completion, personalized query history.

I. INTRODUCTION

Searching for information on the web can be very difficult
sometimes. There are a lot of users that do not know what
terms to enter in a search input of a search system to better
describe their information need. In [8], [14] we can see that
most of the search queries are very short, one or two words
on average and in [9], [15] we can see that these words are
ambiguous. In order to help the user when performing a search,
most search engines like Google, Yahoo!, Bing and others,
provide query auto-completion and query suggestions. In order
to better explain how search suggestions are generated, we
will first describe how query auto-completion works. In almost
all modern browsers, search engines and text editors we can
see how, after we start typing words, it automatically tries
to predict what we actually want to type. These are called
‘predictive auto-completion systems‘ where the candidates
are matched against the prefix using information retrieval
techniques and also natural language processing techniques.
This auto-completion is actually the highest ranked suggestion
from a suggestions list. The query suggestions list is a list that
contains from one to ten words (or group of words), which are

Manuscript received August 31, 2018; revised December 10, 2018. Date of
publication January 28, 2019.

I. Bdddrinzd, A. Sterca and F. Boian are with the Department of Com-
puter Science, Babes-Bolyai University of Cluj-Napoca; Str. M. Kogal-
niceanu, No. 1, Cluj-Napoca, Romania (emails: ionutb@cs.ubbcluj.ro, for-
est@cs.ubbcluj.ro, florin@cs.ubbcluj.ro).

Digital Object Identifier (DOI): 10.24138/jcomss.v15i1.608

Original scientific paper

usually prefixed with the subquery that the user is typing, items
that are extracted from a huge log of queries submitted by all
users. A very well known technique of extracting suggestions
from a common query log is called Most Popular Completion
(MPC).

The basic principle of Most Popular Completion is users
wisdom [3]. This means that, if a particular query was used by
a lot of users in the past, it is more likely that, that particular
query will be the first candidate as an auto-completion. We
can take, as example, a very popular and well known at
the moment this article was written, social media website,
“facebook”. If we start typing letter ’f” on www.google.com,
one may find the first query suggestion returned by Google
to be “facebook” and that’s because a lot of people are
performing this particular query on the Google search engine
website . Simply said, MPC is actually ranking suggestions
based on their popularity. Let’s say that we have a search log
with previous queries ()Log, a subquery (or the prefix of the
intended query) sq and a list of query-completions QC/(sq),
where all the items are starting with the desired subquery.
Using the MPC formula [22], we can calculate a rank for all
items in QC(sq) and order these items by their rank:

MPC(sq) = argmazqeqc(sq)w(q),

freq(q)
> [freq(i)

i€QLog

w(q) =

where freq(q) is actually the number of occurrences of query
g in QLog. In this way, the query ¢ € QC(sq) that has the
highest frequency in QLog would be the first suggested by
the search engine to the user.

The main focus of this paper is to use the user’s personal
browsing history in order to reorder the query suggestions list
provided by the Google search engine so that query sugges-
tions that are more relevant to the user’s information need are
moved to front positions in the final, reordered list. We do
this by assigning higher ranks to query suggestions (from the
Google-offered list of suggestions) that contain terms which
occur frequently in recently visited web pages by the user. It
is worth mentioning that at present time, Google offers query
suggestions largely based on the MPC strategy, plus additional
heuristics, some known, others kept secret. It also includes a
minimum personalization in the offered query suggestions by

'Google applies several heuristics on top of MPC, depending on the country
the user is located in, the user is logged into his/her Google account etc., so
”facebook” might not be the first query suggestion returned by Google to all
possible users for a query prefix of ”f” - this is shown here only as an example

1845-6421/03/608 © 2019 CCIS

FESB
Typewritten Text
 Original scientific paper

FESB
Typewritten Text

A. STERCA et al.: THE ROLE OF THE USER’S BROWSING AND QUERY HISTORY 27

considering the user’s query history submitted to Google.com
(either when the user is logged into Google services like Gmail
or Youtube or when the browser is used anonymously). This is
visible in the History item of the Sertings menu that is located
under the search input on the Google website. This paper is
an extended version of our work [27] where we have outlined
and tested the method used for personalizing query suggestion.
In the current paper we review the results from [27] and also
perform an analysis on the usefulness of the user’s browsing
history and query history for predicting future queries of the
user. We will try to find to what degree the log data from the
user’s query history and the log data from the user’s browsing
history, respectively, can be used to improve the list of query
suggestions offered by Google (by reordering these query
suggestions so that query suggestions more relevant for the
user’s information need are moved to front positions). We will
show that our method can further improve these MPC-based
with minimum personalization query suggestions provided by
the Google search engine.

The remaining of this paper is structured as follows. Section
II outlines work related to ours. Following, in Section IIT we
analyze the usefulness of the user’s recent browsing history
and the user’s recent query history for generating relevant
query suggestions. The main contribution of the paper, our
method for query personalization based on the user’s recent
browsing history, is described in section IV, followed by the
evaluations performed in Section V. Finally, the paper ends
with conclusions in Section VI. Part of this work was presented
in [27].

II. RELATED WORK
A. Query Auto-Completion

Auto-completion is the way that a software system (predom-
inantly information retrieval systems) uses, in order to predict
what a user might want to type, right after the first key was
pressed. In information retrieval systems, these predictions are
usually based on the query logs, which are the actual queries
that the users have used when they were trying to satisfy
their information need [2], [7], [5], [11], [10]. The common
problem that these methods have is that they are lacking a
’context’, which represents the immediately preceding queries
that a user submitted. A paper that addresses this problem
is [3], where Bar-Youssef and Kraus have demonstrated how
important these recent queries are in suggest systems. [30]
further extends this work by predicting queries as search
intents from short contexts consisting of previously submitted
queries and click data. Authors in [31] do a similar job by
considering the search context derived from both the query
auto-completion log and the click log (e.g. dwell time, click
number, time duration of the click session etc.). Then they use
a probabilistic model in order to predict better auto-completion
queries. In [28] authors build a neural-network language model
for generating new query autocompletions from query prefixes
that are not found among queries previously submitted by
users in the past. The most important thing that differentiate
our proposed method from other studies is the fact that we also
consider the personal browsing history together with personal

query history in trying to predict what the user might want to
type next.

B. Query Suggestion

A query suggestion is an enhanced query that a search
system presents to the user when he is trying to search for
something. Query auto-completion and query suggestion are
very tied together, because the query-autocompletion is the
first suggestion from the query suggestions list. The main
difference between these two is that the query auto-completion
needs to be prefixed with the characters that the user has
typed in the search input, whereas the query suggestion doesn’t
need to be prefixed with that. In [4] and [13] authors are
using the click-through data as context and demonstrate that
the higher a suggestion appears in a list, the more clicks
it attracts. Machine learning techniques also approached the
field of query suggestions in information retrieval. Jiang et
al. are using the LambdaMart [12] learning algorithm in [6]
in order to be able to define a set of features that would
help them build suggestion lists by reformulating the original
query. LambdaRank neural networks are neural networks that
speed up the learning process of machine learning algorithms
that use gradient descend methods. LambdaRank defines the
gradient of the cost function by taking into account the rank
order of the documents with respect to the query. The Lamb-
daMart learning algorithm is just LambdaRank instantiated
using gradient boosted decision trees. In [32] authors also
use neural networks to offer query suggestions by either
using (i.e. copying) words from the current session context in
the proposed query suggestion or generating new words that
should be incorporated into the suggestion. All these studies
take into consideration data that is available at the search
engine (i.e. in the server logs), while our paper uses data
only available at the client side, namely web pages previously
visited by the user and queries previously submitted by the
user.

C. Personalized Search

Personalized search attracted the attention of a lot of re-
searchers, [17], [18], [19], [20], [21]. All these studies are
taking into consideration only the personal query history when
offering new suggestions to users. There are lots of examples
of queries [1], [23], [24] like "ajax”, ’jaguar’” etc. which might
have multiple meanings and a suggestion system might fail
very easily without taking into consideration a personalized
factor when computing the suggestion lists. In [22] the authors
tried to extract the personalization factor by dividing the user
by age, gender and region, in [16] Bennett et al. analyzed
different lengths of the search sessions, and in [17] Matthijs
and Radlinski started to collect browsing history and built a
system through which they were re-ordering the results that
Google search returned. Following the line of thinking in [3],
the authors of [29] build a query suggestion system which
personalizes the offered query suggestions based on the clicked
documents and preceding queries in the same user session. All
the above papers either consider the global or personal query
history (measured at the search engine) or they use a form

28 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 1, MARCH 2019

of browsing history, but for re-ranking search results returned
by the search engine. In contrast, we consider the personal
browsing history of the user (observed at the client) in order
to provide better query suggestions.

III. ANALYZING THE USEFULNESS OF THE USER’S
BROWSING HISTORY AND QUERY HISTORY FOR
GENERATING QUERY SUGGESTIONS

In this section we try to answer the question how much
of the future queries submitted by a specific user to a search
engine (in our case, the Google search engine) can be predicted
from that user’s recent browsing history (i.e. the web pages
visited by this user in the past) or his/her query history (i.e.
the queries submitted by this user in the past). In order to
do this, we have developed a Chrome plugin that captures
all web pages visited by the user and also all queries and
subqueries submitted to Google together with the list of query
suggestions returned by Google. The reason for collecting only
Google searches is the fact that according to comScore in
[25], in February 2016, out of the total explicit core searches
performed on web, 64% were Google searches. The other part
of 36% is divided between Bing, Yahoo, Ask Network etc. We
choose to build a Chrome extension, and not an extension for
other browsers, because according to latest Browser Statis-
tics [26] from October 2017, made by www.w3schools.com,
76.1% of users are using a Chrome browser.

Our Chrome plugin is written in javascript which makes
REST calls to a remote server that persists all user information
in a MySQL database for later offline analysis. Whenever
a new page is loaded, our plugin does the following (all
webpages that are email pages, facebook pages and other pages
that may contain personal information will not be analyzed):

« If the URL of the page does not start with "www.google.”,
it will interpret it as a new webpage that was viewed and
will extract the actual text from the HTML document
and, alongside with page URL and page title, it will split
the text into terms, eliminate stop words and calculate
the term frequency for each unique word. All this history
data is then passed to the remote server using Ajax HTTP
requests.

o If the URL of the page matches "www.google.”, it means
the user performs a Google search. In this case, for
each key pressed in Google’s search input, the plugin
will extract the value of the search input and the list of
suggestions provided by Google for the written subquery.
This information is passed to the server. When the user
finishes typing the desired query and submits it to Google,
this final query is also submitted to the remote server.

For all information that is passed by the plugin to the remote
server, the plugin will associate a unique identifier for the user
(which is generated once when the user installs the extension).

In Fig. 1a we can see the database diagrams for the tables
where we store page history data and in Fig. 1b we can see
the database diagrams for the tables where we store query,
subquery and suggestions data at the remote server.

The server stores a timestamp associated to each page,
representing the time when that page was visited, a timestamp

| page v
id BIGINT(20)
createdAt BIGINT(20) j token v
clientld VARCHAR(255
: e » pageld BIGINT(20)
title TEXT
: — — —}< % count INT(11)
rl TEXT
u value VARCHAR(255)
> | 2
(a) Page history tables diagram
] query v] subquery v
id BIGINT(20) id BIGINT(20)
createdAt BIGINT(20) createdAt BIGINT(20)] suggestion v
clientid VARCHAR(255) clientld VARCHAR(255) |~ WL % subQueryld BIGINT(20)
value VARCHAR(255) value VARCHAR(255) - suggestions VARCHAR(255)
»> »> >

(b) Query related tables diagram

Fig. 1: Database tables diagrams

for each subquery for when it was typed in the Google search
input and also a timestamp for each query that the user actually
used to performed a Google search.

During a time interval of 4 months, we collected browsing
history and Google query history data from 14 users who
installed our Chrome plugin on their computers. In Fig. 2 we
can see the amount of data that was collected by our Chrome
plugin in the evaluation time frame of 4 months.

Time period | Total number of clients | Total number of visited pages Total number of Google queries

4 Months 14 43121 4339

Fig. 2: The collected data

It is commonly accepted that search queries can be divided
into two main types: navigational queries and informational
queries. A navigational query is a search query entered by the
user with the intent of finding a very particular webpage. For
example, a user might type “facebook” into Google’s search
input in order to find and navigate to the Facebook website,
instead of directly typing the full address in the address bar.
We can say that whenever a user submits a query to Google,
and the URL of the first page that he navigates to contains all
the terms from the query, the query is a navigational query.
An informational query is a search query that can cover a
very large topic, for which, the search engine can return a
very large number of relevant information (the website this
information comes from is not important by itself). When a
user submits such a query to Google, he is looking for some
information and not a particular website. In Fig. 3, which
is built from the data collected by our Chrome extension, we
can see that 77% of the queries are informational queries and
23% are navigational queries. We considered a query to be a
navigational query if the URL of the first page, that is visited
by the user, contains all query terms; all other queries that do
not follow this rule are considered as information queries.

A. STERCA et al.: THE ROLE OF THE USER’S BROWSING AND QUERY HISTORY 29

W Navigational Queries
® Informational Queries

Fig. 3: Search query types

In Fig. 4 we analyzed how many queries from all the
queries saved in our server’s database, can be found in
webpages that were previously visited by the 14 monitored
users. If the query appears in the URL of the page or in the
title of the page, we no longer look within the actual content
of the page. We made several tests related to the length of the
recent browsing history. First, we considered a recent browsing
history of 30 minutes, then 60 minutes and finally 120 minutes.
For each distinct query submitted by a user, we search if this
query can be found in web pages visited by that specific user
in the last 30, 60 and respectively 120 minutes (having as
reference the time when the user submitted this query). The
average percentage values across all 14 users are displayed
in Fig. 4. For example, we can see that for the 30 minutes
long recent browsing history, 28% of the queries submitted
by a user appear in the user’s recent browsing history, while
72% can not be found in this recent browsing history. We can
observe how the number of queries that were found in the
recent history, increases as the length of the history increases.
We conclude from this figure that for the browsing history
sizes considered, approximately 30% of the queries submitted
by users can be predicted from the browsing history of those
users.

100 - —
found in page history

———
NOT found in page history =

72%
N 70% 68 %

Percents [%]

28 % 30 % 82 %

60 minutes 120 minutes

Page History size

30 minutes

Fig. 4: The usefulness of the user’s browsing history for generating query
suggestions; queries that were found in pages from the browsing history

We also tried to assess if future queries can be predicted
from past queries submitted by a user from the data we
collected. In Fig. 5 we plotted for all queries stored in
the server’s databases the percentage of queries that were
submitted more than once to the search engine (i.e. duplicated
queries). For example, we found that out of our collected
history, approximately 73% of the queries were submitted only
once to the search engine (i.e. they were distinct queries),
while 18.54% were submitted twice to the search engine and
a small percentage of 0.03% were actually submitted 20 times
to the search engine. This shows that maximum 27% of queries
can be predicted from user query logs.

In the rest of the paper we only considered using the user’s
web browsing history for generating better query suggestions
(i.e. personalizing query suggestions) and we left the user’s
query history influence for future work.

IV. PROPOSED METHOD FOR QUERY PERSONALIZATION

Our method, which was also presented in [27], is based on
the assumption that while a user is browsing web pages, at
some point, he will develop an information need for which he
will go to a search engine (mostly Google search) and will seek
to satisfy this need. In the previous section we have shown that
around 30% of the queries that a user is submitting to Google
search can be predicted from a very short and recent browsing
history. We assume that a query session takes place in the
following way: as the user starts typing characters in the search
input of the search engine, the search engine returns a list of
query suggestions, Qs(4),% = 1..10, ordered by their relevancy
to the user’s information need (relevancy is computed by the
search engine using a Most Popular Completion technique,
Qs(1) being the most relevant suggestion according to the
search engine). The user might continue typing characters and
ignore the suggestions offered or he may choose a suggestion
to be the final query. This final query () is submitted to the
server. We call such a sequence of steps of the user a search
session: starting from the first character typed by the user in
the search input until he finally chooses a query suggested by
the search engine. In a search session we can define several
search contexts, i.e. (SQ,Qs(1),...,Q5(10)) tuples that are
made of the subquery SQ@ (i.e. the string typed by the user in
the search input) together with 10 suggestions offered by the
search engine for the subquery SQ.

In Fig. 6, which is an example extracted from the data that
we’ve collected, we can see how the order of the suggestions
change as the user types more characters in the search input.
The final query that the user will choose at the end is “pizza
with pineapple”, and we can see how this final query first
appears on position 6 in the list, then, as the user typed more
characters, it will move to position 3, and finally, after another
couple of characters typed, it appears on position 1. The goal
would be to predict and provide the final query on the highest
position as soon as possible, without letting the user type many
characters. Another thing that we have to mention here is that,
all the subqueries and the final query, were made by a user at a
specific point in time, when he had the Chorme plugin installed
and that the order of these suggestions that are presented in

30 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 1, MARCH 2019

Query duplicates

Fig. 5: The usefulness of the user’s query history for generating query suggestions; queries that were submitted several times to the search engine

pizza wit pizza with

pizza with p

pizza without cheese pizza with egg

pizza with pineapple

pizza with egg

pizza with bread

pizza with bread

pizza without oven

pizza with pineapple

pizza with pepperoni

pizza without yeast

pizza with anchovies

pizza with pesto

pizza with pineapple

pizza with cauliflower crust

pizza with pizza topping

pizza with arugula

pizza with potatoes

pizza without sauce

pizza with anchovies

pizza with white sauce

pizza with paypal

pizza with cauliflower crust

pizza with chicken crust

pizza with pita bread

pizza with arugula

pizza without cheese

pizza with pasta on top

pizza with spinach

pizza with puff pastry

pizza with price

Fig. 6: Example of a (part of a) search session

this picture, is the exact same order that Goggle was offering
at that time.

Our query personalization approach reorders query sugges-
tions offered by the search engine (e.g. Google) by considering
personal context metadata for each user, so that query sugges-
tions more relevant to the user’s information need are moved in
front, to a higher rank, in the ordered list of query suggestions
provided by the search engine. This personal metadata is
extracted from the short browsing history of the user (i.e. the
web pages visited by the user before the time he started typing
subqueries in the Google search input).

Because our query personalization method [27] must rerank
a list of 10 query suggestions provided by the Google search
engine, we can not do this by relying solely on our personaliza-

tion score and disregarding the Google, MPC-based, score of
each query suggestion. For this reason, for reranking the query
suggestions provided by Google, we use a hybrid score that
takes in consideration the original ranking offered by Google
and our personalized ranking score [27]:

HybridPageScore(Qs) =
OrigScore(Qs) - B+ (1= B) - PTQS(Qs) (1)

where:

e OrigScore(Qs) represents a weight assigned to the sug-
gestion () based on its position in the original order of
the suggestions as provided by Google. The (original)

A. STERCA et al.: THE ROLE OF THE USER’S BROWSING AND QUERY HISTORY 31

order of suggestions is usually computed by the search
engine using a Most Popular Completion mechanism.

e PTQS is the Personal Temporal Query Suggestion score,
our personalization score computed based on the user’s
recent browsing history which will be detailed below.

e [€ [0,1] defines the relative weight of the OrigScore
and PT'QS score.

For a list of 10 query suggestions returned by Google, we have
set the OrigScore(Qs) = 10 — Google PositionIndex(Qs)
where the Google PositionIndex(Q)s) is the position index of
suggestion () in the list of suggestions offered by Google. The
5 parameter will determine how important is OrigScore and
PTQS, so for example if 5 = 0, then HybridPageScore will
be the same as PT'Q.S, and if 8 = 1, then HybridPageScore
will be the same as OrigScore.

The Personal Temporal Query Suggestion score, PTQ.S, of

a query suggestion) is defined as [27]:

PTQS(Qs) = Y weight(p)- qtireq(Qs,p) (2)

peEHPage
where:

e (s is the suggestion we want to compute the score for
(which can contain multiple terms);

e HPage represents the web pages that a user has visited
(the page history of that particular user);

o weight(p) is a temporal weight factor for the score of
s with respect to page p.

The PTQS score is a personal metric (i.e. dependent on
the specific user) that evaluates the dependency of the query
suggestion Qs to the recent browsing history of the user,
H Page. In other words, it specifies numerically the correlation
of Qs to a part (or all) of the user’s recent browsing history.

For each subquery S@Q from a search session, we consider
the (browsing) page history HPage to be the web pages
visited by the user in the time interval [t,cf, teurrent)- teurrent
is the end of the search session (i.e. the time when the final
query, @, of this search session is submitted) and t,.; is a
reference time in the past, for example 30 minutes before
teurrent- The difference tcyrrent — trep describes the length
of the browsing history that is considered by PT'QS. The
temporal weight of a web page p € HPage used in the
PTQS(Qs) score is thus:

‘ minutes(t(p) — tref)
ht(p) = 3
werg (p) erp (minutes(tcurrent - tref) ()
10% — 1
cap(z) = —4 X

where t(p) is the time when page p was visited by the
user (t(p) € [tref,teurrent)) and minutes(t) is a function
that returns the length in minutes of the time interval ¢.
mzngZZ;?:L(:(p Z;tj;f; zf) is a linear mapping of ¢(p) from the
time interval [t,cs,tcurrent] to the interval [0,1]. On top of
this, we apply the exponential mapping exp(.) which maps
exponentially the values from the interval [0, 1] to the final
interval [0, 0.9]. In this way, the weight difference of two

pages, weight(p1) — weight(ps), is an exponential of their

timestamp difference, ¢(p1) — t(p2). weight(p) gives benefit
to the most recent pages and lets them have a significantly
higher weight than the other pages that are closer to t,.f,
because we consider the more recent the page is, the more it
might be relevant to what the user will try to type next.

The second member of (2), gt freq(Qs,p), is a metric that
expresses how relevant page p is for the query suggestion Qs:

1

qtfreq(Qsap) = |{qt|qt c Qs}‘ :

> (freqlas,p) - idf ()
qt€Qs (5)

where:

o [{q|lq: € Qs}] is the number of terms from the query
suggestion ()s;

o freq(qs,p) is the frequency of query term ¢: in page p;

e idf(q) is the inverse document frequency of ¢; in the
entire user page history:

| EntirePageHistory|

id, = 6
df(q:) 1+ |p € EntirePageHistory; g € p ©

where the denominator is the total number of web pages
from the entire user page history, EntirePageH1istory,
that query term ¢; appears in (1 is added to it in order to
avoid divisions by zero).

V. EVALUATIONS

We performed an offline evaluation of our method using
the data already presented in Section III in Fig. 2. Out of
all this query history data, we used in our experiments only
the search contexts, (SQ, Qs(1), ..., Qs(10)), that contain the
final submitted query of the search session, (), among the list
of query suggestions Q4(1)..Q;(10).

We have performed a significant number of tests on the
log data presented in Section III in order to select the best
values for the length of the browsing history and 5 parameters
from equation (1). The length of the browsing history in time
units is given by tcurrent — tref, but since teyrrent 1S the
present time, this length is entirely determined by the %,
value. We have used different values for these parameters, the
length of the browsing history ranging from 0.25 hours to 24
hours and J ranging from O to 0.995. All these simulations
are detailed in [27]. The conclusions of these simulation tests
is that the best values for the length of the browsing history
(i.e. teurrent — tres) is 30 minutes and for 3 is 0.9.

In order to confirm this, we also computed the Mean
Reciprocal Rank (MRR) [3] for the original Google ordering
of query suggestions and also for the ordering given by our
own score, the HybridPageScore.

Giving the fact that the query suggestion lists that we
used for these tests, had the final query present among the
suggestions, RR (reciprocal rank) will never have 0 (zero)
values. In Fig. 7 we show M RR values computed for different
parameters that are used in the HybridPageScore, and we
can see that for 8 = 0.9 and the length of the browsing history
L = 0.5 we obtained a better MRR than the one obtained by
Google and for 5 = 0.9 and L = 1 we obtained a similar
MRR value as Google. For the test case with L = 0.5 and

32 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 1, MARCH 2019

Goc‘)gle MRR o
HybridPageScore MRR |

0.74 |-
0.72 4

0.7 1

MRR score

0.68
0.66

06 i I I I

0.64 |-
L=2;$=0.9 L=1;3=0.9 L=0.5;$=0.85 L=0.5;=0.9
Web browsing history length L and f values

Fig. 7: MRR for different HybridPageScore parameters : the length of
the web browsing history, L, expressed in hours and the value of 3 from
equation 1

‘ Google MAR
HybridPageScore MRR |

0.44 |
0.42 | g

04 | —

MRR score

L=2:3=0.9 L=1;8=0.9 L=0.5;8=0.85

L=0.5;6=0.9
Web browsing history length L and p values

L=0.5;$=0.95

Fig. 8: MRR for Google and HybridPageScore when considering only
improvable Google suggestions; L is the length of the web browsing history
expressed in hours and f is the parameter from equation 1

8 = 0.9, we have 423 queries in total and out of these,
222 (i.e. more than half) were already placed on the Ist
position/rank by the Google search engine. So these 222 lists
of query suggestions can not be improved anymore. Out of
the remaining 201 queries, we have 17 queries for which
the original Google position is smaller than the new position
computed by our Hybrid Page Score; please remember that
a lower position actually means a higher rank and position 1
is actually the first suggestion in the suggestion list (having
the highest rank/importance). There were 17 queries that had
their rankings reduced by our HybridPageScore algorithm
(a total cumulative reduction of 20 ranks), but 21 queries had
their rankings improved by our algorithm (a total cumulative
improvement of 33 ranks). So, our algorithm improved more
Google rankings than the number of rankings that were broken.
And also, out of those 17 queries that had their original Google
ranking reduced by our algorithm, 14 were reduced by only
1 position and 3 of them were reduced by 2 positions, so the
overall reduction is rather small.

If we ignore the 222 queries that were already placed on
the 1st position/rank by the Google search engine (i.e. the
queries whose ranks can not be improved because they are
already on the first position in the Google suggestions list)
and compute the Google and HybridPageScore MRR scores
on the remaining 201 queries, we get the values from Fig. 8.
We see here for the case with L = 0.5 and § = 0.9, that
the HybridPageScore MRR score has a 0.04 improvement
over Google’s MRR score (i.e. HybridPageScore has an
improvement of 12% over Google MRR).

VI. CONCLUSION

In this paper, we considered the user’s recent browsing
history and query history in order to provide the user bet-
ter, personalized and more relevant query suggestions than
the suggestions offered by a MPC-based search engine like
Google. Using a Chrome browser plugin that we developed
and installed on personal computers of several users, we
performed an experiment that spanned over 4 months in
which we collected browsing history data from all users and
analyzed what percentage of the queries submitted by users
to Google can be predicted from past web pages visited by
this user or past queries submitted by this user to Google.
In our experiments, this percentage was approximately 30%.
After showing that 28% of the queries submitted by the user
can be predicted from this user’s recent browsing history
and 27% of the queries can be predicted from his/her query
history, we further developed a personalization method for
query suggestions based only on the user’s recent browsing
history (and left the query history for future work). The query
suggestions personalization method is built at the client-side,
by reordering the query suggestions provided by Google, so
that the ranking of the query suggestions offered by the Google
search engine for a specific subquery is improved, meaning
that more relevant query suggestions have higher ranks (e.g.
lower positions) in the suggestion lists. We have shown using
tests that span over a 4 months period that our algorithm
obtains a better MRR score that improves by 12% the MRR
score of Google suggestions. As future work, we plan to add
this query history of the user to our algorithm and evaluate
the algorithm on larger user data sets.

REFERENCES

[1] Ryen W. White and Steven M. Drucker. Investigating behavioral variabil-
ity in web search. In Proceedings of the 16th International Conference on
World Wide Web, WWW °07, pages 21-30, New York, NY, USA, 2007.
ACM. [doi: 10.1145/1242572.1242576]

[2] Holger Bast and Ingmar Weber. Type less, find more: Fast autocomple-
tion search with a succinct index. In Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’06, pages 364-371, New York, NY, USA,
2006. ACM. [doi: 10.1145/1148170.1148234]

[3] Ziv Bar-Yossef and Naama Kraus. Context- sensitive query auto-
completion. In Proceedings of the 20th International Conference on World
Wide Web, WWW "11, pages 107-116, New York, NY, USA, 2011. ACM.
[doi: 10.1145/1963405.1963424]

[4] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong
Chen, and Hang Li. Context-aware query suggestion by mining click-
through and session data. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’08, pages 875-883, New York, NY, USA, 2008. ACM. [doi:
10.1145/1401890.1401995]

A. STERCA et al.: THE ROLE OF THE USER’S BROWSING AND QUERY HISTORY 33

[5]1 Shengyue Ji, Cooling Li, Chen Li, and Jianhua Feng. Efficient interactive
fuzzy keyword search. In Proceedings of the 18th International Confer-
ence on World Wide Web, WWW °09, pages 371-380, New York, NY,
USA, 2009. ACM. [doi: 10.1145/1526709.1526760]

[6] Jyun-Yu Jiang, Yen-Yu Ke, Pao-Yu Chien, and Pu-Jen Cheng. Learning
user reformulation behavior for query auto-completion. In Proceedings
of the 37th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 14, pages 445-454, New
York, NY, USA, 2014. ACM. [doi: 10.1145/2600428.2609614]

[7] Mario Arias, Jose Manuel Cantera, Jesus Vegas, Pablo de la Fuente,
Jorge Cabrero Alonso, Guido Garcia Bernardo, Cesar Llamas, and Alvaro
Zubizarreta. Context-based personalization for mobile web search. In
PersDB, pages 33-39, Auckland, New Zealand, 2008.

[8] Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang. Clustering user
queries of a search engine. In Proceedings of the 10th International
Conference on World Wide Web, WWW °01, pages 162-168, New York,
NY, USA, 2001. ACM. [doi: 10.1145/371920.371974]

[9] Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying Ma. Probabilistic
query expansion using query logs. In Proceedings of the 11th International
Conference on World Wide Web, WWW 02, pages 325-332, New York,
NY, USA, 2002. ACM [doi: 10.1145/511446.511489]

[10] Holger Bast, Debapriyo Majumdar, and Ingmar Weber. Efficient inter-
active query expansion with complete search. In Proceedings of the Six-
teenth ACM Conference on Conference on Information and Knowledge
Management, CIKM ’07, pages 857-860, New York, NY, USA, 2007.
ACM. [doi: 10.1145/1321440.1321560]

[11] Ryen W White and Gary Marchionini. Examining the effectiveness
of real-time query expansion. Information Processing and Management,
43(3):685-704, 2007. [doi: 10.1016/j.ipm.2006.06.005]

[12] Christopher J. C. Burges, Krysta M. Svore, Paul N. Bennett, Andrzej
Pastusiak, and Qiang Wu. Learning to rank using an ensemble of lambda-
gradient models. In Proceedings of the 2010 International Conference on
Yahoo! Learning to Rank Challenge - Volume 14, YLRC’10, pages 25-35.
JMLR.org, 2010.

[13] Yanen Li, Anlei Dong, Hongning Wang, Hongbo Deng, Yi Chang,
and ChengXiang Zhai. A two-dimensional click model for query auto-
completion. In Proceedings of the 37th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
SIGIR ’14, pages 455-464, New York, NY, USA, 2014. ACM. [doi:
10.1145/2600428.2609571]

[14] Bernard J Jansen, Amanda Spink, and Tefko Saracevic. Real life, real
users, and real needs: a study and analysis of user queries on the
web. Information processing and management, 36(2):207-227, 2000. [doi:
10.1016/S0306-4573(99)00056-4]

[15] Mark Sanderson. Ambiguous queries: Test collections need more sense.
In Proceedings of the 31st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SI-
GIR ’08, pages 499-506, New York, NY, USA, 2008. ACM. [doi:
10.1145/1390334.1390420]

[16] Paul N. Bennett, Ryen W. White, Wei Chu, Susan T. Dumais, Peter
Bailey, Fedor Borisyuk, and Xiaoyuan Cui. Modeling the impact of short
and long-term behavior on search personalization. In Proceedings of the
35th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’12, pages 185-194, New York, NY, USA,
2012. ACM. [doi: 10.1145/2348283.2348312]

[17] Nicolaas Matthijs and Filip Radlinski. Personalizing web search
using long term browsing history. In Proceedings of the Fourth
ACM International Conference on Web Search and Data Mining,
WSDM °’11, pages 25-34, New York, NY, USA, 2011. ACM. [doi:
10.1145/1935826.1935840]

[18] Mariam Daoud, Lynda Tamine-Lechani, Mohand Boughanem, and Bilal
Chebaro. A session based personalized search using an ontological
user profile. In Proceedings of the 2009 ACM Symposium on Applied
Computing, SAC ’09, pages 1732-1736, New York, NY, USA, 2009.
ACM. [doi: 10.1145/1529282.1529670]

[19] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. A large-scale evaluation
and analysis of personalized search strategies. In Proceedings of the 16th
International Conference on World Wide Web, WWW °07, pages 581-
590, New York, NY, USA, 2007. ACM. [doi: 10.1145/1242572.1242651]

[20] Ahu Sieg, Bamshad Mobasher, and Robin Burke. Web search person-
alization with ontological user profiles. In Proceedings of the Sixteenth
ACM Conference on Conference on Information and Knowledge Man-
agement, CIKM 07, pages 525-534, New York, NY, USA, 2007. ACM.
[doi: 10.1145/1321440.1321515]

[21] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Personalizing search
via automated analysis of interests and activities. In Proceedings of the
28th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’05, pages 449-456, New
York, NY, USA, 2005. ACM. [doi: 10.1145/1076034.1076111]

[22] Milad Shokouhi. Learning to personalize query auto-completion. In Pro-
ceedings of the 36th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 13, pages 103-112,
New York, NY, USA, 2013. ACM. [doi: 10.1145/2484028.2484076]

[23] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Potential for per-
sonalization. ACM Trans. Comput.-Hum. Interact., 17(1):4:1-4:31, New
York, NY, USA, 2010. [doi: 10.1145/1721831.1721835]

[24] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Implicit user mod-
eling for personalized search. In Proceedings of the 14th ACM In-
ternational Conference on Information and Knowledge Management,
CIKM °05, pages 824-831, New York, NY, USA, 2005. ACM. [doi:
10.1145/1099554.1099747]

[25] Comscore, https://www.comscore.com/Insights/Rankings/comScore-
Releases-February-2016-US- Desktop-Search-Engine-Rankings, February
2016.

[26] W3schools, https://www.w3schools.com/browsers/, October 2017.

[27] loan Badérinza, Adrian Sterca, Florian Boian, Using the user’s recent
browsing history for personalized query suggestions, SoftCom 2018,
Split, Croatia, 2018. [doi: 10.23919/SOFTCOM.2018.8555774]

[28] Dae Hoon Park , Rikio Chiba, A Neural Language Model for Query
Auto-Completion, Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
August 07-11, 2017. [doi: 10.1145/3077136.3080758]

[29] Fei Cai , Maarten de Rijke, Selectively Personalizing Query Auto-
Completion, Proceedings of the 39th International ACM SIGIR confer-
ence on Research and Development in Information Retrieval, July 17-21,
2016. [doi: 10.1145/2911451.2914686]

[30] Jyun-Yu Jiang , Pu-Jen Cheng, Classifying User Search Intents for
Query Auto-Completion, Proceedings of the 2016 ACM International
Conference on the Theory of Information Retrieval, September 12-16,
2016. [doi: 10.1145/2970398.2970400]

[31] Aston Zhang , Amit Goyal , Ricardo Baeza-Yates , Yi Chang , Jiawei
Han , Carl A. Gunter , Hongbo Deng, Towards Mobile Query Auto-
Completion: An Efficient Mobile Application-Aware Approach, Proceed-
ings of the 25th International Conference on World Wide Web, April
11-15, 2016. [doi: 10.1145/2872427.2882977]

[32] Mostafa Dehghani , Sascha Rothe , Enrique Alfonseca , Pascal Fleury,
Learning to Attend, Copy, and Generate for Session-Based Query
Suggestion, Proceedings of the 2017 ACM on Conference on Infor-
mation and Knowledge Management, November 06-10, 2017. [doi:
10.1145/3132847.3133010]

Ioan Badairinza is a teaching assistant at the Fac-
ulty of Mathematics and Computer Science, Babes-
Bolyai University, Romania. He received the Ph.D.
degree in Computer Science from Babes-Bolyai Uni-
versity in 2018. His current research interests are
information retrieval, web services, and distributed
systems. He has close collaborations with the IT
industry from Cluj-Napoca.

Adrian Sterca is a lecturer at the Faculty of
Mathematics and Computer Science, Babes-Bolyai
University, Romania. He received the Ph.D. degree
from Babes-Bolyai University in 2009. He received
2 research grants from the Romanian funding agency
and was a visiting researcher at the Institute of Infor-
mation Technology (ITEC), Klagenfurt University,
Austria in 2003, 2004 and 2006. He has authored
several research papers on networking, multimedia
systems and information retrieval. He is a member
of the ACM. His current research interests are net-
working, multimedia streaming, image processing and information retrieval.

Florian Boian is an Emeritus Professor of Computer
Science at the Faculty of Mathematics and Com-
puter Science, Babes-Bolyai University, Romania.
He has authored more than 100 scientific papers and
published several books on Java-based frameworks,
operating systems and distributed systems. He won
several research grants from the Romanian funding
agency. His current research interests are web ser-
vices and distributed systems.

