1,811 research outputs found

    Learning to Prove Theorems via Interacting with Proof Assistants

    Full text link
    Humans prove theorems by relying on substantial high-level reasoning and problem-specific insights. Proof assistants offer a formalism that resembles human mathematical reasoning, representing theorems in higher-order logic and proofs as high-level tactics. However, human experts have to construct proofs manually by entering tactics into the proof assistant. In this paper, we study the problem of using machine learning to automate the interaction with proof assistants. We construct CoqGym, a large-scale dataset and learning environment containing 71K human-written proofs from 123 projects developed with the Coq proof assistant. We develop ASTactic, a deep learning-based model that generates tactics as programs in the form of abstract syntax trees (ASTs). Experiments show that ASTactic trained on CoqGym can generate effective tactics and can be used to prove new theorems not previously provable by automated methods. Code is available at https://github.com/princeton-vl/CoqGym.Comment: Accepted to ICML 201

    Graph Representations for Higher-Order Logic and Theorem Proving

    Full text link
    This paper presents the first use of graph neural networks (GNNs) for higher-order proof search and demonstrates that GNNs can improve upon state-of-the-art results in this domain. Interactive, higher-order theorem provers allow for the formalization of most mathematical theories and have been shown to pose a significant challenge for deep learning. Higher-order logic is highly expressive and, even though it is well-structured with a clearly defined grammar and semantics, there still remains no well-established method to convert formulas into graph-based representations. In this paper, we consider several graphical representations of higher-order logic and evaluate them against the HOList benchmark for higher-order theorem proving

    LLMSTEP: LLM proofstep suggestions in Lean

    Full text link
    We present LLMSTEP, a tool for integrating a language model into the Lean proof assistant. LLMSTEP is a Lean 4 tactic that sends a user's proof state to a server hosting a language model. The language model generates suggestions, which are checked in Lean and displayed to a user in their development environment. We provide a baseline language model, along with code for fine-tuning and evaluation to support further development. We provide server implementations that run on CPU, a CUDA GPU, or a Google Colab notebook, as a step towards fast, effective language model suggestions for any user

    Passport: Improving Automated Formal Verification Using Identifiers

    Full text link
    Formally verifying system properties is one of the most effective ways of improving system quality, but its high manual effort requirements often render it prohibitively expensive. Tools that automate formal verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These tools are effective because of the richness of the data the proof corpora contain. This richness comes from the stylistic conventions followed by communities of proof developers, together with the logical systems beneath proof assistants. However, this richness remains underexploited, with most work thus far focusing on architecture rather than making the most of the proof data. In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq model with three new encoding mechanisms for identifiers: category vocabulary indexing, subword sequence modeling, and path elaboration. We compare Passport to three existing base tools which Passport can enhance: ASTactic, Tac, and Tok. In head-to-head comparisons, Passport automatically proves 29% more theorems than the best-performing of these base tools. Combining the three Passport-enhanced tools automatically proves 38% more theorems than the three base tools together, without Passport's enhancements. Finally, together, these base tools and Passport-enhanced tools prove 45% more theorems than the combined base tools without Passport's enhancements. Overall, our findings suggest that modeling identifiers can play a significant role in improving proof synthesis, leading to higher-quality software
    • …
    corecore