38,284 research outputs found

    Learning to Segment Moving Objects in Videos

    Full text link
    We segment moving objects in videos by ranking spatio-temporal segment proposals according to "moving objectness": how likely they are to contain a moving object. In each video frame, we compute segment proposals using multiple figure-ground segmentations on per frame motion boundaries. We rank them with a Moving Objectness Detector trained on image and motion fields to detect moving objects and discard over/under segmentations or background parts of the scene. We extend the top ranked segments into spatio-temporal tubes using random walkers on motion affinities of dense point trajectories. Our final tube ranking consistently outperforms previous segmentation methods in the two largest video segmentation benchmarks currently available, for any number of proposals. Further, our per frame moving object proposals increase the detection rate up to 7\% over previous state-of-the-art static proposal methods

    Learning Video Object Segmentation with Visual Memory

    Get PDF
    This paper addresses the task of segmenting moving objects in unconstrained videos. We introduce a novel two-stream neural network with an explicit memory module to achieve this. The two streams of the network encode spatial and temporal features in a video sequence respectively, while the memory module captures the evolution of objects over time. The module to build a "visual memory" in video, i.e., a joint representation of all the video frames, is realized with a convolutional recurrent unit learned from a small number of training video sequences. Given a video frame as input, our approach assigns each pixel an object or background label based on the learned spatio-temporal features as well as the "visual memory" specific to the video, acquired automatically without any manually-annotated frames. The visual memory is implemented with convolutional gated recurrent units, which allows to propagate spatial information over time. We evaluate our method extensively on two benchmarks, DAVIS and Freiburg-Berkeley motion segmentation datasets, and show state-of-the-art results. For example, our approach outperforms the top method on the DAVIS dataset by nearly 6%. We also provide an extensive ablative analysis to investigate the influence of each component in the proposed framework

    Learning Features by Watching Objects Move

    Full text link
    This paper presents a novel yet intuitive approach to unsupervised feature learning. Inspired by the human visual system, we explore whether low-level motion-based grouping cues can be used to learn an effective visual representation. Specifically, we use unsupervised motion-based segmentation on videos to obtain segments, which we use as 'pseudo ground truth' to train a convolutional network to segment objects from a single frame. Given the extensive evidence that motion plays a key role in the development of the human visual system, we hope that this straightforward approach to unsupervised learning will be more effective than cleverly designed 'pretext' tasks studied in the literature. Indeed, our extensive experiments show that this is the case. When used for transfer learning on object detection, our representation significantly outperforms previous unsupervised approaches across multiple settings, especially when training data for the target task is scarce.Comment: CVPR 201
    • …
    corecore