112,853 research outputs found

    Deep Attributes Driven Multi-Camera Person Re-identification

    Full text link
    The visual appearance of a person is easily affected by many factors like pose variations, viewpoint changes and camera parameter differences. This makes person Re-Identification (ReID) among multiple cameras a very challenging task. This work is motivated to learn mid-level human attributes which are robust to such visual appearance variations. And we propose a semi-supervised attribute learning framework which progressively boosts the accuracy of attributes only using a limited number of labeled data. Specifically, this framework involves a three-stage training. A deep Convolutional Neural Network (dCNN) is first trained on an independent dataset labeled with attributes. Then it is fine-tuned on another dataset only labeled with person IDs using our defined triplet loss. Finally, the updated dCNN predicts attribute labels for the target dataset, which is combined with the independent dataset for the final round of fine-tuning. The predicted attributes, namely \emph{deep attributes} exhibit superior generalization ability across different datasets. By directly using the deep attributes with simple Cosine distance, we have obtained surprisingly good accuracy on four person ReID datasets. Experiments also show that a simple metric learning modular further boosts our method, making it significantly outperform many recent works.Comment: Person Re-identification; 17 pages; 5 figures; In IEEE ECCV 201

    Score Function Features for Discriminative Learning: Matrix and Tensor Framework

    Get PDF
    Feature learning forms the cornerstone for tackling challenging learning problems in domains such as speech, computer vision and natural language processing. In this paper, we consider a novel class of matrix and tensor-valued features, which can be pre-trained using unlabeled samples. We present efficient algorithms for extracting discriminative information, given these pre-trained features and labeled samples for any related task. Our class of features are based on higher-order score functions, which capture local variations in the probability density function of the input. We establish a theoretical framework to characterize the nature of discriminative information that can be extracted from score-function features, when used in conjunction with labeled samples. We employ efficient spectral decomposition algorithms (on matrices and tensors) for extracting discriminative components. The advantage of employing tensor-valued features is that we can extract richer discriminative information in the form of an overcomplete representations. Thus, we present a novel framework for employing generative models of the input for discriminative learning.Comment: 29 page

    Weakly Supervised Cross-Lingual Named Entity Recognition via Effective Annotation and Representation Projection

    Full text link
    The state-of-the-art named entity recognition (NER) systems are supervised machine learning models that require large amounts of manually annotated data to achieve high accuracy. However, annotating NER data by human is expensive and time-consuming, and can be quite difficult for a new language. In this paper, we present two weakly supervised approaches for cross-lingual NER with no human annotation in a target language. The first approach is to create automatically labeled NER data for a target language via annotation projection on comparable corpora, where we develop a heuristic scheme that effectively selects good-quality projection-labeled data from noisy data. The second approach is to project distributed representations of words (word embeddings) from a target language to a source language, so that the source-language NER system can be applied to the target language without re-training. We also design two co-decoding schemes that effectively combine the outputs of the two projection-based approaches. We evaluate the performance of the proposed approaches on both in-house and open NER data for several target languages. The results show that the combined systems outperform three other weakly supervised approaches on the CoNLL data.Comment: 11 pages, The 55th Annual Meeting of the Association for Computational Linguistics (ACL), 201

    A Bayesian Approach to Ranking Private Companies Based on Predictive Indicators

    Get PDF
    Private equity investors seek to rank potential investment opportunities in growth stage private companies within an industry sector. The sparsity of historical investment transaction data for many growth stage private companies\u27 may present a major obstacle to using statistical methods to discern industry specific features associated with successful and failed companies.This paper describes a Bayesian ranking approach based on i extracting and selecting features; ii training support vector machine classifiers from feature pairs of labeled companies in an industry; iii non-parametric estimation of posterior probabilities of success and failure; and iv ranking unlabeled companies within a cohort based on scores derived from posterior probability estimates. We anticipate that this approach will not only be of interest to statisticians and machine learning specialists with an interest in venture capital and private equity but extend to a broader readership whose interests lie in classification methods where missing data is the primary obstacle

    Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification

    Full text link
    This paper considers the domain adaptive person re-identification (re-ID) problem: learning a re-ID model from a labeled source domain and an unlabeled target domain. Conventional methods are mainly to reduce feature distribution gap between the source and target domains. However, these studies largely neglect the intra-domain variations in the target domain, which contain critical factors influencing the testing performance on the target domain. In this work, we comprehensively investigate into the intra-domain variations of the target domain and propose to generalize the re-ID model w.r.t three types of the underlying invariance, i.e., exemplar-invariance, camera-invariance and neighborhood-invariance. To achieve this goal, an exemplar memory is introduced to store features of the target domain and accommodate the three invariance properties. The memory allows us to enforce the invariance constraints over global training batch without significantly increasing computation cost. Experiment demonstrates that the three invariance properties and the proposed memory are indispensable towards an effective domain adaptation system. Results on three re-ID domains show that our domain adaptation accuracy outperforms the state of the art by a large margin. Code is available at: https://github.com/zhunzhong07/ECNComment: To appear in CVPR 201
    • …
    corecore