127,836 research outputs found

    Towards Practical Verification of Machine Learning: The Case of Computer Vision Systems

    Full text link
    Due to the increasing usage of machine learning (ML) techniques in security- and safety-critical domains, such as autonomous systems and medical diagnosis, ensuring correct behavior of ML systems, especially for different corner cases, is of growing importance. In this paper, we propose a generic framework for evaluating security and robustness of ML systems using different real-world safety properties. We further design, implement and evaluate VeriVis, a scalable methodology that can verify a diverse set of safety properties for state-of-the-art computer vision systems with only blackbox access. VeriVis leverage different input space reduction techniques for efficient verification of different safety properties. VeriVis is able to find thousands of safety violations in fifteen state-of-the-art computer vision systems including ten Deep Neural Networks (DNNs) such as Inception-v3 and Nvidia's Dave self-driving system with thousands of neurons as well as five commercial third-party vision APIs including Google vision and Clarifai for twelve different safety properties. Furthermore, VeriVis can successfully verify local safety properties, on average, for around 31.7% of the test images. VeriVis finds up to 64.8x more violations than existing gradient-based methods that, unlike VeriVis, cannot ensure non-existence of any violations. Finally, we show that retraining using the safety violations detected by VeriVis can reduce the average number of violations up to 60.2%.Comment: 16 pages, 11 tables, 11 figure

    Formal Verification of Input-Output Mappings of Tree Ensembles

    Full text link
    Recent advances in machine learning and artificial intelligence are now being considered in safety-critical autonomous systems where software defects may cause severe harm to humans and the environment. Design organizations in these domains are currently unable to provide convincing arguments that their systems are safe to operate when machine learning algorithms are used to implement their software. In this paper, we present an efficient method to extract equivalence classes from decision trees and tree ensembles, and to formally verify that their input-output mappings comply with requirements. The idea is that, given that safety requirements can be traced to desirable properties on system input-output patterns, we can use positive verification outcomes in safety arguments. This paper presents the implementation of the method in the tool VoTE (Verifier of Tree Ensembles), and evaluates its scalability on two case studies presented in current literature. We demonstrate that our method is practical for tree ensembles trained on low-dimensional data with up to 25 decision trees and tree depths of up to 20. Our work also studies the limitations of the method with high-dimensional data and preliminarily investigates the trade-off between large number of trees and time taken for verification

    Vehicle: Bridging the Embedding Gap in the Verification of Neuro-Symbolic Programs

    Full text link
    Neuro-symbolic programs -- programs containing both machine learning components and traditional symbolic code -- are becoming increasingly widespread. However, we believe that there is still a lack of a general methodology for verifying these programs whose correctness depends on the behaviour of the machine learning components. In this paper, we identify the ``embedding gap'' -- the lack of techniques for linking semantically-meaningful ``problem-space'' properties to equivalent ``embedding-space'' properties -- as one of the key issues, and describe Vehicle, a tool designed to facilitate the end-to-end verification of neural-symbolic programs in a modular fashion. Vehicle provides a convenient language for specifying ``problem-space'' properties of neural networks and declaring their relationship to the ``embedding-space", and a powerful compiler that automates interpretation of these properties in the language of a chosen machine-learning training environment, neural network verifier, and interactive theorem prover. We demonstrate Vehicle's utility by using it to formally verify the safety of a simple autonomous car equipped with a neural network controller

    Verifiable Reinforcement Learning via Policy Extraction

    Full text link
    While deep reinforcement learning has successfully solved many challenging control tasks, its real-world applicability has been limited by the inability to ensure the safety of learned policies. We propose an approach to verifiable reinforcement learning by training decision tree policies, which can represent complex policies (since they are nonparametric), yet can be efficiently verified using existing techniques (since they are highly structured). The challenge is that decision tree policies are difficult to train. We propose VIPER, an algorithm that combines ideas from model compression and imitation learning to learn decision tree policies guided by a DNN policy (called the oracle) and its Q-function, and show that it substantially outperforms two baselines. We use VIPER to (i) learn a provably robust decision tree policy for a variant of Atari Pong with a symbolic state space, (ii) learn a decision tree policy for a toy game based on Pong that provably never loses, and (iii) learn a provably stable decision tree policy for cart-pole. In each case, the decision tree policy achieves performance equal to that of the original DNN policy

    Optimization and Abstraction: A Synergistic Approach for Analyzing Neural Network Robustness

    Full text link
    In recent years, the notion of local robustness (or robustness for short) has emerged as a desirable property of deep neural networks. Intuitively, robustness means that small perturbations to an input do not cause the network to perform misclassifications. In this paper, we present a novel algorithm for verifying robustness properties of neural networks. Our method synergistically combines gradient-based optimization methods for counterexample search with abstraction-based proof search to obtain a sound and ({\delta}-)complete decision procedure. Our method also employs a data-driven approach to learn a verification policy that guides abstract interpretation during proof search. We have implemented the proposed approach in a tool called Charon and experimentally evaluated it on hundreds of benchmarks. Our experiments show that the proposed approach significantly outperforms three state-of-the-art tools, namely AI^2 , Reluplex, and Reluval
    corecore