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ABSTRACT

AUTOMATING THE FORMAL VERIFICATION OF
SOFTWARE

MAY 2023

EMILY FIRST

B.S., HARVEY MUDD COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Yuriy Brun

Formally verified correctness is one of the most desirable properties of software

systems. Despite great progress made toward verification via interactive proof as-

sistants, such as Coq and Isabelle/HOL, such verification remains one of the most

effort-intensive (and often prohibitively difficult) software development activities.

Recent work has created tools that automatically synthesize proofs either through

reasoning using precomputed facts or using machine learning to model proofs and

then perform biased search through the proof space. However, models in existing tools

fail to capture the richness present in proofs, such as the information the programmer

has access to when writing proofs and the natural language contained within variable

names. Furthermore, these prior models do not make use of variations in the learning

process and advances in large language models.

vi



In this dissertation, I develop tools to improve proof synthesis and to enable fully

automating more verification. I first present TacTok, a proof-synthesis tool that

models proofs using both the partial proof written thus far and the semantics of the

proof state. I then present Diva, a proof-synthesis tool that controls the learning

process to produce a diverse set of models and, due to the unique nature of proof

synthesis (the existence of the theorem prover, an oracle that infallibly judges a proof’s

correctness), efficiently combines these models to improve the overall proving power. I

then present Passport, a proof-synthesis tool that systematically explores different

ways of encoding identifiers in proofs to improve synthesis. Finally, I present Baldur,

a proof-synthesis tool that uses transformer-based pretrained large language models

fine-tuned on proofs to generate and repair whole proofs at once, rather than one step

at a time.

This dissertation contributes new ideas for improving automated proof synthesis

and empirically demonstrates that the improvement is significant on large benchmarks

consisting of open-source software projects.
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CHAPTER 1

INTRODUCTION

Building provably correct systems is critical in high-stakes domains, such as

aerospace engineering and software for medical devices. However, most industrial

verification tools either aim to simplify the verification process by sacrificing sound-

ness [19] or significantly restrict the programming language in which the system is

written [132]. A promising method for building correct software has been to use

programming languages that are designed to inherently support program verification,

such as interactive theorem provers (ITPs), including Coq [199], Isabelle/HOL [148],

and Agda [209].

ITPs have had significant impact on industry. For example, Airbus France uses the

Coq-verified CompCert C compiler [121] to ensure safety and improve performance of

its aircraft [191]. Chrome and Android both use cryptographic code formally verified

in Coq to secure communication [56], while Mozilla has its own verified cryptographic

library for Firefox, improving performance [95]. Multiple companies have been success-

ful in using proof assistants to provide formal verification services, including BedRock

Systems, who builds formally verified solutions for the healthcare, infrastructure, and

financial domains [17], Certora, who formally verifies smart contracts [34], and Galois,

Inc., who verifies compiler correctness and hardware design [66]. Meanwhile Amazon

successfully applies formal verification to cloud security problems in Amazon Web

Services, providing tools for users to detect entire classes of misconfigurations that

can potentially expose vulnerable data [10].
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With ITPs, the user (a programmer) specifies a theorem about a property of

the software and writes a proof script, a series of annotated proof tactics, that the

interactive theorem prover uses to attempt to construct a proof of the theorem. Still,

even with the help of an ITP, the effort required to write proof scripts is often

prohibitive. The Coq proof of the C compiler has more than three times as many lines

as the compiler code itself and took three person years of work [121]. Meanwhile, it took

11 person years to write the proof script to verify a microkernel in Isabelle/HOL [142].

As a general rule, because of the expense of verification, nearly all software that

companies ship is unverified.

However, some formal verification can be fully automated by synthesizing either

the underlying proofs or the guiding proof scripts. A series of tools called hammers

(e.g., CoqHammer [49] and SledgeHammer [156]) use a set of precomputed math-

ematical facts to attempt to “hammer” out a proof. Evaluated on the CoqGym

benchmark [223], CoqHammer can automatically prove 26.6% of theorems found in

open-source Coq projects, while Sledgehammer proves 25.7% of the PISA bench-

mark [100] for Isabelle/HOL. But hammers are restricted by their precomputed facts

and cannot reason about proof approaches such as induction, greatly limiting their

power. To overcome these limitations, researchers have used machine learning to model

existing proof scripts, and then, given a new theorem, applied that model to guide

metaheuristic search [83] to attempt to synthesize a new proof script [223, 179, 92].

However, models in prior tools fail to take into consideration the complete information

the programmer has access to when writing proofs, variations in the learning process,

the richness of the existing proof corpora, and advances in large language models.

The central goal of this dissertation is to develop tools to improve these prior proof

synthesis techniques and to enable fully automating more verification.

I first present TacTok, a proof-synthesis tool that models proofs using both the

partial proof written thus far and the semantics of the proof state. In this work, I
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observe that when programmers use interactive theorem provers, they use both the

feedback from the theorem prover — the proof state — and the partial proof script

already written. I show that by carefully modeling and combining the partial proof

script already written and the proof assistant’s feedback, we can automatically prove

different theorems than models that only use one source of input.

I then present Diva, a proof-synthesis tool that controls the learning process to

produce a diverse set of models and efficiently combines these models to improve the

overall proving power. I make two observations that enable this improvement. First,

proof synthesis has a correctness oracle, namely, the theorem prover. Second, variations

in the models can change the search-based synthesis of a proof script such that two

models can potentially produce different scripts for the same theorem, which can lead

to models proving complementary sets of theorems. Due to the first observation, they

can be combined without sacrificing their power.

I then present Passport, a proof-synthesis tool that systematically explores different

ways of encoding identifiers in proofs to improve synthesis. Prior tools in this space

have simplified the data extracted from proof corpora, and so they have sacrificed

modeling the depth of information available. This tool extracts and models these

identifiers to improve proof synthesis.

Finally, I present Baldur, a proof-synthesis tool that uses transformer-based

pretrained large language models fine-tuned on proofs to generate whole proofs for

theorems at once, rather than one step at a time. I also combine this proof generation

model with a fine-tuned repair model to repair generated proofs, further increasing

proving power. Prior tools using transformer-based large language models invoke

hammers or use a search-based approach. I instead show that whole-proof generation

using transformers is possible and is as effective as search-based techniques without

requiring costly search. Additionally, giving the learned model additional context,
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such as a prior failed proof attempt and the ensuing error message, results in proof

repair and further improves automated proof generation.

This dissertation contributes new ideas for improving automated proof synthesis,

and the implementation of these ideas in tools TacTok, Diva, Passport, and Baldur

empirically demonstrates that the improvement is significant on large benchmarks. I

implemented TacTok, Diva, and Passport for Coq and evaluated them on the CoqGym

benchmark [223], which has a test set of over 10K theorems. Following prior work

using transformer-based approaches, I implemented Baldur for Isabelle and evaluated

it on the PISA benchmark [100], which has a test set of over 6K theorems.

This dissertation is structured as follows. Chapter 2 provides background on

interactive theorem proving. Chapter 3 describes TacTok, Chapter 4 describes Diva,

Chapter 5 describes Passport, and Chapter 6 describes Baldur. Chapter 7 places my

work in the context of related research. Chapter 8 summarizes my dissertation and

details potential future directions.
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CHAPTER 2

BACKGROUND ON INTERACTIVE THEOREM
PROVING

This chapter provides background on using an interactive theorem prover, specifi-

cally the Coq proof assistant [199]. Using the Isabelle proof assistant [94] is a similar

experience. Section 2.1 details different aspects of Coq and defines key terms used

throughout the dissertation. Section 2.2 provides an illustrative example of using Coq.

This chapter is adapted directly from the background sections in the publications

corresponding to the next chapters.

2.1 Theorem Proving in Coq

Coq is a dependently-typed language with a small kernel, which provides a high

assurance that Coq-verified programs are truly correct. However, program verification

in Coq is not automatic. To prove a theorem in Coq, a programmer must write a

proof script (in Ltac), which, when executed, helps automatically generate a proof (in

Gallina) of the theorem.

When a theorem is proven in Coq, this means that in Gallina (Coq’s internal

language), a proof term of the desired type has been constructed. The type of this term

is the theorem itself. A programmer could write the Gallina proof term themselves,

but this can be a long, unforgiving process [170]. To simplify this task, Coq has a

meta-programming language called Ltac in which programmers can write proof scripts,

which when completed and run, generate the Gallina proof term automatically.

Programmers use a proof assistant (e.g., CoqIDE or Proof General) to write proof

scripts, which consist of a sequence of proof tactics. The proof assistant executes a
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proof script, even a partial one, and provides immediate human-readable feedback after

each tactic’s execution. This feedback is Coq’s internal proof state, which includes the

goals to prove, the local context of assumptions, and the environment of proven-so-far

set of facts. The programmer can even ask to see the intermediate Gallina proof

term by writing and executing the Show Proof command in their proof script. When

starting to prove a theorem, Coq’s proof state is a single goal, which is the theorem

itself (the corresponding proof term is ?Goal). The aim is to manipulate the proof

state through the use of tactics until the goal is proven and thus removed from the

proof state. Since the search space of goal manipulation is too large, a programmer

helps manage the exploration by using the current proof state to select a sequence of

proof tactics to try.

The proof assistant checks that a partially-written proof script is valid and updates

the current proof state, allowing the programmer to incrementally develop a proof

script. The programmer can choose a tactic, examine the output from the proof

assistant, and then choose the next tactic. If the programmer chooses an invalid tactic,

the proof assistant displays an error. If the programmer chooses tactics that are valid,

but do not make progress, they can use the proof assistant to backtrack to an earlier

proof state and try a different approach. The programmer continues selecting tactics

until the proof assistant prints no more subgoals, and then uses Qed to complete the

proof script.

Alternatively, metaheuristic search techniques [83] can automatically search for a

proof script, thus alleviating the burden for the programmer [223, 62, 179]. However,

metaheuristic search is only as good as the predictive model that is used to bias the

search. Building a good predictive model is the focus of most of this dissertation.

2.2 Using Coq to Prove Addition Is Associative
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1 Inductive nat : Set :=

2 | O : nat

3 | S : nat -> nat.

4
5 Fixpoint add (n : nat) (m : nat) : nat :=

6 match n with

7 | O -> m

8 | S p -> S (add p m)

9 end

10 where "n + m" := (add n m) : nat_scope.

11
12 Theorem assoc : forall n m p : nat,

13 n + (m + p) = (n + m) + p.

14 Proof.

15 intros.

16 induction n.

17 reflexivity.

18 simpl.

19 rewrite -> IHn.

20 reflexivity.

21 Qed.

Figure 2.1: The definition of the natural numbers (lines 1–3), the function to add unary
natural numbers (lines 5–10), a theorem that the function is associative (lines 12–13),
and a proof script of that theorem (lines 14–21).

We demonstrate Coq’s use with a small, simple example. We define the natural

numbers and then prove that addition is associative.1 We define the natural numbers

(nat) using a unary encoding (Figure 2.1, lines 1–3), where Z is the natural number 0,

and the rest are defined using the successor operator (S n).

Lines 5–9 in Figure 2.1 define a recursive function to add two numbers (add n m),

where addition is evaluated from the left. Line 10 defines the notation n + m as a

shorthand for add m n. The function itself maps the answer to m if n = 0 (line 7), and

otherwise to S (add p m), where S p = n (line 8). In other words, the recursive step

returns the successor of the sum of m and the number whose successor is n.

1While Coq’s standard library already includes these definitions, this basic example is simple
enough to effectively demonstrate our approach.
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The assoc Theorem (lines 1–3) defines the associativity property, n + (m + p)= (

n + m)+ p, for all n, m, p.

To prove this property, Coq needs help. Coq maintains an internal proof state,

which includes the goals that Coq wants to prove and a list of assumptions. When

starting to prove a theorem, Coq’s proof state is a single goal : the theorem itself

(shown in fig. 2.2a). Coq manipulates the proof state (with the help of proof tactics,

described next) until the goal is proven and can be removed from the proof state.

These manipulations are enabled by proof tactics. Some tactics create new subgoals

(e.g., induction) and other tactics manipulate the current goal in various ways (e.g.,

simpl, which simplifies complex terms in the goal, and rewrite, which transforms a

term in the goal into an equivalent term). The search space of goal manipulation is

too large, and a human helps Coq by writing a sequence of proof tactics that help

Coq manage the exploration. Lines 14–21 are the human-written sequence of tactics,

one per line, that help Coq prove associativity.

To write down the appropriate sequence of tactics, the programmer needs to

understand Coq’s internal proof state. The interactive proof assistant checks that

a partially-complete proof script is valid and shows the current proof state to the

programmer. This makes it possible for the programmer to incrementally develop a

proof script, instead of writing a complete proof script in a single step. The programmer

can choose a tactic, examine the output from the proof assistant, choose the next

tactic, and so on. If the programmer chooses an invalid tactic, the proof assistant

displays an error. (For example, the induction tactic signals an error if its argument

is not inductively defined.) If the programmer chooses tactics that are valid, but do

not make progress, they can use the proof assistant to backtrack to an earlier proof

state and try a different approach.

We now step through the proof script of associativity and discuss both the proof

tactic entered by the programmer and the proof state displayed by the proof assistant.
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1 1 subgoal

2 ______________________________________(1/1)

3 forall n m p : nat, n + (m + p) = n + m + p

(a) Proof state at the start of the proof script (after line 14 in Figure 2.1).

4 1 subgoal

5 n, m, p : nat

6 ______________________________________(1/1)

7 n + (m + p) = n + m + p

(b) Proof state after line 15 in Figure 2.1 (intros tactic).

8 2 subgoals

9 m, p : nat

10 ______________________________________(1/2)

11 0 + (m + p) = 0 + m + p

12 ______________________________________(2/2)

13 S n + (m + p) = S n + m + p

(c) Proof state after line 16 in Figure 2.1 (induction n tactic).

14 1 subgoal

15 n, m, p : nat

16 IHn : n + (m + p) = n + m + p

17 ______________________________________(1/1)

18 S n + (m + p) = S n + m + p

(d) Proof state after line 17 in Figure 2.1 (reflexivity tactic).

19 1 subgoal

20 n, m, p : nat

21 IHn : n + (m + p) = n + m + p

22 ______________________________________(1/1)

23 S (n + (m + p)) = S (n + m + p)

(e) Proof state after line 18 in Figure 2.1 (simpl tactic).

24 1 subgoal

25 n, m, p : nat

26 IHn : n + (m + p) = n + m + p

27 ______________________________________(1/1)

28 S (n + m + p) = S (n + m + p)

(f) Proof state after line 19 in Figure 2.1 (rewrite -> IHn tactic).

Figure 2.2: The proof state after the execution of each tactic of the add function’s
associativity proof script.
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At the start of the proof script, the proof state has a single goal, which is the theorem

itself (fig. 2.2a). Since the goal is a statement that should hold forall naturals n, m,

and p, the natural next step is to assume the existence of some arbitrary n, m, and p.

The intros tactic eliminates the forall quantifier and introduces three new variables

as assumptions (line 5 in fig. 2.2b). Since add is inductively defined, it is natural to

perform induction on one of these variables (e.g., induction n), which leads to two

subgoals, one for the base case and the other for the inductive case (fig. 2.2c). Coq

first focuses on proving the base case (line 11 in fig. 2.2c) by labeling it subgoal 1 of 2

(line 10) and only presenting assumptions (line 9) relevant for the base case. Note

that in the base case, n is no longer in the list of assumptions, and has been replaced

with the value O in the subgoal (line 11 in fig. 2.2c). The reflexivity tactic does

some basic simplification and solves the base case, since both sides are essentially

identical. Therefore, the next proof state has just one goal, which is the inductive case

(fig. 2.2d). In this state, n has been replaced with S n, and the proof assistant shows

the inductive assumption (IHn). However, IHn is not immediately applicable because

it contains n instead of S n, and so trying to use it will produce an error. Instead, the

simpl tactic tries to simplify the goal while keeping it readable (though many Coq

users find that simpl is a complicated tactic that produces unpredictable results [199]).

After choosing simpl, the left-hand side of the goal has an expression that is identical

to the left-hand side of the inductive assumption (fig. 2.2e). Therefore, the rewrite

tactic can replace that expression with the right-hand side of the inductive assumption

(fig. 2.2f), which leads to a trivial equality that reflexivity can solve. Finally, the

proof assistant prints no more subgoals and Qed completes the proof script.
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CHAPTER 3

TACTOK : SEMANTICS-AWARE PROOF SYNTHESIS

The work in this chapter was done in collaboration with Arjun Guha and Yuriy

Brun. The following is adapted directly from published work [62].

3.1 Introduction

Researchers have developed a variety of tools and techniques to make writing proof

scripts in Coq (and other interactive theorem provers) easier to write [86, 89, 109,

92, 223]. Inspired by the success of statistical code completion tools [91, 90, 208],

Hellendoorn et al. observed that the sequence of tokens in Coq proofs is somewhat

predictable [86], and this could hypothetically be used to build statistical proof script

completion tools. Other researchers have used the current proof state to build proof

script synthesis tools [223, 92]. For example, ASTactic [223], a deep learning model,

takes as input the current goal, local context, and environment, and predicts the next

step of the proof script.

In this work, we observe that when programmers use interactive theorem provers,

they use both the feedback from the theorem prover — the proof state — and the

partial proof script already written. We argue that models that learn from the proof

state and the partial proof script, together, can be more effective at synthesizing

proof scripts. When programmers write Coq proof scripts themselves, they critically

rely on the feedback detailing the internal proof state provided by the interactive

proof assistant to choose the next proof tactic to try [173]. In fact, writing proof

scripts without the proof assistant’s feedback is often impossible. For example, Coq
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has several sophisticated proof tactics that can make partial progress that is hard

to predict. Moreover, even some simple tactics automatically generate new variable

names that programmers need to know for subsequent tactics, and thus they rely on

the proof assistant to learn these generated names. In a way, the programmer and

the proof assistant are engaged in a conversation. However, the existing methods of

predicting the next tactic from the internal proof state alone [223] and predicting

the next tactic from the previous tactics alone [86] only consider distinct sides of

the conversation. In this work, we show that by carefully modeling and combining

the partial proof script already written and the proof assistant’s feedback, we can

automatically prove different theorems than models that only use one source of input.

We present TacTok, an open-source implementation of our approach to proof

script synthesis that incorporates both proof state and the partial proof script already

written. We apply our approach to a benchmark of 122 open-source software projects

in Coq, with over 68K theorems. We demonstrate that the inclusion of both proof state

and the partial proof script in a proof synthesis model can improve its effectiveness

and allow it to synthesize different proof scripts than other tools.

We compare our approach to five approaches, two existing tools, CoqHammer and

ASTactic, and three new ones we create, SeqOnly, WeightedRandom, and Weighted-

Greedy. CoqHammer [49] is a state-of-the-art proof synthesis technique and ASTac-

tic [223] is a proof script synthesis technique that models only proof state. SeqOnly is

a proof script synthesis technique that models only the partial proof script and the

initial theorem, and WeightedRandom and WeightedGreedy are proof script synthesis

techniques that attempt to construct a proof script via metaheuristic search biased by

using the frequency distribution of tactics as they appear in the training data. All of

the above techniques, except CoqHammer, are metaheuristic search techniques [83]

that search through the proof-script space using a model that biases the search toward

the likely proof script steps.
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Evaluated on a benchmark of 26 software projects in Coq with 10,782 theorems,

we find that each of these techniques can successfully generate proof scripts that

prove theorems, which is strong evidence for the success of metaheuristic search in

proof script synthesis. TacTok can automatically prove more theorems than ASTactic

(12.9% versus 12.3%). Both techniques outperform SeqOnly, which can only prove

10.0% of the theorems. Even without explicitly modeling the theorem being proven,

WeightedRandom proves 6.2% of the theorems and WeightedGreedy proves 9.7% of

the theorems. Importantly, TacTok is complementary to prior tools. When used

together with ASTactic, TacTok can prove 20% more theorems than ASTactic alone.

CoqHammer, a very different approach, is able to synthesize proofs for more theorems

than TacTok (26.6%), but TacTok and CoqHammer together can prove 11.5% more

theorems than CoqHammer alone.

Overall, our experiments show that there is promise to using metaheuristic search

and modeling the partial proof scripts and proof state, together, for synthesizing

proof scripts for formal verification. We investigate the effect of using various kinds of

information encoded in the partial proof script on verification efficacy and produce

guiding information for improving future proof script synthesis tools.

The main contributions of this work are:

• A novel automated proof script synthesis technique, TacTok, that, unlike prior

work, models the combination of the partial proof script already written and the

proof state to automate proof script synthesis and formal verification. TacTok

is open-source.

• Three other new metaheuristic search proof script synthesis techniques, SeqOnly,

WeightedRandom, and WeightedGreedy.

• An application of ASTactic, a state-of-the-art proof script synthesis tool, inde-

pendently reproducing prior evaluation results [223].
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• An evaluation of the value added by using both the partial proof script and

proof state over using each one alone, and a comparison to two state-of-the-art

proof synthesis tools and three new tools, showing that TacTok proves theorems

no prior tool can prove.

• A public release of TacTok — https://github.com/LASER-UMASS/TacTok— and

our experimental scripts and data [61].

• An exploration of the information TacTok models to improve verification efficacy.

3.2 Illustrative Examples

Recall that Section 2.2 introduced a small Coq program for adding two numbers

and proved, using Coq, that the function is associative. Section 3.2.1 shows how

TacTok would generate such a proof script automatically. Section 3.2.2 then introduces

a more complex theorem expressed in a higher-order logic that TacTok is able to prove,

whereas prior tools do not.

3.2.1 Proving Associativity with TacTok

Recall the example of proving additive associativity with Coq from Section 2.2.

Note that the proof script (lines 15–20 of Figure 2.1) is almost unintelligible without

examining the internal proof state, for several reasons:

1. Some tactics generate new variable names (e.g., induction), which subsequent

tactics (e.g., rewrite) use. The programmer needs to know these names to use

them in the proof script.

2. Some tactics apply heuristics that are hard to predict. In the example in

Figure 2.1, simpl (line 18) uses heuristics to produce readable output. Without

looking at the resulting proof state in fig. 2.2e, the programmer would not know
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what form the goal is transformed into and whether IHn can be invoked without

an error.

3. When a proof script has multiple goals, it may not be obvious where one goal

ends and the next goal begins. In the example in Figure 2.1, the base case is

addressed by the tactic in line 17, while the inductive case is addressed by the

tactics in lines 18–20. However, without examining the proof state fig. 2.2d, it

would not be clear that reflexivity completely solved the base case.

4. After a few steps of the proof script, the current goal to prove has likely evolved

significantly from the original goal (the theorem). In the example in Figure 2.2,

the programmer is trying to prove the theorem fig. 2.2a line 3. After three

steps in the proof script, the programmer must now prove fig. 2.2d line 18

using assumptions lines 15–16. The goal has changed significantly and there are

now assumptions that didn’t exist at the start. Knowing the new goal and the

assumption IHn are helpful to the programmer at this point in deciding the next

tactic: the programmer sees that the goal needs to be transformed using simpl

to apply the assumption. Without seeing the current proof state in fig. 2.2d, the

programmer would not know how to proceed.

Since the programmer needs to examine the proof state to choose the next tactic,

it is a good idea to consider whether models of next tactic prediction might also need

and benefit from having access to information in the proof state. However, since proof

scripts, like programs, build upon the commands executed thus far [91, 90, 86], a

model of next tactic prediction may also benefit from having access to the previous

tactics in the proof script.

TacTok builds a model of next-tactic prediction for Coq. The model is learned

using a corpus of existing proof scripts. TacTok decomposes each of the existing proof

scripts by stepping through them, one tactic at a time, and computing the resulting
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intermediate proof states. The model automatically learns an embedding of the proof

states and the partially written proof script and maps these to an abstract syntax tree

(AST) of the next line in the proof script. Thus, the model’s inputs are the partially

written proof script and the proof state. For example, one input to the model is the

intermediate proof state in fig. 2.2d and the partial proof script [intros, induction n,

reflexivity] that achieved that proof state. The model’s output is an AST that

TacTok decodes to the next predicted tactic and its arguments.

Given a model trained on existing proof scripts (Section 3.3.2.4 presents the training

process), TacTok automatically generates the proof script of associativity (lines 14–21).

To start, TacTok takes as input the proof state in fig. 2.2a and the partially written

proof script, which is only [Proof]. For the sake of illustration, suppose the model

correctly predicts intros as the next tactic. TacTok executes this partial proof script

using the Coq interactive proof assistant, and checks for two things. First, that

executing the partial proof script with the new tactic does not return an error. And

second, that the new returned proof state is different from the prior observed proof

states in this partial proof script, meaning the tactic had an affect and produced

something new. Here, TacTok will see no error and the updated proof state is that in

fig. 2.2b. TacTok will next explore growing the proof script further. TacTok’s next

input to the model is the proof state in fig. 2.2b and the partial proof script [Proof,

intros]. Suppose, again, the model correctly predicts the next tactic and argument is

induction n; there is no error adding this tactic to the partial proof script and the

new proof state is that in fig. 2.2c.

If TacTok proceeds in this way to produce the partial proof script [Proof, intros,

induction n, reflexivity] and the proof state in fig. 2.2d, but as the next tactic

and arguments, TacTok predicts rewrite -> IHn. Adding this tactic results in an

error. TacTok goes back to the model and asks it for the next most likely tactic and

arguments (TacTok would do the same thing if there were no error but the proof state
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1 Definition prod : forall (n : nat) (f : nat -> nat), nat.

2 intros.

3 induction n as [| n Hrecn].

4 exact 1.

5 exact (f n * Hrecn).

6 Defined.

7
8 Lemma sameProd : forall (n : nat) (f g : nat -> nat),

9 (forall m : nat, m < n -> f m = g m) ->

10 prod n f = prod n g.

Figure 3.1: Lines 1–6 defines the function prod n f , which calculates 1·f(0)·· · ··f(n−1).
Lines 8–10 define the sameProd theorem, which states that if f(m) = g(m) for all
m < n, then prod n f = prod n g.

was a duplicate of an earlier state). Suppose the model suggests simpl, which turns

out to return no error and changes the state.

TacTok will proceed in this way, performing a depth-first search through the space

of proof scripts until, either, it reaches the proof state “no more subgoals” (meaning

the proof script is completed successfully) and adds Qed to the proof script, or it times

out and fails to complete the proof script.

Of course, TacTok can only be successful if its model is fairly accurate in its

predictions.

3.2.2 Proving Higher-Order Logic Theorems

The associativity theorem we just discussed is an example of a theorem expressed

in first-order logic. Theorems expressed in a higher-order logic are likely to be more

complex, and so their proof scripts are more difficult to generate. One example of

higher-order logic in Coq is the presence of a nested forall. Figure 3.1 defines the

function prod n f, which calculates 1 · f(0) · · · · · f(n− 1). The same figure defines

the sameProd theorem, which states an intuitive property: for functions f and g, if

f(m) = g(m) for all m < n, then prod n f = prod n g. TacTok is able to generate a

proof script for sameProd. CoqHammer [49] fails to find a proof in ten minutes, and

17



ASTactic [223] cannot find a proof script either. Section 3.5.5 will further discuss

theorems that TacTok proves that prior tools cannot.

We next describe prior work on training language models and our improvements

over the state of the art.

3.3 The TacTok Approach

Section 3.3.1 describes language modeling methods and Section 3.3.2 details how

TacTok builds on language modeling approaches to generate proof scripts. Our TacTok

implementation is publicly available at https://github.com/LASER-UMASS/TacTok/.

3.3.1 Language Modeling

Language models estimate the probability of a particular instance in a language.

For example, a language model can estimate the likelihood that the words “I went to

the” are followed by “store”. When applied to natural languages, these models have

aided speech recognition, machine translation, spelling correction, and other natural

language processing tasks [192, 26, 108].

While language models can be created in many ways, including manually, a typical

approach is to train a language model on a large corpus of example sentences in a

language. There are two main classes of language models widely used in modern

natural language processing research. The first consists of statistical language models,

often called n-gram language models. These count-based models work on the Markov

assumption that the conditional probability of a word is dependent on a fixed number

(n) of previous words in a sentence. The second class of models are based on neural

network architectures. Neural models often perform better on natural language

applications than statistical models, though are less human-readable [195, 136].
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3.3.1.1 Statistical Language Models

N-gram models predict the next word based on a sequence of the previous n− 1

words [104]. Given a vocabulary of words, during training, an n-gram model counts the

number of times in the training corpus that each word follows each possible sequence

of n − 1 words. At prediction time, given a sequence of n − 1 words, the model

returns the probability distribution of words that follow that sequence. Formally,

given a sequence S of n−1 words, S = ⟨w1, w2, . . . , wn−1⟩, the n-gram model estimates

P (wn|w1, w2, . . . , wn−1), the probability distribution of words in the nth place.

The maximum likelihood estimate for this probability, PML(wn|w1, w2, . . . , wn−1),

is the number of times ⟨w1, w2, . . . , wn⟩ appears in the training corpus, divided by the

number of times ⟨w1, w2, . . . , wn−1⟩ appears in the corpus.

PML(wn|w1, w2, . . . , wn−1) =
count(w1, w2, . . . wn)

count(w1, w2, . . . , wn−1)

This can be used as an estimate but because training data may not contain every

possible sequence ⟨w1, w2, . . . , wn⟩, it would end up with a lot of zero probability

estimates. So rather than underestimate all P (wn|w1, w2, . . . , wn−1) as 0, linear

interpolation [192] uses smaller subsequences of length 1 to n − 1 to estimate the

probability:

P (wn|w1, w2, . . . , wn−1)=
n∑

i=1

λi × PML(wn|wn−i+1, . . . , wn−1)

where λi is a normalized weight given to the value PML(wn|wn−i+1, . . . , wn−1). These

weights can be considered as fallback weights to fallback and look at smaller subse-

quences if the larger subsequence is not present in the training corpus.

Discounting smooths the probability distribution over the vocabulary by reallo-

cating the probability mass from the training dataset by subtracting a fixed discount

d from the counts of each word in the training dataset and then reassigning it to
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the fallback probability. The state-of-the-art n-gram language model is the Modified

Kneser-Ney model [107], which implements a more involved discounting technique.

As described in Section 4.1, recent work has applied n-gram models (as well as

other models) to Coq proof scripts to predict tokens, which can, in theory, be used to

build statistical proof script completion tools.

3.3.1.2 Neural Language Models

Feed-forward neural networks [175] can also model language. These models are

also trained to predict the next word given a sequence of previous words but they do

this using a different architecture than that of n-gram models.

Given the previous n−1 words ⟨w1, . . . , wn−1⟩, these models first create real-valued

vectors ⟨r1, . . . , rn−1⟩ that represent the words. This is commonly done by converting

each of the words into a one-hot vector representation and then passing them through

a linear embedding layer. A one-hot vector representation is constructed by first

initializing a vector of the size of vocabulary V of the language and then setting the

element at the index corresponding to the given word to 1. The linear embedding

layer consists of |V | weights We and a bias term be. The model then concatenates the

real valued embeddings to form a summary vector r. The model passes r through

a predetermined number of neural network layers, together called NN . The output

h = NN (r) passes through a softmax layer to produce a probability distribution over

the entire vocabulary. In summary, the training algorithm is:

1 oi = onehot(wi)
2 ri = oi.We + be
3 r = ⊕(r1 . . . rn−1)
4 h = NN (r)
5 P = softmax (h)

Recently, recurrent neural network (RNN) architectures have been shown to

perform well in language modeling tasks [18, 136, 195]. The main difference between

this approach from a simple feed-forward neural network is the way the sequence
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of real valued vector representations, ⟨r1, . . . , rn−1⟩, are handled to obtain the final

hidden layer representation h. An RNN performs a series of steps that each process

the sequence up until an index. A simplified version of this process can be described as

follows. At each index i of the sequence, an RNN maintains a hidden state hi, which

is a vector representing the summary of the real valued vectors before index i. It then

concatenates hi with ri and sends the resultant vector through a linear neural network

layer with weights Wr and Wh and bias br. The output is used as the new summary

and hidden state at index i + 1, hi+1. The summary of the whole sequence is hence

the hidden state after processing all the n− 1 real valued vectors. Note that h1 is a

zero vector since there are no elements to summarize before the first element in the

sequence. Following those steps, we obtain h and then, a softmax layer converts this

into the probability distribution over the vocabulary. In summary, the RNN training

algorithm is:

1 oi = onehot(wi)
2 ri = oi.We + be
3 hi+1 = RNN (ri, hi) = ri.Wr + hi.Wh + br
4 h = RNN (rn−1, hn−1)
5 P = softmax (h)

Long short-term memory networks (LSTMs) extend recurrent neural networks to

learn long-term dependencies by tackling a problem that arises with basic RNNs called

the vanishing gradient problem [70, 73]. For long sequences, the RNN framework

scales down the gradient over each word going backwards and the value of the gradient

become negligible, making it difficult for the model to learn. To address this problem,

LSTMs redesign the basic building block of the neural network to include components

called gates. At each step in the sequence, the model makes decisions based on three

gates: the input gate, the output gate, and the forget gates. These gates control

whether the model should remember or forget the summary of the sequence so far

through a set of parameters that are learned jointly with the parameters of the RNN

during training. Note that the hidden state h is still calculated sequentially like a
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normal RNN, except with the model choosing to ignore the summary vector sometimes.

The exact implementation of the gates can be found in literature and are beyond the

scope of this work.

A Bidirectional LSTM [157] runs the sequence input in two ways, backwards

and forward, allowing the output layer to see both directions of the information

simultaneously. This improves upon the LSTM by capturing more information.

Transformers [54] are the current state-of-the-art in neural language models, but

they only perform well when there is a very large amount of data for training. Thus,

LSTMs and variants like gated recurrent neural networks (GRUs) [44] are sufficient

for neural language models that do not have millions of sequences for training. They

have been shown to do well in machine translation and sentiment analysis [12, 190].

While RNN language models use sequences of words to predict the next word

in the sequence, RNNs in general can be used to model other types of sequential

objects for any prediction task. In particular, we are interested in using sequential

data — sequences of proof script tokens — to predict the next tactic, which is from a

different vocabulary. An RNN allows encoding a sequence of n real-valued vectors as

one representative vector h through the following steps.

1 h1 = [0, . . . , 0]
2 hi+1 = RNN (ri, hi) = ri.Wr + hi.Wh + br
3 h = RNN (rn, hn)

LSTMs and GRUs can hence be used to effectively model general sequences of

data when there are only thousands of training sequences, and so we use them to

model the sequence of proof script tokens.

3.3.2 TacTok Language Modeling

TacTok first trains a model on existing proof scripts, and then applies the model

to synthesize new proof scripts. Figure 3.2 details how TacTok trains a model on a

set of proof scripts. Given a set of proof scripts, each proof script is broken down
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Figure 3.2: TacTok training process. Given a set of proof scripts, TacTok breaks down
each proof script into training instances, consisting of the input to the model (proof
state and the proof script thus far up to this state), and the next step of the proof
script. The TacTok model jointly learns embeddings for the proof state ASTs and the
proof script thus far, and uses these embeddings to predict the next tactic in the form
of its AST. The learning process back-propagates the difference between the predicted
tactic AST and the (expected) next step as the loss.

into training instances. A training instance consists of the input to the model, which

is the proof state after a tactic in the proof script is executed and the proof script

up to the point of the executed tactic, and the next step of the proof script. The

proof state is made up of the current goal, local context, and environment. Each

term in the proof state has an underlying AST. The proof script is represented as

a sequence of tokens. The TacTok model jointly learns embeddings for these ASTs

and sequences. The TacTok model uses these embeddings to output a predicted next

proof script step, in the form of an AST, and sends that along with the AST form of

the ground-truth next tactic to the trainer. The trainer then compares these tactics

and back-propagates the loss.

Figure 3.3 details how TacTok synthesizes proof scripts, using the proof script for

the proof of associativity of the add function (recall Section 3.2.1) as an example. The

figure shows TacTok at the point where it has already generated [intros, induction n,

reflexivity, simpl] of the proof script. TacTok takes as input the proof state and

the partial proof script so far. The proof state encoder (Section 3.3.2.1) takes the
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Figure 3.3: TacTok architecture. TacTok, in the process of completing the proof
script of associativity for the add function (recall Section 3.2), after the execution
of simpl. TacTok’s input is the proof state (goal, local context, and environment)
and the partial proof script synthesized so far. Each term in the proof state has an
underlying AST, and the proof state encoder generates embeddings for each of these
ASTs, as done in ASTactic. The proof script is represented as a sequence, and the
proof script encoder generates embeddings from this sequence. The tactic decoder,
modified from ASTactic, uses these embeddings to generate the next predicted tactic
and its arguments in the form of an AST. TacTok interfaces with the Coq Interactive
Theorem Prover to execute the higher level expression associated with this predicted
tactic. Upon failure, TacTok resamples the tactic and its arguments and tries again.
Upon success, TacTok updates the proof script and proof state to reflect the execution
of the tactic. This process continues until the proof script is complete or times out.

AST form of the proof state inputs and outputs embeddings for each. The proof

script encoder (Section 3.3.2.2) takes the sequence of tokens in the proof script and

outputs an embedding for this sequence. The tactic decoder (Section 3.3.2.3) uses

these embeddings to predict an AST, which represents a tactic and its arguments.

TacTok then interfaces with the Coq ITP to execute this tactic and its arguments and

interprets the Coq ITP output as either a failure or a success. A failure is when the

Coq ITP produces an error or the execution of the tactic produces a duplicate proof

state. In this case, TacTok resamples the tactic and its arguments and interfaces with

the Coq ITP again. Otherwise, it is a success and the proof script and proof state
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Figure 2. The architecture of ASTactic. It generates a tactic AST conditioned on the input Coq terms by sequentially expanding a partial
tree. Here we illustrate a single expansion step of the non-terminal node in clause. The ASTs of the input terms (Left) are encoded
into feature vectors by a TreeLSTM network (Middle). A GRU controller then combines them with the information in the partial tree. It
updates the decoder state st and uses st to predict the production rule to apply. In this example, the tactic AST is complete (rewrite
IHa’) after expanding the current node.

cell c which are updated by its children as follows:

(c,h) = fupdate(n, c1, · · · , cK,

KX

i=1

hi),

where the update function fupdate is the child-sum variant of
TreeLSTM, n is the symbol of the node in one hot encoding,
and ci and hi are the states of the children.

We perform this computation bottom-up and represent the
entire tree by hroot, the hidden state of the root. Finally,
we append hroot with a 3-dimensional one hot vector; it
indicates whether the term is the goal, a premise in the
environment, or a premise in the local context.

Tracking the decoder state Conditioned on the input em-
beddings, the decoder (Fig. 2 Right) follows the method in
Yin & Neubig (2017) to generate program-structured tactics
as ASTs. It begins with a single node and grows a partial
tree in the depth-first order. At a non-terminal node, it ex-
pands the node by choosing a production rule in the CFG
of the tactic space. At a terminal node, it emits a token
corresponding to a tactic argument.

This sequential generation process is controlled by a gated
recurrent unit (GRU) (Cho et al., 2014), whose hidden state
is updated by the input embeddings and local information
in the partially generated AST.

Formally, we have learnable embeddings for all symbols
and production rules in the tactic grammar. At time step
t, let nt be the symbol of the current node; at�1 is the
production rule used to expand the previous node; pt is
the parent node’s state concatenated with the production
rule used to expand the parent; g is the goal, which is fixed

during the generation process. The state st is updated by:

st = fGRU (st�1, [at�1 : pt : nt : g : ut]) (1)

where “:” denotes vector concatenation. The ut above is
a weighted sum of premises. We use st�1 to compute an
attention mask on the premises, which selectively attends to
the relevant premises for the current generation step. The
mask is then used to retrieve ut:

wi = fatt(st�1 : ri) (2)

ut =
X

i

wiri (3)

where ri is the ith premise and wi is its weight. fatt is a
two-layer fully-connected network.

Expanding ASTs and synthesizing arguments The
state st determines how to expand the tree including which
production rules to apply and which tokens to generate.

To select a production rule, we model the probabilities for
the rules as:

pt = softmax(WR · f(st)), (4)

where f is a linear layer followed by tanh, and WR is the
embedding matrix for production rules. We expand the node
using the applicable rule with the largest probability.

The tokens in the ASTs correspond to the tactic arguments.
Synthesizing them is challenging because the syntactic out-
put space is large: all valid identifiers in Coq. However,
there are strong semantic constraints on the arguments. For
example, the tactic “apply H” applies a premise H to the
goal. The argument H must be a valid premise either in the
environment or in the local context.

(a) Proof State Encoder.
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hi),

where the update function fupdate is the child-sum variant of
TreeLSTM, n is the symbol of the node in one hot encoding,
and ci and hi are the states of the children.

We perform this computation bottom-up and represent the
entire tree by hroot, the hidden state of the root. Finally,
we append hroot with a 3-dimensional one hot vector; it
indicates whether the term is the goal, a premise in the
environment, or a premise in the local context.

Tracking the decoder state Conditioned on the input em-
beddings, the decoder (Fig. 2 Right) follows the method in
Yin & Neubig (2017) to generate program-structured tactics
as ASTs. It begins with a single node and grows a partial
tree in the depth-first order. At a non-terminal node, it ex-
pands the node by choosing a production rule in the CFG
of the tactic space. At a terminal node, it emits a token
corresponding to a tactic argument.

This sequential generation process is controlled by a gated
recurrent unit (GRU) (Cho et al., 2014), whose hidden state
is updated by the input embeddings and local information
in the partially generated AST.

Formally, we have learnable embeddings for all symbols
and production rules in the tactic grammar. At time step
t, let nt be the symbol of the current node; at�1 is the
production rule used to expand the previous node; pt is
the parent node’s state concatenated with the production
rule used to expand the parent; g is the goal, which is fixed

during the generation process. The state st is updated by:

st = fGRU (st�1, [at�1 : pt : nt : g : ut]) (1)

where “:” denotes vector concatenation. The ut above is
a weighted sum of premises. We use st�1 to compute an
attention mask on the premises, which selectively attends to
the relevant premises for the current generation step. The
mask is then used to retrieve ut:

wi = fatt(st�1 : ri) (2)

ut =
X

i

wiri (3)

where ri is the ith premise and wi is its weight. fatt is a
two-layer fully-connected network.

Expanding ASTs and synthesizing arguments The
state st determines how to expand the tree including which
production rules to apply and which tokens to generate.

To select a production rule, we model the probabilities for
the rules as:

pt = softmax(WR · f(st)), (4)

where f is a linear layer followed by tanh, and WR is the
embedding matrix for production rules. We expand the node
using the applicable rule with the largest probability.

The tokens in the ASTs correspond to the tactic arguments.
Synthesizing them is challenging because the syntactic out-
put space is large: all valid identifiers in Coq. However,
there are strong semantic constraints on the arguments. For
example, the tactic “apply H” applies a premise H to the
goal. The argument H must be a valid premise either in the
environment or in the local context.

(b) Tactic Decoder.

Figure 3.4: ASTactic architecture from [223]. The proof state encoder (a), takes as
input the goal, local context, and environment terms in AST form and generates
embeddings (feature vectors) for each term. The tactic decoder (b) concatenates the
input embeddings and generates a tactic in the form of an AST, conditioned on these
inputs.

update to include the tactic and its arguments and resulting proof state from the

tactic’s execution. This process continues until the proof script is complete or times

out.

We now describe each of the TacTok components.

3.3.2.1 Proof State Encoder

Figure 3.4a details the encoder in ASTactic [223], which is the proof state encoder

in TacTok. The inputs are the goal, local context, and environment in AST form.

It uses a TreeLSTM network [198], which allows for encoding a tree, to generate

embeddings for each proof state term.

3.3.2.2 Proof Script Encoder

The proof script consists of tokens that are either tactics, arguments to tactics, or

other symbols. The proof script encoder parses the sequence of these tokens in two
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Figure 3.5: Proof Script Encoder. The proof script encoder’s input is a sequence of
proof script tokens, which it parses and then uses to generate an embedding using a
Bidirectional LSTM.

different modes. One mode of parsing the sequence is to include the most common Coq

tactic tokens appearing in the training proof scripts, excluding custom tactics, and

obscure arguments so that their names are not learned. When the proof script encoder

parses in this way, the model it trains is the Tac model. Another mode of parsing the

sequence is to include the entire token sequence, only excluding punctuation. When

the proof script encoder parses in this way, the model it trains is the Tok model.

TacTok is comprised of both the Tac and Tok models, trained separately, and uses

either one when attempting to synthesize a proof script.

We encode the parsed sequence of previous tokens using a Bidirectional LSTM, as

described in Section 3.3.1.2, which generates an embedding for the sequence. Figure 3.5

shows the proof script encoder in TacTok.

3.3.2.3 Tactic Decoder

Figure 3.4b shows the tactic decoder in ASTactic [223], which is the tactic decoder

in TacTok. It is conditioned on the sequence of input embeddings. In TacTok, the

embeddings are a concatenation of the embeddings generated from both the proof

state and proof script encoders. The decoder generates a tactic in the form of a

program by sequentially growing an AST [226]. At a non-terminal node in the AST, it

chooses a production rule from the specified context free grammar (CFG) of the tactic

space. At a terminal node, it synthesizes an argument based on semantic constraints.

This process of growing the tree is controlled by a GRU [42, 44], which uses the input

embeddings of the partially generated AST to update its hidden state.
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The tactic decoder has learnable embeddings for all production rules and symbols

in the tactic CFG. For example, at time t, nt is the symbol of the current node, at−1

is the production rule for expanding the prior node, pt is the production rule for

expanding the parent node concatenated with the parent’s state, g is the concatenation

of the input embeddings, and ut is the weighted sum of the premises in the environment

and local context. The decoder concatenates at−1, pt, nt, g, and ut, and uses a GRU

controller to combine them with the information from the partial tree st−1 to update

the decoder state st. Then, the decoder uses st to predict which production rule to

apply.

3.3.2.4 Training and Search

TacTok is trained on a set of proof scripts. Each proof script in the set is broken

down into training instances. A training instance details the proof state after a tactic

is executed and the proof script up to the point of the executed tactic. TacTok is

trained in same way as the ASTactic model, except for that it also jointly trains a

language model over the previous tokens in a proof script.

For automated theorem proving, TacTok uses depth-first search, just like ASTactic.

TacTok samples a fixed number of the most likely tactics across all search tree nodes

at the same level, and then uses these tactics to search for a complete proof script.

TacTok backtracks when it detects a duplicate proof state, or when the Coq compiler

fails to check the new attempted proof script step.

3.4 Proof and Proof Script Synthesis Tools

Our evaluation will compare TacTok to five tools, CoqHammer, ASTactic, SeqOnly,

WeightedRandom, and WeightedGreedy. This section describes these tools.

The most powerful, general-purpose techniques for automating verification in an

ITPs, such as the Coq ITP, are called hammers [25]. A hammer performs efficient
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automated reasoning using facts from a preexisting library. It uses machine-learning

techniques to select the facts that are likely to be needed to prove a theorem. Then, it

translates these selected facts and the theorem from the ITP logic to a form accepted

by Automated Theorem Provers (ATPs), which are theorems provers for first-order

logic. The ATPs take the resulting translation and try to find a proof. Lastly, the

hammer processes the proof found by an ATP, and tries to reconstruct the proof of

the theorem in the ITP logic. CoqHammer [49] is one such hammer for Coq. As in

prior evaluations of automated verification tools that compare to CoqHammer [223]

our experiments configure CoqHammer to use four ATPs: Z3 [52], Vampire [110],

CVC4 [16], and E Prover [181].

ASTactic is a search-based automated verification tool that uses deep learning to

learn to predict the next step of a proof script solely from the current proof state [223].

To make a prediction for a given, incomplete proof script, ASTactic uses the current

goal, local context, and environment, and generates tactics in the form of ASTs (just

like TacTok).

Our central goal in developing TacTok is to demonstrate the effect of modeling

both the proof state and the partial proof script on proof script synthesis. Since

ASTactic [223] models proof state alone to synthesize proof scripts, a direct comparison

between TacTok and ASTactic demonstrates the effect of adding the partial proof

script to the model. A natural complement is then a tool that models only the partial

proof script, to measure the effect of adding the proof state to the model. However,

such a tool, without knowing any of the goals, including the theorem being proven,

would follow the same pattern for every theorem and would prove very few, if any, of

them. (Anecdotally, we implemented such a tool and confirmed that it proves a small

number of theorems.) Instead, we developed SeqOnly, a tool that follows the same

basic structure as TacTok and models the partial proof script, but instead of modeling

the entire proof state, it only models the theorem being proven. SeqOnly uses the
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TacTok proof script encoder (recall Section 3.3.2.2) to generate embeddings for the

proof script sequence, but its tactic decoder (recall Section 3.3.2.3) is conditioned only

on the proof script sequence embedding and the initial theorem. SeqOnly has the

potential to be effective because language models (n-grams and neural networks) have

been shown to be able to predict next tokens in Coq proof scripts [86]. For example,

using an RNN to represent the sequence of tokens in a proof script allows for 56.6%

accuracy in predicting the next token.

Additionally, we build two more proof script synthesis tools, WeightedRandom

and WeightedGreedy, that use the frequencies of tactic ASTs occurring in the training

proofs to predict the next likely proof step. WeightedRandom computes a probability

distribution over the entire set of tactic ASTs by measuring the frequency of each

tactic AST in the training set of proof scripts. It then performs a search, just as

TacTok, but using only that probability distribution to make predictions over the

next tactic AST. To make the top-k predictions at each step of the search algorithm,

WeighedRandom samples k tactic ASTs from this distribution without replacement.

WeightedGreedy uses the same probability distribution as WeightedRandom, but

always selects the top-k most frequent tactic ASTs from the training set of proof

scripts, as opposed to sampling the distribution. Otherwise, it uses search to construct

a proof script in the same way as WeightedRandom.

3.5 Evaluation

We evaluate TacTok by comparing its ability to fully automatically synthesize

proof scripts to that of two state-of-the-art synthesis tools, CoqHammer [49] and

ASTactic [223], and our own three techniques, SeqOnly, WeightedRandom, and Weight-

edGreedy. CoqHammer attempts to automatically prove theorems using external ATP

systems (recall Section 3.4). ASTactic, like TacTok, learns from existing proof scripts

but uses only the proof state to predict the next step of the proof script. Finally,
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SeqOnly is a tool we created ourselves that learns from existing proof scripts but uses

only the partially written proof script and the initial theorem to predict the next

step of the proof script. WeightedRandom is a model that constructs a probability

distribution over the set of tactics in the training dataset, while WeightedGreedy is a

model of the maximum likelihood prediction based on the distribution of tactics in

the training dataset.

Our implementations, experimental scripts, and data are publicly available in our

replication package [61].

TacTok uses search in the proof-script space, whereas CoqHammer produces proofs

in Coq’s logic (Gallina) using a fundamentally different approach. When the Coq

compiler executes a proof script, it generates a proof. Proof scripts can be wrong — e.g.,

it is possible to write a proof script that concludes with Proof completed, but that is

not a valid proof when it is checked by the Coq compiler — but proofs cannot. As

such, it is reasonable to compare TacTok (and other proof script synthesis tools) to

CoqHammer in terms of the theorems they are able to prove, but as their approaches

are so fundamentally different, it should be no surprise that the tools are likely to excel

for different theorems, and be complementary. For some simpler classes of theorems,

CoqHammer and TacTok are likely to perform similarly well, whereas for others, (e.g.,

proofs that require induction) CoqHammer will be at a fundamental disadvantage.

CoqHammer will be perhaps more predictable in the types of theorems it is able to

prove, whereas proof script synthesis tools may provide more surprises. Section 3.5.5

discusses some theorems TacTok was able to prove but other prior tools, including

CoqHammer, could not.

Our evaluation uses the state-of-the-art CoqGym benchmark [223] and answers

three research questions:
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RQ1: Does modeling proof state and the partially written proof script, together,

improve automatic verification efficacy, as compared to modeling only the

proof state or only the partial proof script?

RQ2: Does modeling the proof state and partial proof script, together, improve

automatic verification efficacy over state-of-the-art ATP-using CoqHam-

mer?

RQ3: Does modeling of other (non-tactic) tokens together with the proof state

improve automatic verification efficacy as compared to modeling the tactic

sequences together with proof state?

We next describe our evaluation methodology (Section 3.5.1), and then answer

each of the research questions (Sections 3.5.2–3.5.4). We end with a discussion of

proof scripts of complex theorems that TacTok generates (Section 3.5.5).

3.5.1 Evaluation Methodology

This section describes the dataset and metrics our experiments use, and the tools

to which we compare TacTok’s performance.

3.5.1.1 Dataset

In our evaluation, we use the CoqGym benchmark [223]. In total, we use 68,501

theorems from 122 open-source software projects in Coq. CoqGym is the state-of-the-

art benchmark used in prior evaluations of formal verification tools [223].

The CoqGym benchmark comes with a preselected training set of 96 projects

with 57,719 human-written proof scripts. The preselected testing set in CoqGym is

comprised of 27 projects. We were unable to reproduce prior results for ASTactic’s

performance [223] for one project, coq-library-undecidability, due to internal Coq

errors when processing the proof scripts within that project. Accordingly, we exclude
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this project from our evaluation. We were able to reproduce the results for the

remaining 26 projects of 10,782 theorems, and this is the testing set our evaluation

uses. Each project in the testing set has between 2 and 2.1K theorems, summarized

in Figure 3.9. Following the methodology in prior evaluations [223], our experiments

use the training set to train our models and the testing set to measure efficacy of

automated verification. When the training instances are extracted from the proof

scripts, there are 189,824 training instances.

3.5.1.2 Metrics

Our experiments measure two key metrics, success rate and added value. The

success rate of a tool is the fraction of all theorems that tool fully automatically

generate a proof script for. Success rate is widely used in prior evaluations [92, 223].

The added value of tool A as compared to tool B is the relative increase in the fraction

of new theorems tool A proves that tool B fails to prove, as compared to the total

number of theorems tool B proves. For example, if Tool B proves 10 theorems, and

tool A only proves 5, but tool B cannot prove any one of these 5, then tool A’s added

value is 50% (5 new theorems out of 10 previously provable theorems). In other words,

together, tools A and B can prove 15 theorems, a 50% improvement over tool B’s 10.

Because we view our approach as complementary to the prior work, our hope is

that TacTok will prove some theorems the prior approaches fail to prove (as opposed

to strictly improving the absolute success rate). The added value metric captures this

measure.

3.5.2 RQ1: Does Modeling Proof State and Partial Proof Script Improve

Verification Efficacy?

TacTok uses both the partial proof script and the proof state to predict the next

step in a proof script. To understand if this combination of information improves the

efficacy of automated proof script verification, we compare TacTok to ASTactic, which
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8,972 (83.2%) unproven theorems
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Figure 3.6: Theorems proven by TacTok, ASTactic, and SeqOnly out of the 10,782
theorems in CoqGym’s test dataset. Figure 3.9 shows the by-project breakdown of the
data. TacTok has the highest success rate of the three tools, proving 1,388 (12.9%)
theorems, proving 264 theorems that ASTactic cannot (an added value of 20.0%).
TacTok and ASTactic outperform SeqOnly, each with an added value of about 50%.
This suggests that proof state together with the partial proof script can achieve better
automated verification than either alone.

uses only proof state, and SeqOnly, which uses only the partial proof script and the

initial theorem, as well as to our WeightedRandom and WeightedGreedy approaches.

Figure 3.6 compares the number of theorems proven by TacTok, ASTactic, and

SeqOnly. TacTok proves 1,388 theorems, for a success rate of 1,388
10,782

= 12.9%. ASTactic,

trained only on the proof state, has a success rate of 1,322
10,782

= 12.3%, and SeqOnly has

a success rate of 1,077
10,782

= 10.0%.

TacTok proves 264 theorems that ASTactic fails to prove, so its value added

compared to ASTactic is 264
1,322

= 20.0%.

TacTok proves 592 theorems that SeqOnly fails to prove, so its value added

compared to SeqOnly is 592
1,077

= 55.0%. ASTactic proves 553 theorems that SeqOnly

fails to prove, so its value added is 553
1,077

= 51.3%.

SeqOnly is able to prove theorems that ASTactic and TacTok fail to prove, for an

added value of 308
1,322

= 23.3% and 281
1,388

= 20.2%, respectively. This suggests that proof

state and the partial proof script are helpful for automated verification when used

together and separately.
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tool theorems proven TacTok value added over tool

WeightedRandom 671 (6.2%) 799 (120%)
WeightedGreedy 1,049 (9.7%) 504 (48%)

Figure 3.7: Theorems proven by the WeightedRandom and WeightedGreedy, out of
the 10,782 theorems in CoqGym’s test dataset, and TacTok’s added value over these
baselines. Both WeightedRandom and WeightedGreedy underperform TacTok, which
proves 1,388 theorems (12.9%).

Figure 3.7 shows the success rates of WeightedRandom and WeightedGreedy.

WeightedRandom proves 671 theorems, for a success rate of 671
10,782

= 6.2%. Weight-

edGreedy proves 1,049 theorems, for a success rate of 1,049
10,782

= 9.7%. Both Weighte-

dRandom and WeightedGreedy underperform TacTok, which proves 1,388 theorems

(12.9%).

TacTok proves 799 theorems that WeightedRandom fails to prove, so its added

value compared to WeightedRandom is 799
671

= 120%. WeightedRandom adds little

beyond TacTok, proving 82 theorems that TacTok fails to prove, for an added value

of 82
1,388

= 5.9%.

TacTok proves 504 theorems that Greedy fails to prove, so its added value compared

to Greedy is 504
1,049

= 48%. Greedy proves 165 theorems that TacTok fails to prove, for

an added value of 165
1,388

= 11.9%.

RA1: The data suggest that using proof state together with the partial proof

script creates significant added value and improves verification efficacy beyond

using either kind of information alone. TacTok proves more theorems on its

own than ASTactic. Together, they prove 20.0% more than ASTactic alone, and

are, therefore, complementary. Meanwhile TacTok and ASTactic outperform

SeqOnly, each with an added value of about 50%. WeightedRandom and

WeightedGreedy also underperform TacTok.
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Figure 3.8: Theorems proven by TacTok, CoqHammer, and ASTactic out of the 10,782
theorems in CoqGym’s test dataset. Figure 3.9 shows the by-project breakdown of
the data. CoqHammer proves more theorems than TacTok and ASTactic, but they
each prove different theorems. Together, they can prove more theorems overall.

3.5.3 RQ2: Does TacTok Improve CoqHammer’s Verification Efficacy?

To evaluate whether TacTok improves automatic verification efficacy over other

state-of-the-art tools, we compare TacTok to CoqHammer. We also compare to the

combination of CoqHammer and ASTactic to understand if TacTok provides value

beyond the combination of prior tools.

Figure 3.8 compares the number of theorems proven by TacTok, CoqHammer, and

ASTactic. CoqHammer has a success rate of 2,865
10,782

= 26.6%, which dominates the

success rates of TacTok and ASTactic, 12.9% and 12.3%, respectively. The success

rate of CoqHammer and ASTactic together is 3,167
10,782

= 29.4%.

However, TacTok proves 115 theorems that CoqHammer and ASTactic fail to

prove, so its added value compared to the combination of CoqHammer and ASTactic

is 115
3,167

= 3.6%.

Figure 3.9 shows the by-project breakdown of the success rates for each tool, while

Figure 3.10 details the by-project value added of TacTok compared to CoqHammer

and ASTactic.
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success rate: TacTok ASTactic & ASTactic CoqHammer Tac Tok total
project CoqHammer theorems

weak-up-to 18 (12.9%) 36 (25.9%) 23 (16.5%) 30 (21.6%) 12 (8.6%) 12 (8.6%) 139
buchberger 76 (10.5%) 192 (26.5%) 70 (9.7%) 166 (22.9%) 70 (9.7%) 65 (9.0%) 725
jordan-curve-theorem 22 (3.5%) 168 (26.8%) 19 (3.0%) 165 (26.3%) 16 (2.5%) 22 (3.5%) 628
dblib 45 (25.0%) 67 (37.2%) 41 (22.8%) 55 (30.6%) 41 (22.8%) 35 (19.4%) 180
disel 89 (14.0%) 194 (30.6%) 83 (13.1%) 185 (29.2%) 63 (9.9%) 72 (11.4%) 634
zchinese 5 (11.6%) 13 (30.2%) 5 (11.6%) 12 (27.9%) 4 (9.3%) 4 (9.3%) 43
zfc 33 (13.9%) 70 (29.5%) 33 (13.9%) 64 (27.0%) 28 (11.8%) 28 (11.8%) 237
dep-map 11 (25.9%) 16 (37.2%) 9 (20.9%) 14 (32.6%) 7 (16.3%) 8 (18.6%) 43
chinese 35 (26.7%) 58 (44.3%) 31 (23.7%) 56 (42.7%) 27 (20.6%) 30 (22.9%) 131
UnifySL 180 (18.6%) 367 (37.9%) 189 (19.5%) 303 (31.3%) 126 (13.0%) 153 (15.8%) 968
hoare-tut 5 (27.8%) 6 (33.3%) 1 (5.5%) 6 (33.3%) 3 (16.7%) 3 (16.7%) 18
huffman 28 (8.9%) 81 (25.8%) 25 (7.9%) 74 (23.6%) 22 (7.0%) 21 (6.7%) 314
PolTac 112 (30.9%) 308 (84.9%) 118 (32.5%) 289 (79.6%) 87 (24.0%) 110 (30.3%) 363
angles 4 (6.5%) 15 (24.2%) 4 (6.5%) 15 (24.2%) 3 (4.8%) 4 (6.5%) 62
coq-procrastination 6 (75.0%) 5 (62.5%) 5 (62.5%) 3 (37.5%) 5 (62.5%) 6 (75.0%) 8
tree-automata 111 (13.4%) 311 (37.6%) 96 (11.6%) 292 (35.3%) 83 (10.0%) 96 (11.6%) 828
coquelicot 100 (6.8%) 299 (20.4%) 95 (6.5%) 273 (18.6%) 77 (5.2%) 78 (5.3%) 1,467
fermat4 10 (7.7%) 47 (36.2%) 13 (10.0%) 47 (36.2%) 9 (6.9%) 8 (6.2%) 130
demos 53 (77.9%) 55 (80.9%) 50 (73.5%) 54 (79.4%) 49 (72.1%) 52 (76.5%) 68
coqoban 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2
goedel 67 (11.1%) 128 (21.1%) 53 (8.7%) 120 (19.8%) 57 (9.4%) 58 (9.6%) 606
verdi-raft 121 (5.7%) 351 (16.5%) 117 (5.5%) 337 (15.8%) 99 (4.7%) 97 (4.5%) 2,127
verdi 47 (8.2%) 127 (24.7%) 37 (7.2%) 122 (23.7%) 37 (7.2%) 42 (8.2%) 514
zorns-lemma 12 (8.1%) 21 (14.1%) 10 (6.7%) 18 (12.1%) 10 (6.7%) 7 (4.7%) 149
coqrel 183 (71.5%) 191 (74.6%) 184 (71.9%) 128 (50.0%) 163 (63.7%) 146 (57.0%) 256
fundamental-arithmetic 15 (10.6%) 41 (28.9%) 11 (7.8%) 37 (26.1%) 10 (7.0%) 9 (6.3%) 142

total 1,388 (12.9%) 3,167 (29.4%) 1,322 (12.3%) 2,865 (26.6%) 1,108 (10.3%) 1,166 (10.8%) 10,782

Figure 3.9: Success rates, as evaluated on the CoqGym benchmark [223], the three
tools, TacTok, ASTactic [223], and CoqHammer [49], prove more theorems together
than each does on its own. For 22 of the 26 subjects, TacTok proves theorems the
other two tools cannot. Overall, together, TacTok proves 115 more theorems than
the prior tools combined, a 3.6% relative improvement. Figure 3.10 demonstrates this
improvement for each project.

For 22 of the 26 projects, TacTok has added value over the combination of

CoqHammer and ASTactic. The greatest increase in the number of theorems proven

in a project is 19, for UnifySL; the average increase is 4.4.
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added value: TacTok over TacTok over TacTok over total
project ASTactic & CoqHammer ASTactic CoqHammer theorems

theorems added theorems added theorems added
proven value proven value proven value

weak-up-to 1 (0.7%) 2.7% 2 (1.4%) 8.6% 3 (2.2%) 10.0% 139
buchberger 4 (0.6%) 2.1% 10 (1.4%) 14.3% 27 (3.7%) 16.3% 725
jordan-curve-theorem 0 (0.0%) 0.0% 5 (0.8%) 26.3% 1 (0.2%) 0.6% 628
dblib 6 (3.3%) 9.0% 11 (6.1%) 26.8% 11 (6.1%) 20.0% 180
disel 3 (0.5%) 1.5% 24 (3.9%) 28.9% 9 (1.4%) 4.9% 634
zchinese 2 (4.7%) 15.4% 2 (4.7%) 40.0% 2 (4.7%) 16.7% 43
zfc 5 (2.1%) 7.1% 5 (2.1%) 15.2% 6 (2.5%) 9.4% 237
dep-map 0 (0.0%) 0.0% 2 (4.7%) 22.2% 2 (4.7%) 14.3% 43
chinese 2 (1.5%) 3.4% 9 (6.9%) 29.0% 4 (3.1%) 7.1% 131
UnifySL 19 (2.0%) 5.2% 37 (3.8%) 19.6% 56 (5.8%) 18.5% 968
hoare-tut 2 (11.1%) 33.3% 4 (22.2%) 400.0% 2 (11.1%) 33.3% 18
huffman 6 (1.9%) 7.4% 8 (2.5%) 32.0% 11 (3.5%) 14.9% 314
PolTac 1 (0.3%) 0.3% 4 (1.1%) 3.4% 19 (5.2%) 6.6% 363
angles 0 (0.0%) 0.0% 0 (0.0%) 0.0% 0 (0.0%) 0.0% 62
coq-procrastination 1 (12.5%) 20.0% 1 (12.5%) 20.0% 3 (37.5%) 100.0% 8
tree-automata 11 (1.3%) 3.5% 30 (3.6%) 31.3% 24 (2.9%) 8.2% 828
coquelicot 14 (1.0%) 4.7% 28 (1.9%) 29.5% 33 (2.2%) 12.1% 1,467
fermat4 1 (0.8%) 2.1% 2 (1.5%) 15.4% 1 (0.8%) 2.1% 130
demos 1 (1.5%) 1.8% 4 (5.9%) 8.0% 2 (2.9%) 3.7% 68
coqoban 0 (0.0%) 0.0% 0 (0.0%) 0.0% 0 (0.0%) 0.0% 2
goedel 9 (1.5%) 7.0% 16 (2.6%) 30.2% 17 (2.8%) 14.2% 606
verdi-raft 2 (0.1%) 0.6% 19 (0.9%) 16.2% 11 (0.5%) 3.3% 2,127
verdi 6 (1.2%) 4.7% 16 (3.1%) 43.2% 9 (1.8%) 7.4% 514
zorns-lemma 3 (2.0%) 14.3% 3 (2.0%) 30.0% 6 (4.0%) 33.3% 149
coqrel 13 (5.1%) 6.8% 17 (6.6%) 9.2% 64 (25.0%) 50.0% 256
fundamental-arithmetic 3 (2.1%) 7.3% 5 (3.5%) 45.5% 6 (4.2%) 16.2% 142

total 115 (1.1%) 3.6% 264 (2.4%) 20.0% 329 (3.1%) 11.5% 10,782

Figure 3.10: TacTok added value, as evaluated on the CoqGym benchmark [223].
TacTok proves 115 theorems that both ASTactic [223] and CoqHammer [49] fail to
prove, so its added value over the two tools combined is 3.6%. The added value
of TacTok over ASTactic is 20.0%. While CoqHammer proves more theorems than
TacTok, the added value of TacTok over CoqHammer is 11.5%.

Meanwhile, for 24 of the 26 projects, TacTok has added value over CoqHammer

and ASTactic, individually. TacTok proves 264 theorems that CoqHammer fails to

prove, so its added value compared to CoqHammer is 329
2,865

= 11.5% (and 20.0% over

ASTactic, as discussed in Section 3.5.2).
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Tac
(sequence of tactics)

Tok
(sequence of all tokens)

222
(2.1%)

280
(2.6%)

886
(8.2%)

9,394 (87.1%) unproven theorems

Figure 3.11: Theorems proven separately by TacTok’s two ways of encoding partial
proof scripts. Tac encodes a sequence of tactics, whereas Tok encodes all tokens, in
addition to the tactics. The two ways of encoding complement each other in proving
theorems.

RA2: While CoqHammer proves more theorems, TacTok can prove 11.5%

additional theorems CoqHammer fails to prove. Of these 329 newly proven

theorems, 115 cannot be proven by ASTactic, so TacTok adds 3.6% value beyond

the two state-of-the-art tools combined.

3.5.4 RQ3: Do Non-Tactic Tokens Improve Verification Efficacy?

TacTok is comprised of two underlying models, Tac and Tok (recall Section 3.3.2.3).

The two models both encode proof state the same way, but they differ in how they

encode partial proof scripts. Tac models the partially written proof scripts by just the

sequence of tactics used thus far. Tok, meanwhile, models the partially written proof

scripts using all the proof tokens, including the tactics and their arguments. This

research question focuses on understanding the contributions Tac and Tok make to

TacTok.

Figure 3.11 compares the number of theorems proven by Tac and Tok. Tac proves

1,108 theorems, for a success rate of 1,108
10,782

= 10.3%, while Tok has a success rate of

1,166
10,782

= 10.8%. Figure 3.9 shows the by-project breakdown of the success rates for

Tac and Tok.

Tac and Tok are clearly complementary. Tac outperforms Tok for 8 of the projects,

while Tok outperforms Tac for 13 of the projects. Tac is able to prove 222 theorems
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that Tok fails to prove, so its value added compared to Tok is 222
1,166

= 19.0%. Tok

proves 280 theorems that Tac fails to prove, so its value added compared to Tac is

280
1,108

= 25.3%. Their complementarity is the prime reason TacTok relies on both,

improving its efficacy.

RA3: The data suggest that modeling the sequence of tactics in partial proof

scripts is complementary to modeling all tokens. Each approach helps prove

around a fifth of the theorems the other cannot. Some proof scripts appear

to require the knowledge encoded in the tactic arguments of proof scripts,

whereas others are able to be generated accurately (with the arguments) without

encoding the arguments as an input to the model. Combining the two produces

the highest verification efficacy.

3.5.5 Does TacTok Prove More Complex Theorems That Other Tools Do

Not?

To understand if TacTok is able to prove more complex theorems than prior tools,

we manually examined the theorems TacTok was able to prove that prior tools were

unable to. We observed several examples of higher-order logic that TacTok proved,

but prior tools could not.

One class of examples is theorems that have nested forall quantifiers. Figure 3.1

shows an example of such a theorem that TacTok is able to prove, but ASTactic and

CoqHammer were not. Higher-order logic is more difficult for a programmer to reason

through, and so the use of a proof script or proof synthesis tool is likely to be more

helpful. However, it is not the case that TacTok is better at proving theorems with

higher-order logic than other tools. Rather, TacTok can sometimes prove ones that

they could not, making it complementary.

Another class of examples is theorems that require induction to prove. Figure 3.12

shows one example such a theorem. The theorem uses the nth l n a relation, which
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1 Lemma Nth_app :

2 forall A (l : list A) l’ a n,

3 Nth l n a ->

4 Nth (l ++ l’) n a.

5
6 Proof.

7 intro. intro. intro. intro. intro. clear. intro.

8 induction H. constructor. constructor. assumption.

9 Qed.

Figure 3.12: Lines 1–4 defines the Nthapp theorem, and lines 6–9 is the proof script
that TacTok generates for this theorem. TacTok correctly applies the induction tactic.

holds when a is the nth element of the list l. If so, the theorem states that it is also

the element of a longer list that is prefixed by l. TacTok can generate the inductive

proof script of this theorem, but prior tools cannot. CoqHammer does not try to

prove theorems that require induction [49], and so CoqHammer is automatically at a

disadvantage for proving this class of theorems. TacTok’s modeling of proof state and

partial proof script, together, was able to capture sufficient context to properly apply

induction.

3.6 Contributions

This work is the first to explore the value of combining modeling of the proof

state and of the partially written proof script to synthesize proof scripts, from scratch.

We reify this modeling in TacTok, an open-source automated proof script synthesis

technique. Evaluating TacTok against CoqHammer [49], ASTactic [223], and other

metaheuristic search-based approaches we create, we find that TacTok is complemen-

tary to other tools: it successfully synthesizes proof scripts for theorems prior tools

cannot for 24 out of the 26 projects on which we evaluate. With TacTok, 11.5% more

theorems can be proven automatically than by CoqHammer alone, and 20.0% than by

ASTactic alone. Compared to a combination of CoqHammer and ASTactic, TacTok
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can prove an additional 3.6% more theorems, proving 115 theorems no tool could

previously prove.

Overall, our experiments provide evidence that partial proof script and proof state

semantics, together, provide useful information for proof script modeling. We create

a concrete approach for modeling the two types of information together, which can

serve as a basis for further progress creating automatic verification tools.
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CHAPTER 4

DIVA: DIVERSITY-DRIVEN AUTOMATED
VERIFICATION

The work in this chapter was done in collaboration with Yuriy Brun. The following

text is adapted directly from published work [59].

4.1 Introduction

Recent work has created tools that can fully automate some formal verification by

synthesizing either the underlying proofs or the guiding proof scripts. Tools called

hammers (e.g., CoqHammer [49]) use a set of precomputed mathematical facts to

attempt to “hammer” out a proof. Evaluated on the CoqGym benchmark [223],

CoqHammer can automatically prove 26.6% of theorems found in open-source Coq

projects. But hammers are restricted by their precomputed facts and cannot reason

about proof approaches such as induction, greatly limiting their power. To overcome

these limitations, researchers have used machine learning to model existing proof

scripts, and then, given a new theorem, applied that model to guide metaheuristic

search [83] to attempt to synthesize a new proof script [223, 62, 179].

While these tools tend to prove fewer theorems, e.g., ASTactic proves 12.3% [223]

and TacTok proves 12.9% [62], they are capable of applying higher-order proof ap-

proaches learned from existing proofs, including induction, and so are complementary

to hammers. Together with CoqHammer, they prove 30.4% of the theorems. The

central goal of this work is to improve on this fraction, particularly focusing on the

tools that model existing proofs.

42



We make two key observations that enable us to improve the proving power of

proof-script-synthesis techniques. First, the formal verification domain is a unique

application of machine learning because it has a correctness oracle. In most machine

learning applications, it is not known when the model is correct. This is why models

are typically evaluated for precision or accuracy. In the formal verification domain,

however, the interactive theorem prover can use a synthesized proof script to determine

whether it truly proves the underlying theorem. If the prover can get to Qed, then the

synthesized proof script must be correct. Thus, proof-script-synthesis systems always

have a precision of 100%: they never return a failed script, instead continuing the

search or timing out. While recall may be low, precision is always perfect. Second,

variations in the models can alter the search-based synthesis of a proof script enough

that two models can potentially produce different scripts for the same theorem. This,

in turn, can, hypothetically, lead to models that prove complementary sets of theorems.

And because of our first observation, they can be combined without sacrificing their

power. The combined system can synthesize successful proof scripts for all theorems

each one of the models can prove individually; if one model fails to synthesize a

successful script, the theorem prover unequivocally tells us so, and we instead use the

other model’s successful script. Thus, if one can learn models that differ in a way to

produce different scripts, potentially, this set of models may be able to prove far more

theorems than a single model. The central question this work answers is whether

model diversity can be created to improve the proving power of proof-script-synthesis

techniques, and whether such an approach improves on the state-of-the-art automated

formal verification techniques. We find that the answer to both questions is “yes.”

As we will demonstrate on a benchmark of 68,501 theorems from 122 open-source

software projects in Coq, we are able to create a set of 62 models by varying learning

parameters and learning data that, together, prove 68% more theorems than TacTok

and 77% more than ASTactic, despite using the same search method. Combining
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our approach, Diva, with CoqHammer [49], we can prove 33.8% of all the theorems,

the highest such result to date. Diva proves 364 theorems that none of the prior

tools have been able to prove. The difficulty of manually writing proof scripts for

formal verification is so great, that even small improvements in proving power can be

significant, and the savings in human effort that our approach represents are quite

substantial.

Our insights enable for a completely new way to combine machine learning models.

Of course, the idea of combining models is not new. Ensemble learning allows weighting

the results of multiple models to improve the precision or recall of a single model [176].

And stacking uses a classifier to decide which model to apply to each input [55].

While both these methods can improve precision and recall in practice, they can also,

hypothetically, reduce them, and often cannot properly amplify the correct results of

a small minority of models. By contrast, in our domain, our method for combining

models can never produce a wrong result or ignore the correct result produced by

even a single model. This represents a killer app for ensemble learning and stacking.

We are the first to combine the idea of ensemble learning with an oracle to produce

optimal stacking.

This work explores nine dimensions for learning diverse models, and identifies

which dimensions lead to the most useful diversity. Altering the types of information

(the proof script, state, and term) the model learns from resulted in the greatest

diversity, while varying the depth of the proof script and the learning rate provided

the second most diversity. As running a large number of models can be inefficient, we

develop a model interrupts optimization that speeds up Diva’s execution by 40×.

The main contributions of our work are:

• A novel approach for combining varied machine learning models to formally

verify software properties.
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• A systematic exploration of which learning dimensions provide usable model

diversity.

• An implementation of our approach, Diva, that proves 68% more theorems than

TacTok and 77% more than ASTactic, the prior work most closely related to ours.

Diva is open-source and is available at https://github.com/LASER-UMASS/

Diva/.

• An optimization for improving Diva’s performance.

• A platform for evaluating models and rerunning experiments, and all data and

source code used in our experiments for replications [60].

4.2 Proof script modeling

Prior proof script synthesis tools, such as ASTactic and TacTok, use the predictions

from learned proof script models to bias the metaheuristic search for a proof script.

Such a model is learned from a set of existing, successful proof scripts to predict the

next proof step (tactic and arguments) of an incomplete proof script. There are three

relevant aspects of proof scripts we may want to encode to serve as input to such a

model: the proof state, the proof script, and the Gallina proof term. ASTactic only

encodes the proof state, while TacTok encodes both the proof state and the proof

script. There has yet to be a proof script synthesis tool that encodes the Gallina proof

term. Next, Sections 4.2.1, 4.2.2, and 4.2.3 describe how to encode the proof state,

proof script, and Gallina proof term, respectively.

4.2.1 Encoding the proof state

The proof state consists of the goals to be proven, local context, and the environ-

ment. While the programmer sees them in a human-readable format, each term of the

proof state has an underlying abstract syntax tree (AST) representation. ASTactic
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and TacTok serialize these ASTs and encode them using a neural model, specifically

a TreeLSTM [198]. Prior work has empirically argued that neural models are much

more effective than other architectures [18, 136, 195].

4.2.2 Encoding proof script features

The proof script is comprised of a sequence of tokens in Ltac. For the model

to encode these tokens, each proof script needs to be preprocessed to remove high-

frequency low-signal tokens, such as punctuation. Then, encoding such a sequence

is traditionally done using a language model [18, 136, 195]. Language models are

widely used in natural language processing tasks [12, 190]. The primary function of

a language model is to predict the next token in a sequence of tokens. While prior

work has used n-grams to model Coq [86], TacTok found neural language models work

better to encode the sequence of tokens because it can generate a representative vector

(embedding) for the sequence, that can then be combined with other types of inputs.

Among the most extensively used neural language models are transformers [54] and

RNNs [157]. TacTok uses an RNN (specifically a Bidirectional LSTM [157]) trained

from scratch. Transformers require massive amounts of data to train from scratch [54].

4.2.3 Encoding the proof term

Prior tools have not encoded proof terms, but, conceptually, the Gallina sequence

is similar to the proof script Ltac sequence, and we encode it in a similar way using

a Bidirectional LSTM [157]. This allows all three, the proof state, proof script, and

proof term, to be encoded with a single model.

4.3 Diva: Diversity-Driven Synthesis

Machine learning models can be sensitive to noise in the training data [144, 205]

and to parameters applied during the learning process [72]. This sensitivity can cause

great variability in the accuracy of models. Of course, this can hurt the generalizability
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Figure 4.1: Model of proof script, which Diva uses internally to drive search.

of machine learning results, but we posit that in the right domain, this sensitivity,

and the diversity of models it can produce, can provide a significant benefit.

In the formal verification domain, tools such as ASTactic [223], Proverbot9001 [179],

and TacTok [62] use a learned model of a proof script to guide metaheuristic search

toward synthesizing a proof script for a theorem. Variations in the models can alter

the search, resulting in potentially different attempted synthesized scripts. The key

uniqueness of this domain is that an interactive theorem prover can act as an oracle

for each proof script. If the proof script leads the theorem prover to generate a proof

terminating in Qed, then the proof script is, by definition, correct. This allows a

synthesis tool to try applying many different models to bias the search in different

ways, and then pick out just the successful synthesis attempts, discarding the failed

ones.

This is not the typical case in applications of machine learning. Ensemble learn-

ing [176] and stacking [55] attempt to combine the results of multiple machine learning

models to improve precision or recall. However, without an oracle, ensembles and

stacks are unlikely to always pick the correct result, especially when relatively few of

the diverse models produce it. By contrast, in our domain, with the theorem prover
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acting as an oracle, even a single model producing a correct proof script can establish

an answer.

To demonstrate this insight, we develop Diva, a proof-script-synthesis tool that

uses the diversity in machine learning to significantly improve its proving power. Diva

is open-source and is available at https://github.com/LASER-UMASS/Diva/.

Diva’s key contributions are the generation of a diverse set of models capable of

proving complementary sets of theorems, a mechanism for combining the benefits of

the models, and an optimization to make running a large number of searches using

independent models feasible.

To automate proof script synthesis, Diva uses a learned model of a proof script

to guide metaheuristic depth-first search. During this search, Diva samples a fixed

number of the most likely tactics, predicted by the model, across all search tree nodes

at the same level, and then uses these tactics to search for a complete proof script.

Diva backtracks when the Coq compiler fails to check the attempted proof script step

or detects a duplicate proof state. Diva uses the same search configuration (width of

20, search depth limit of 5, and a timeout of 10 minutes) as ASTactic and TacTok.

To intentionally produce a diverse set of models that prove complementary sets

of theorems, control over the learning process is key. When training a model of

proof scripts, Diva varies the learning parameters and which features of the training

data to encode. Next, Section 4.3.1 describes what a Diva model looks like; Sec-

tions 4.3.2 and 4.3.3 detail how Diva generates a diverse set of models by controlling

learning parameters and the encoded features of the training data, respectively; and

Section 4.3.4 explains our Diva efficiency optimization.
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Figure 4.2: The neural models used to encode the proof state AST, proof script
sequence, and the proof term sequence.

4.3.1 Diva’s learned model

Figure 4.1 illustrates Diva’s proof script model, learned from a set of existing proof

scripts. Diva uses the predictions from this model to drive the search for a complete

proof script.

Figure 4.2 details the encoders used in the Diva model to encode relevant aspects of

proof scripts. Figure 4.2a presents the proof state encoder, which Diva uses to encode

the goal, local context, and environment, in AST form. To encode a tree, it uses a TreeL-

STM network [44], which generates embeddings for each proof state term. Figure 4.2b

shows the proof script encoder, which Diva uses to encode the proof script sequence. We

encode the parsed sequence of previous tokens using a Bidirectional LSTM, which gen-

erates an embedding for the sequence. A Bidirectional LSTM improves on the LSTM

by capturing more contextual information by processing the input sequence in two ways,

forward and backward [157], allowing the output layer to simultaneously see both direc-

tions of information. Diva encodes the Gallina proof term (the first synthesis tool to do

this) using the same encoder in Figure 4.2b. Similar to the proof script sequence encod-

ing, we choose to encode the sequence of proof term tokens using a Bidirectional LSTM,

generating an embedding. Diva jointly learns embeddings for the sequences and ASTs.

Diva’s tactic decoder is modified from the tactic decoder first used in ASTactic

and, later, TacTok. This tactic decoder is conditioned on the sequence of embeddings.

In Diva, however, the embeddings are a concatenation of a subset of the embeddings

generated from the proof script, proof term, and proof state encoders. This allows
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for modeling of more relevant proof script aspects and the choice of which subset to

combine allows us to create variability in the models (see Section 4.3.3). The tactic

decoder then generates a tactic by sequentially growing an AST [226]. It chooses a

production rule from the context free grammar of the tactic space at a non-terminal

node in the AST, while it synthesizes arguments based on semantic constraints at a

terminal node. A GRU [42, 44] controls this process of growing the tree, as it updates

its hidden state using the input embeddings of the partially generated AST.

Diva trains the model on a set of existing proof scripts. Each proof script in this

set is broken down into training instances, which are the inputs to the model. A

training instance is comprised of the proof state before the tactic execution, the proof

script up to the tactic execution, the Gallina proof term before the tactic execution,

and the next step of the proof script. The Diva model jointly learns embeddings for

the proof state ASTs, the proof script, and proof term sequence, and then uses these

embeddings to predict the next proof script step in the form of an AST. The model

sends the predicted AST along with ground-truth next tactic AST to the trainer,

where the trainer compares these tactic ASTs and back-propagates the loss.

Unlike prior tools, Diva jointly trains a language model over the tokens in the

proof term. Section 4.3.2 details further modifications in this training process for

creating Diva’s diverse models.

4.3.2 Diversity via varying learning parameters

One way in which we create a diverse set of models is by varying the learning

parameters, which affects the model’s size and the learning algorithm itself. For

this, we start with the Tac model from TacTok, and explore varying six dimensions:

sequence tactic depth, sequence token depth, the learning rate, the embedding size,

the number of layers, and the order of the training data.
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Tactic and token sequence depth The sequence depth denotes the size of the

input the learning algorithm considers. When training, the model can consider the

entire proof script written so far, or part of it, such as only the most recent tactic and

its arguments, or several most recent tactics with arguments, or only several most

recent tokens. The proof script encoder considers only that portion of the proof script

(and, symmetrically, the decoder will consider the same depth when decoding the next

proof step). Diva varies the sequence depth along both tactics and tokens, from a

depth of 0, which does not consider the proof script at all (it considers only proof

state, making the model equivalent to ASTactic’s model), to the entire proof script.

Diva considers sequence depth sizes (excluding the start token) of 0, 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 15, 20, 25, 29 and 30.

Learning rate During training, the algorithm updates the model’s weights in every

iteration. The learning rate is a hyperparameter that determines how much the weights

can be changed in each iteration. A larger learning rate is less likely to result in the

training getting stuck in a local optimum, but may also take longer to converge or fail

to explore a region long enough to find an optimal solution. Accordingly, the models

produced by varying the rate can be quite different. Diva considers learning rates of

3 × 10k for k ∈ {−2,−3,−4,−5,−6,−7,−8}.

Model size (embedding and layers) The model’s size is defined by two hyperpa-

rameters, the number of model layers and embedding size, which is the size the vector

space in which a proof aspect is embedded. Diva varies the proof script encoder size

by trying 1, 2, 3, 4, and 5 layers and embedding sizes of 64, 128, 256, and 512.

Training data order The order of the training data can affect the model [72]. We

vary the order in which Diva sees the training instances by creating ten random orders.
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4.3.3 Diversity via varying training data

The second way in which we create a diverse set of models is by varying aspects of

the training data available to the learning algorithm. There are three types of data in

the training proof scripts: the proof state, the proof script tactics and tokens, and

the proof term that the proof assistant generates when it executes the proof script

(recall Section 4.2). When training a model, we either include each of these three

types of data or we exclude them. For the proof script, we include either the tactics

or the tokens, since they encode fundamentally the same information. This leads us

to a total of 11 models. For the models that do not include proof state, when we

encode the training instance that represents the very start of proof-script synthesis,

we include the theorem being proven (otherwise the model would not know what it is

trying to prove). Similarly, at test time, when synthesizing the first proof script step,

we include the theorem being proven.

4.3.4 Efficiently combining model executions

Executing a large set of models in sequence is slow since Diva has to wait for a

model to finish its proof script synthesis attempt before it can try the next one. We

develop model interrupts to improve Diva’s efficiency. In model interrupts, given a set

of models, Diva assigns an arbitrary order of model application. In order, each model

will be given a specified amount of time to try to synthesize a proof script. Once

the time runs out, the next model attempts to synthesize a proof script from scratch.

Figure 4.3 illustrates this concept. The first model attempts synthesis from scratch

for X seconds, at which point, if a complete proof script is not generated, the partial

proof script is stored and the second model attempts to synthesize a proof script from

scratch for X seconds. And so on. Once each model is given an opportunity to try

for X seconds and a complete proof script is not found, the models will be given
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Figure 4.3: Model interrupts allows Diva to let models take turns synthesizing proof
scripts from scratch.

more time to synthesize a proof script starting from the stored partial proof script

associated with the model.

4.4 Evaluation

We evaluate Diva to measure how much diversity of models of proof scripts can

increase the effectiveness of proof script generation. We follow the methodologies

of prior evaluations of proof-script synthesis tools [62, 223], in terms of the dataset

(Section 4.4.1.1) and metrics (Section 4.4.1.2) used; we compare to two state-of-the-art

proof-script-synthesis tools, ASTactic [223] and TacTok [62], which use the same

metaheuristic search for proof-script synthesis as Diva. We further compare Diva to

the state-of-the-art proof-synthesis tool CoqHammer [49].

Our evaluation answers four research questions:

RQ1: Does diverse-modeling significantly improve proof-script synthesis over

state-of-the-art approaches CoqHammer, ASTactic, and TacTok?

RQ2: How much model diversity results from varying the model learning param-

eters sequence depth, learning rate, number of layers, size of embeddings,
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and training order, and how does this model diversity affect proof script

synthesis effectiveness?

RQ3: How much model diversity results from varying which aspects of the

training proofs — tactics, tokens, proof state, Gallina proof terms — are

available to the learning process and how does this model diversity affect

proof script synthesis effectiveness?

RQ4: How effective is our interrupts mechanism for improving Diva efficiency?

All of our evaluation data and the source code to reproduce our results are

available [60].

4.4.1 Evaluation methodology

We first describe the dataset and metrics we use to evaluate Diva.

4.4.1.1 Dataset

In our evaluation, we use CoqGym [223], the state-of-the-art benchmark used in

prior evaluations of formal verification tools [223, 62, 126]. The benchmark consists

of 70,856 theorems from 123 open-source software projects in Coq. The CoqGym

benchmark comes with a preselected training set of 96 projects with 57,719 human-

written proof scripts, and test set of the remaining 13,137 theorems from 27 projects.

Our earlier TacTok evaluation [62] was unable to reproduce prior results for

ASTactic’s performance [223] for one project, coq-library-undecidability, due to internal

Coq errors when processing the proof scripts. Accordingly, we exclude this project

from our evaluation. We were able to reproduce the results for the remaining 26

projects of 10,782 theorems. In total, our training and test sets have 68,501 theorems

from 122 projects.
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4.4.1.2 Metrics

We measure four quantities in answering our research questions: success rate,

added value, diversity, and mean time to prove a theorem.

Success Rate. The success rate of a tool, widely used in prior evaluations [92,

223, 62], is the fraction of all theorems for which the tool generates a succesful proof

script.

Added Value. The added value of tool A over tool B is the number of new

theorems tool A proves that tool B does not, divided by the number of theorems tool

B proves.

Diversity. Given a set of models, we wish to know how much diversity they yield

with respect to their ability to prove theorems. And so, we think of the diversity

of a set of models as the diversity of the corresponding sets of theorems that the

models prove. Our goal with the diversity measure is to be able to compare how much

diversity results from various methods for creating models, so that we can compare

the different methods.

Informally, given a set of sets of objects (theorems) we define a family of diversity

functions, such that the k diversity function, dk, measures the relative increase in

objects contained in k sets, as compared to k − 1 sets. So, for example, for a set of

models, d5 denotes the fraction of the additional theorems (out of all the theorems

proved by at least one model) that are able to be proved by adding a fifth model to a

set of four models, on average.

More formally, let T be a set of objects and let M be a set of subsets of T such

that the union of all sets in M is equal to T . Then, for each k ∈ {1, 2, 3, . . . , |M |},

the k diversity function dk : 2T → R is the average increase, in terms of the fraction

of T , that the union of k elements of M contains over the union of k − 1 elements

of M . Thus, for all Mk ⊆ M , such that |Mk| = k, and for all Mk−1 ⊆ M , such that

|Mk−1| = k − 1, dk(M) is the average value of |Mk\Mk−1|
|T | .
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tool theorems proven Diva’s value added

ASTactic 1,322 (12.3%) 908 (76.9%)
TacTok 1,388 (12.9%) 842 (68.4%)
CoqHammer 2,865 (26.6%) 781 (27.3%)

all 3 prior tools 3,282 (30.4%) 364 (11.1%)

Diva 2,338 (21.7%) —

Diva & CoqHammer 3,646 (33.8%) —

Figure 4.4: Theorems proven by and the success rate of Diva, ASTactic, TacTok,
CoqHammer, and the combination of these tools out of the 10,782 theorems in
CoqGym’s test dataset. Diva provides value added over each of these tools, and 11.1%
value added over the combination of all three.

Given a set of models, we compute the diversity functions empirically. We use each

model to attempt to synthesize proof scripts to prove theorems. We then compute T ,

the set of all theorems that can be proven by at least one model. Then, to compute

dk, we, for each model, compute how many additional theorems it proves compared to

each set of k − 1 models. We then compute the average of those numbers, and divide

it by |T | for normalization. In the end, dk(M) is the average fraction of theorems

proven by adding a k model to a set of k − 1 models. Note that the sum of dk for all

k is 1, and that diversity is monotonically non-increasing with respect to k (that is,

dk−1 ≤ dk.)

Mean Time to Prove a Theorem. To measure efficiency, we compute the mean

time it takes to generate a proof script for a theorem, averaged over all the theorems

for which we produce a successful proof script, and over all the possible orderings of

the models used in the metaheuristic search.

4.4.2 RQ1: Does diversity help Diva outperform the state-of-the-art?

We created models by varying learning parameters and aspects of proof scripts to

encode (recall the models described in Sections 4.3.2 and 4.3.3). Overall, we generated

these 62 models for Diva to use.
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We compare Diva to the state-of-the-art synthesis tools, ASTactic [223], TacTok [62],

and CoqHammer [49]. ASTactic and TacTok, like Diva, learn from existing proof

scripts to predict the next step of the proof script. CoqHammer uses a fundamentally

different approach. Whereas CoqHammer produces proofs in Coq’s logic (Gallina),

Diva searches the proof-script space. When the Coq compiler executes a proof script,

it generates a proof. Proofs cannot be wrong, while proof scripts can be (e.g., a proof

script that concludes with Proof completed, may not lead to a valid proof when it is

checked by the Coq compiler). Thus, it is reasonable to compare proof script synthesis

tools, such as Diva, to CoqHammer with respect to the theorems they are able to

prove. However, since their approaches are so fundamentally different, it is expected

that these tools are likely to be complementary, performing well for different theorems.

While CoqHammer and Diva are likely to perform similarly well for some simpler

classes of theorems, CoqHammer is at a fundamental disadvantage, though, for other

classes of theorems, such as ones that require induction to prove.

On our evaluation set of 10,782 theorems, ASTactic proves 1,322 (12.3%) and

TacTok proves 1,388 (12.9%) theorems. CoqHammer proves 2,865 (26.6%) theorems.

Prior to performing our evaluation, we expected that Diva would prove strictly

more theorems than ASTactic and TacTok (though how many more remained an

important question), that it would not prove more theorems than CoqHammer (given

that CoqHammer proves much more than ASTactic or TacTok can prove alone),

but that it would prove some complementary theorems, thus providing significant

added value compared to CoqHammer, as was the case in ASTactic and TacTok

evaluations [62, 223].

Figure 4.4 shows the success rates, as well as the raw number of theorems proven

by the four tools, and the value Diva adds over each tool, as well as their combination.

Diva proves 2,338 (21.7%) of the theorems. This means Diva proves 2,338−1,322
1,322

= 76.9%

more theorems than ASTactic and 2,338−1,388
1,388

= 68.4% more theorems than TacTok.
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Since these tools use the same search mechanism, these significant improvements are

due entirely to the use of model diversity.

While CoqHammer proves more theorems than Diva, Diva proves 781 theorems

that CoqHammer does not, an added value of 781
2,865

= 27.3%. Figure 4.5 shows a Venn

diagram of the theorems Diva, ASTactic, TacTok, and CoqHammer prove. Together,

these four tools prove 3,646 theorems, for a success rate of 33.8%, whereas without

Diva, the other three tools prove 3,282 theorems. (Because ASTactic and TacTok

have an added value of 0% over Diva, CoqHammer and Diva prove the 3,282 theorems

on their own, without the other tools’ help.) Diva adds a value of 11.1% over the

combined state of the art, and proves 364 theorems no tool has previously proven.

RA1: Our Diva diversity mechanisms are successful in creating model diversity

sufficient to significantly improve the proving power of metaheuristic-search-

based tools (68%–77% added value). Diva also generates 27.3% added value

over CoqHammer, and proves 364 theorems no prior tool has proven. Together

with CoqHammer, Diva reaches a new milestone, proving over one third of all

theorems completely automatically.

4.4.3 RQ2: Learning-parameter diversity

To investigate the effectiveness of varying learning parameters on generating

diverse models, we conduct a series of experiments by generating models varying those

parameters, using the resulting models to synthesize proof scripts, and then measuring

the diversity of the sets of theorems the models prove. As Section 4.3.2 described, the

factors we investigate are sequence depth, learning rate, number of layers, embedding

size, and training order. Figure 4.6 details how much diversity Diva produces by

varying learning parameters in training its models.

Tactic depth diversity. We vary the tactic sequence depth, considering depths

of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 29 and 30; a total of 16 models. (Note that
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364
(3.4%)

TacTok

ASTactic

7,136 (66.2%) unproven theorems

Diva

388
(3.6%)

88
(0.8%)

0
(0.0%)

1,308
(12.1%)

0
(0.0%)

0
(0.0%)

0
(0.0%)910

(8.4%)
149

(1.4%)

214
(2.0%)

110
(1.0%)

0
(0.0%)

CoqHammer

115
(1.1%)

0
(0.0%)

Figure 4.5: The breakdown of how many theorems are proven by each combination of
tools. Diva proves 364 theorems no other tool proves.

the depth 0 model is equivalent to ASTactic, and the depth 3 model is equivalent to

the Tac model in TacTok.) Overall these 16 models prove 1,858 theorems, whereas on

average, a single model proves 1,064 theorems. Diva’s diversity is responsible for a

74.6% increase in proving power! The left graph in Figure 4.6a shows the diversity of

the set of tactic sequence depth models (recall the diversity metric from Section 4.4.1.2).

The k bar shows dk for the 16 models. That is, the k bar states the fraction of extra

theorems proven by k random models, that a random set of k − 1 models does not

prove. For example, the k = 1 bar is simply the effectiveness of using a single model,

0.573 (on average, 57.3% of the theorems proven by all models together are proven

by using one random model). The remaining 42.7% need Diva’s diversity mechanism.

For k = 2, the diversity is 0.138, meaning that adding the second model, on average,

adds an additional 13.8% of the total theorems proven. Two randomly chosen models

prove, on average, 57.3% + 13.8% = 71.1% of all the theorems proven by at least
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(a) Tactic sequence depth (total 1,858 theorems)
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(b) Token sequence depth (total 1,810 theorems)
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(c) Learning rate (total 1,730 theorems)
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(d) Embedding size (total 1,496 theorems)
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(e) Number of layers (total 1,476 theorems)
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(f) Training data order (total 1,232 theorems)

Figure 4.6: The diversity exhibited by altering learning parameters tactic sequence
depth (a), token sequence depth (b), learning rate (c), embedding size (d), number of
layers (e), and training data order (f). The left graph in each pair shows the diversity
measure, as a function of the number of models (e.g., the k = 5 bar is the mean
fraction of additional theorems proven by picking a random 5 model that a random
disjoint set of 4 models has not proven). The right graph in each pair shows the
mean number of theorems proven by k models. The box-and-whiskers indicate the
maximum, 75%-, 50%-, and 25%-tiles, and minimum values.
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one model. The right graph in Figure 4.6a shows the average number of theorems

that k of the tactic sequence depth models prove. The box-and-whiskers indicate the

variability in the choice: how important is it to select specific k models, or can they

simply be selected at random. For example, a single model can prove between 957

(8.9%) and 1,322 (12.3%) theorems from the test set. We leave developing mechanisms

for selecting models to future work.

Token depth diversity. Similar to tactic depth, we considered token depths

of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 29 and 30; a total of 16 models. (Note

that the depth 0 model is, again, equivalent to ASTactic, and the depth 30 model is

equivalent to the Tok model in TacTok.) Overall these 16 models prove 1,810 theorems

(slightly fewer than tactic depth diversity models did), whereas on average, a single

model proves 1,080 theorems. Diva’s diversity is responsible for a 67.6% increase in

proving power. The left graph in Figure 4.6b shows the diversity of the token depth

models. A single random model proves a slightly larger fraction, 59.7%, of all the

proven theorems than was the case for tactic depth models, indicating again that

token depth provides slightly less useful diversity. Still, the remaining 40.3% of the

theorems require Diva’s diversity to be proven. The right graph in Figure 4.6b shows

the variability in a selected k models. Here, a single model can prove between 992

(9.2%) and 1,322 (12.3%) theorems from the test set. Overall, token depth provides

significant diversity, but less than tactic depth did.

Learning rate. We explore 7 different learning rates: 3×10k for k ∈ {−2,−3,−4,

−5,−6,−7,−8}. Overall these 7 models prove 1,730 theorems (slightly fewer than the

depth diversity models did), whereas on average, a single model proves 945 theorems.

Diva’s diversity is responsible for a 83.1% increase in proving power. The left graph

in Figure 4.6c shows the diversity of the learning rate models. A single random model

proves 54.6% of all the proven theorems. The remaining 45.4% of the theorems require

Diva’s diversity to be proven. The right graph in Figure 4.6c shows the variability in
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a selected k models. Here, a single model can prove between 505 (4.7%) and 1,115

(10.3%) theorems from the test set. Overall, learning rate provides significant diversity,

and the models are more diverse from one another than the sequence depth models,

but, overall, result in slightly less proving power.

Embedding size. We explore 4 different embedding sizes: 64, 128, 256, 512.

Overall these 4 models prove 1,496 theorems (fewer than the already discussed

models), whereas on average, a single model proves 1,100 theorems. Diva’s diversity is

responsible for a 36.0% increase in proving power. The left graph in Figure 4.6d shows

the diversity of the embedding size models. A single random model proves 73.5% of all

the proven theorems. The remaining 26.5% of the theorems require Diva’s diversity to

be proven. The right graph in Figure 4.6d shows the variability in a selected k models.

Here, a single model can prove between 1,056 (9.8%) and 1,134 (10.5%) theorems

from the test set. Overall, embedding size provides some diversity, though less than

sequence depth and learning rate.

Number of layers. We explore 5 different numbers of layers: 1, 2, 3, 4, and 5.

Overall these 5 models prove 1,476 theorems (similar to the embedding size), whereas

on average, a single model proves 1,109 theorems. Diva’s diversity is responsible for a

33.1% increase in proving power. The left graph in Figure 4.6e shows the diversity of

the number of layers models. A single random model proves 75.2% of all the proven

theorems. The remaining 24.8% of the theorems require Diva’s diversity to be proven.

The right graph in Figure 4.6e shows the variability in a selected k models. Here, a

single model can prove between 1,063 (9.9%) and 1,158 (10.5%) theorems from the

test set. Overall, varying the number of layers provides a similar amount of diversity

as embedding size. Both parameters effect the size of the learned model.

Training data order. We explore 10 randomly chosen orderings of the training

data. Overall these 10 models prove 1,232 theorems, the smallest number of all the

learning parameters, whereas on average, a single model proves 1,073 theorems. Diva’s
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diversity is responsible for a 14.8% increase in proving power. The left graph in

Figure 4.6f shows the diversity of the training data order models. A single random

model proves 87.1% of all the proven theorems. The remaining 12.9% of the theorems

require Diva’s diversity to be proven. The right graph in Figure 4.6f shows the

variability in a selected k models. Here, a single model can prove between 1,058 (9.8%)

and 1,098 (10.2%) theorems from the test set. Overall, even just varying the training

data order provided some useful diversity and enabled proving more theorems, though

the diversity benefits were much smaller than those of the other parameters.

RA2: Varying learning parameters resulted in significant diversity, which, in

turn, led to significant improvement in proving power. Varying the depth of

the tactics and tokens the model learned from and the learning rate led to the

greatest diversity, while varying the size of the model led to moderate diversity.

Varying the order of the training data marginally increased the proving power.

4.4.4 RQ3: Training-data diversity

Recall from Section 4.3.3 that there are three types of data in the training proof

scripts: the proof state, the proof script tactics and tokens, and the Gallina proof

term. We train models for all possible combinations of these data types, except no

model includes both tactics and tokens, and we exclude the model that is the empty

combination. In total, we learn 11 models.

We first measure the value added by adding each of the three types of information.

The value of adding proof script tactics to a model already encoding the proof state

and the Gallina proof term is 134.2%, proving an additional 345 theorems. (The value

of adding proof script tokens instead of tactics is similar, 136.6%, 351 theorems). The

value of adding Gallina proof term to a model already encoding the proof script and

the proof state is much smaller, 8.0%, proving an additional 89 theorems. (If using

tokens instead of tactics, the added value is 10.6%, 124 theorems.) Finally, the value of
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adding proof state to a model already encoding the proof script and the Gallina proof

term is 21.8%, proving an additional 135 theorems. (If using tokens instead of tactics,

the added value is 53.5%, 281 theorems. We observe that while in previous scenarios,

tactics and tokens behaved similarly, here, tokens exhibit much more diversity than

tactics.) In all three cases, tokens exhibited greater diversity than tactics in encoding

the proof script, suggesting that tokens are a more different representation than tactics

of the other types of information. The Gallina proof term contained the least diversity

compared to the other types of data, whereas the proof script contained the most.

Overall, these 11 models prove 2,053 theorems, which is significantly more than any

of the learning parameter models from Section 4.4.3. A single model, on average, proves

785 theorems. Diva’s diversity is responsible for a 161.5% increase in proving power!

The left graph in Figure 4.7 shows the diversity of the training-data-types models. A

single random model proves 38.3% of all the proven theorems. The remaining 61.7%

of the theorems require Diva’s diversity to be proven. The right graph in Figure 4.7

shows the variability in a selected k models. Here, a single model can prove between

257 (2.4%) and 1,322 (12.3%) theorems from the test set. Overall, training data types

provide the most diversity of all the dimensions we explored, leading to the greatest

proving power.

RA3: Including different data types in training resulted in the most diversity of

all the dimensions we considered, leading to the greatest proving power increase.

Adding proof script tactics or tokens provided the most diversity, followed by

the proof state.

4.4.5 RQ4: Synthesis efficiency

To explore improving Diva’s efficiency, we implement model interrupts (described

in Section 4.3.4). We evaluate the efficiency improvement of model interrupts by
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Figure 4.7: Training data aspects (total 2,053 theorems)

measuring the mean time to prove a theorem with and without interrupts. Of course,

the order in which Diva considers the models matters. Without interrupts, in the

worst case, the last model produces the successful proof script, and Diva wastes 10

minutes on each of the other models, before they time out. For our evaluation, we

measure the mean time over a random sample of 20 possible model orderings.

Without interrupts, the mean time to prove a theorem is 685.5 seconds. However,

we observe that most models either synthesize the proof script relatively quickly, or

don’t at all, though with some notable exceptions. Using model interrupts allows us

to benefit from proving theorems quickly in the initial burst of each model, without

spending the long time in the tail of each model’s distribution, unless it is necessary.

With model interrupts, we explore 15 different switching times: 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 15, 20, 25, 30, and 60 seconds.

We explore two different interrupt schemes. First, we attempt to synthesize a

proof script using each model for X seconds. If none of the models find a proof script

in that time, we return and give each model another X seconds. And so on, until each

model has attempted its search for 10 minutes. The left graph in Figure 4.8 shows

the mean time to prove a theorem for this interrupt scheme. For X = 1 second, this

interrupt scheme achieves the minimal mean time to prove a theorem of 17.2 seconds,

and the proving time increases monotonically for larger X. For X = 1, the speed up

compared to not using interrupts is 97%, or 40×. This suggests that many theorems
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are proven very early in the synthesis process, and while some theorems do get proven

after a lengthy synthesis search, prioritizing the first seconds of synthesis using the

diverse models greatly improves synthesis efficiency.
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Figure 4.8: Mean time to prove a theorem using the model interrupts optimization for
different switching times (in seconds). Executing each model’s search for X seconds,
and then again each model’s search for X seconds, and so on until each model’s search
has been executed for 600 seconds (left graph), achieves the minimal mean time to
prove a theorem of 17.2 seconds when X = 1 second. Interrupting each model’s search
once, first executing each model for X seconds, and then each model for 600 − X
seconds, (right graph), achieves the minimal mean time to prove a theorem of 44.7
seconds when X = 5 seconds. The box-and-whiskers indicate the maximum, 75%-,
50%-, and 25%-tiles, and minimum values over 20 different model orderings.

Second, we allow each model to attempt to synthesize a proof script for X seconds,

and then give each model the remainder of its 600 −X seconds, thus switching only

once per model. The right graph in Figure 4.8 shows the mean time to prove a theorem

for this interrupt scheme. For X = 5 seconds, this interrupt scheme achieves the

minimal mean time to prove a theorem of 44.7 seconds, a speed up of 93%, or 15×,

compared to not using interrupts.

RA4: Model interrupts is incredibly effective, cutting down the mean time to

prove a theorem by up to 97%.
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4.4.6 Threats to validity

The CoqGym benchmark we evaluate our work on has been used by prior eval-

uations of proof-script synthesis [223, 62] and uses theorems from 122 open-source

projects, improving the likelihood that our results generalize. Our analysis focuses on

the Coq interactive proof assistant and may not extend to other assistants, such as

HOL4 [188] and HOL Light [84]. Transformers have outperformed Bidirectional LSTM

in some natural language tasks [54], and may be able to improve Diva’s performance

beyond what we find here.

4.5 Contributions

We have identified a method for using diversity to significantly improve the proving

power of proof-script-synthesis tools. We create Diva, implementing our diversity-

based approach, which proves 68% more theorems than TacTok and 77% more than

ASTactic, two state-of-the-art proof-script-synthesis tools. Diva automatically proves

364 theorems no existing tool has proved. Together with CoqHammer, Diva proves

more than a third of all the theorems in our benchmark of 122 open-source projects,

the largest fraction to date. Our model interrupts optimization improves Diva’s

running time by 40×. Along the way we identify a killer app for ensemble learning, by

using the theorem prover as an oracle for optimally aggregating learned model results.

Our findings strongly suggest that using diversity for improving automated formal

verification is fruitful and warrants further research.
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CHAPTER 5

PASSPORT: IMPROVING AUTOMATED FORMAL
VERIFICATION USING IDENTIFIERS

The work in this chapter was done in collaboration with Alex Sanchez-Stern,

Timothy Zhao, Zhanna Kaufman, Yuriy Brun, and Talia Ringer. The following is

adapted directly from work that has been accepted for publication [180].

5.1 Introduction

In recent years, techniques that use machine learning to synthesize proof scripts

have shown promise in alleviating some of the effort of verification [179, 62, 59, 223, 154].

These proof-synthesis tools learn from corpora of existing proof scripts and theorems to

automate the construction of proof scripts for new theorems. In particular, these tools

build predictive models of proof scripts, and then use search to explore the proof-script

space. This process uses the proof assistant to guide the search and evaluate ultimate

success.

In this work, we explore ways of improving these predictive models by better

exploiting the richness of the proof data that they learn from. We focus in particu-

lar on modeling identifiers: the names that uniquely identify theorems, datatypes,

functions, type constructors, and local variables. Previous machine-learning-guided

proof-synthesis tools have either ignored the names of individual identifiers completely

and only encoded basic categorical information about them, or given common identi-

fiers unique indices and marked all others as unknown, without category information.

In this work, we develop the Passport approach, which enhances the models used
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by existing proof-synthesis tools with three new encoding mechanisms for identifiers:

category vocabulary indexing, subword sequence modeling, and path elaboration.

We implement our approach for tools that synthesize proofs for the Coq proof as-

sistant [199] and show that all three of these encodings improve performance of the

end-to-end tool.

The term “Passport approach” refers to our approach of enhancing the model of an

existing proof-synthesis tool with identifier information. Most of our evaluation focuses

on the application of Passport to a single existing tool, Tok [62]; where unambiguous,

we refer to the resulting tool as Passport. Where necessary for clarity, we make explicit

the distinction between the approach and the tool resulting from enhancing existing

the model of Tok with our approach.

Identifiers in Passport The Passport approach encodes identifiers with three

different encoding mechanisms (described in detail in Sections 5.2 and 5.3):

1. Category Vocabulary Indexing: we encode each identifier with the category

it comes from (global definition, local variable, or type constructor); and for the

most common identifiers in each category, we encode indices corresponding to

their names. That is, each common identifier is given a unique tag, associating

it with all other uses of that exact identifier.

2. Subword Sequence Modeling: For all identifiers, we use a subword sequence

model to draw bridges between related names. That is, identifiers are broken

down into common word-pieces, and processed with a sequence model.

3. Path Elaboration: For type constructors and global definitions, we encode

their fully-qualified paths — the names of directories, files, and modules within

which they are contained.

While we focus on Coq in this work, similar techniques should apply for other

proof assistants, including Lean [117], Isabelle/HOL [94], and Agda [3].
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Results We evaluate the Passport approach using the CoqGym benchmark [223]

of 124 open-source Coq projects. We compare to three existing search-based proof-

synthesis tools, ASTactic [223], Tac, and Tok [62]. We find that all three of our

encoding mechanisms improve tool performance, in terms of being able to prove more

theorems fully automatically. For example, adding path elaboration leads to proving

12.6% more theorems. We also measure the impact of adding identifier information to

each of the categories of identifiers individually, and find that the Passport approach

is useful for each.

Together with the three prior tools, tools enhanced with the Passport approach

are able to fully automatically prove 1,820 of the 10,782 theorems in our benchmark

test set, whereas without the enhancements, these prior tools combined can prove

1,259 theorems. That is an increase of 45% theorems proven over this prior work.

Contributions The main contributions of our work are:

1. The Passport approach (Section 5.3) consisting of a set of techniques for encoding

identifiers in a proof assistant context.

2. The Passport implementation of that approach as a standalone tool within an

existing proof-synthesis framework. Passport is open-source: https://github.

com/LASER-UMASS/Passport

3. An evaluation (Section 5.4) showing that (1) the Passport approach improves

proof synthesis when applied to three prior tools, (2) each mechanism for encoding

identifiers helps model proof scripts more precisely and improves performance

of proof synthesis, and (3) encoding each identifier category alone is still an

improvement over not encoding any.

4. A forward-looking discussion (Section 5.5) of the challenges that we faced when

building Passport (relative to building symbolic proof automation), along with
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Definition posnat1 := {n2 : nat | n > 0}.

Inductive posnatEq1 : posnat -> posnat -> Prop :=

| posnatEq intro3 : ...

Definition posnatMult1(p12 p22 : posnat) : posnat := ...

Figure 5.1: Definitions related to the posnat type, a type of pairs of natural numbers
and proofs that they are greater than zero. These definitions are found in the
Foundational Cryptography Framework (retrieved as part of the Verified Software
Toolchain).

potential solutions to those challenges. Our evaluation includes an experiment

measuring the impact of nondeterministic training variance (Section 5.4.6).

5.2 Overview of the Passport Approach

The proof state is made up of many Gallina terms; modeling these terms well is

key to producing accurate models. However, previous models have left out much of

the essential information about identifiers in terms, when they have encoded identifiers

at all. Encoding identifiers well is essential because proof corpora in Coq are rich with

identifier information. One reason that identifiers are particularly important in Coq

is that Coq has no primitive datatypes; every referenced type is an identifier. These

names can carry a lot of meaning — and that meaning can be reflected in the names

of theorems that refer to them. This work describes and evaluates improvements to

identifier encodings in the tactic prediction model.

Categories of Identifiers To begin to harness the latent information in identifiers,

the Passport approach adds three categories of identifiers to the term model. To

-1https://github.com/adampetcher/fcf

0https://vst.cs.princeton.edu/
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understand these identifier categories, consider the definitions in Figure 5.1, from a

verified cryptography library.

1. The identifier posnat is a global definition (highlighted in red1), it can be used

by datatypes, functions, theorems, or proof scripts, to reference the globally

defined posnat datatype.

2. The identifier n is a local variable (highlighted in orange2), as it can be referenced

within the local context of this term, but not outside of it.

3. The identifier posnatEq_intro is a type constructor (highlighted in yellow3) as

it can be referenced in datatypes, functions, theorems, and proof scripts to

construct a new posnatEq object.

Appendix A further details these categories of identifiers (global definitions, local

variables, and constructor names) and provides intuition through examples for why

each category may be useful to encode in a tactic prediction model. Appendix A.3

details the implementation effort required for enriching a model with these three

categories of identifiers.

Encodings Figure 5.2 shows a proof over these definitions, posnatMult_comm. This

proof says that multiplication of posnats is commutative, meaning you can switch the

order of the arguments and the result will always be the same. Making progress in

this proof state requires understanding several things about the identifiers involved.

1. The exist type constructor is a common constructor for sigma (existential)

types, and there are specialized tactics (like exists and eexists) for reasoning

with those objects.

2. The goal type, posnatEq is related to posnats and equality.

3. The Nat.mul function is defined in the Coq’s standard library, whereas mult_gt_0

is a theorem about it defined in the current project.
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Lemma posnatMult comm1 : forall

p12

p22,

(posnatEq (posnatMult p1 p2)

(posnatMult p2 p1)).

Proof.

intuition.

unfold posnatMult.

destruct p1; destruct p2.

(a) A partial proof of
posnatMult_comm.

x : nat

g : x > 0

x0 : nat

g0 : x0 > 0

============================

posnatEq1 (exist3 (fun n2 : nat =>

n > 0)

(Nat.mul1 x2 x02)

(mult gt 01 g2

g02))

(exist (fun n : nat => n

> 0)

(Nat.mul x0 x)

(mult_gt_0 g0 g))

(b) The proof state at this point in the
proof.

Figure 5.2: A proof using the definitions in Figure 5.1, from the same file.

Understanding these things requires three different approaches: attaching special

signifiers to common identifiers, processing the individual pieces of identifiers to

understand where they connect to different concepts, and remembering where the

definitions being referenced are defined.

Figure 5.3: The architecture of Passport’s identifier processing.

The crux of this work is the enrichment of a proof-synthesis model for Coq with

rich information about identifiers. Figure 5.3 shows an overview of how the Passport
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approach encodes identifiers. To fully take advantage of the richness of these identifiers,

our design employs three key encoding mechanisms:

1. Category Vocabulary Indexing (Section 5.3.1), which separately considers different

kinds of common identifiers in a proof development,

2. Subword Sequence modeling (Section 5.3.2), which draws bridges between all

identifiers, and

3. Path Elaboration (Section 5.3.3), which encodes the location where the object

referred to by each identifier is defined.

Category vocabulary indexing allows us to assign unique labels to common iden-

tifiers in the code. In this case, that means giving a unique label to the exist type

constructor, so that we can use knowledge from previous proofs which used that

precise constructor. Subword sequence modeling allows us to break identifiers up into

common pieces, and process those pieces with a sequence model. In this case, that

means breaking the posnatEq identifier into the chunks posnat and Eq, so that we can

use knowledge from previous proofs that had identifiers with similar pieces. Finally,

path elaboration allows us to consider the directories, files, and modules in which

the object referenced by the identifier is defined. Here, that means understanding

that the multiply identifier refers to a function defined within Coq.Init.Nat, but the

mult_gt_0 refers to a lemma defined in the current file.

Armed with the knowledge from these three encoding mechanisms, our model has

everything it needs to suggest tactics that the tool can use to complete the proof of

posnatMult_comm.

5.3 Passport Encodings

Identifiers are proxies for semantic information not by accident, but by design. By

taking advantage of the information in identifiers, term models can learn from the
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design principles the proof engineer has already followed to make proof developments

easier to read, understand, and build on. To extract this information from identifiers,

the Passport approach uses three encoding mechanisms: category vocabulary

indexing (Section 5.3.1), subword sequence modeling (Section 5.3.2), and path

elaboration (Section 5.3.3).

5.3.1 Category Vocabulary Indexing

In each identifier category (global definitions, local variables, and type constructors),

there are many common identifiers used across proof developments. These identifiers

are so common that we can learn a significant amount about how to understand them

from their previous uses. For instance, in the example from Figure 5.2, the exist

type constructor is part of the standard library, and many proofs in our training data

reason with it. Even when an identifier is not very common, we can still understand a

lot about it by knowing what category it is in.

To take advantage of these properties of identifiers, we developed category

vocabulary indexing. This encoding mechanism tags every identifier with the

category it comes from and, if the identifier is commonly used enough, a unique tag for

that particular identifier. By giving common identifiers a unique tag, we can generalize

across their many appearances, and predict tactics that worked well with them in the

past. And by marking identifiers with their category, either global definition, local

variable, or type constructor, we can disambiguate identifiers with the same name from

different categories, and learn useful information about even uncommon identifiers.

The models in some previous tools for machine-learning-guided proof-synthesis,

such as Proverbot9001 [179] and Tactician [22], use vocabulary indexing for common

identifiers, but make no category distinctions. This is a reasonable approach, because

in Coq, the names of global definitions, local variables, and type constructors share a

common namespace. However, in the Passport approach, we decided to distinguish
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between identifiers of different categories, in part because manual analysis of the

training data revealed different naming conventions for different categories. For

example, single-letter identifiers seemed to almost exclusively represent local variables,

with uppercase for types (like A in Figure A.1), and lowercase for terms (like x in

Figure 5.2); longer uppercase identifiers generally refer either to sort names (like Set or

Prop) or type constructors (like Some or None). This means that when human provers

see an identifier, even if they have not seen it before, they often have a sense of what

category it belongs to.

The models in other previous tools for machine-learning-guided proof-synthesis,

such as ASTactic and TacTok, make category distinctions, but do not index vocabulary.

We learned early on that the possibility of performance regression due to uninformative

local variables like x had concerned the ASTactic authors, and contributed to their

decision not to encode identifiers.1 However, upon closer inspection of the data, we

determined that even when a particular name does not always refer to the same

definition, common names can carry information of their own. For instance, variables

named hd and tl consistently refer to the head and tail of a list. These names, too, can

benefit from a unique tag which generalizes across their usages. Our manual inspection

determined that this can often hold even for single-character variable names.

Implementation To decide which identifiers are common enough to be indexed,

we use our training data set to create a fixed identifier vocabulary. That is, we count

the occurrences of each identifier, and include in our vocabulary those whose count is

above an experimentally chosen, fixed threshold (see Section 5.4.7 for an evaluation of

different thresholds). Using separate vocabularies for each category of identifier allows

us to use different thresholds across different categories; since type constructors are

1https://github.com/princeton-vl/CoqGym/discussions/60
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less common overall than local variables, they might require having a lower threshold

for being included in the vocabulary.

5.3.2 Subword Sequence Modeling

Identifier information can be useful not just for learning about individual datatypes,

theorems, and functions, but also for drawing bridges between them. Developers often

organize development using parts of names to group theorems and functions which

refer to common definitions. It turns out these naming conventions can be useful to a

model, too.

Many variable names are not simply single unique words, but are made up of

multiple parts. These parts could be multiple english words in camel case, such as

the case in something like firstItemInList broken into “first”, “item”, “in”, and

“list”. Or they could be components of a single word that carry individual meaning,

like prelocalizations broken into “pre” “local” “ization” “s”. By breaking these

identifiers into pieces, a model built using the Passport approach can learn the meaning

of shared pieces and generalize across identifiers.

In the example from Section 5.2, Passport breaks posnatMult into [pos, nat,

Mult]; with a different subword vocabulary, from a different set of variable occurrences

in the training data, it might produce [posnat, Mult]. These tokens are processed

with a sequence model, so that the identifier’s ultimate feature vector reflects the fact

that the identifier relates to the “posnat” type, and that it primarily relates to the

multiplication operation.

To get a sense for this, let us consider another example. The Coq standard library

includes operations about the real numbers R, like addition:

Rplus1 : R → R → R.

The library contains proofs of theorems about Rplus, like this proof (highlighting just

one Rplus for presentation):
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Lemma Rplus_eq_compat_l : ∀ (r r1 r2 : R),

r1 = r2 → Rplus1 r r1 = Rplus r r2.

Proof.

intros r r1 r2.

apply f_equal.

Qed.

which proves the theorem that right addition preserves equality.

Suppose we wish to prove the analogous theorem about the natural numbers nat,

using the addition function plus defined over nat. We can do this the same way:

Lemma plus_eq_compat_l : ∀ (n n1 n2 : nat),

n1 = n2 → plus1 n n1 = plus n n2.

Proof.

intros n n1 n2.

apply f_equal.

Qed.

simply renaming the local variables for style (though the original proof with r, r1,

and r2 also works with no changes).

The fact that Rplus and plus are related is explicit in the identifier names: Rplus

behaves like plus over R. A model that can draw connections between plus and Rplus

can in some cases reuse proofs about one to derive analogous proofs about the other.

The key here is subword sequence modeling which excels at drawing connections

between related words [65, 184]. Subword sequence modeling allows us to break the

identifier Rplus into the chunks R and plus, and index them separately, connecting

them to the identifier plus. By drawing these connections, we expect that a model

can suggest intros and f_equal in the body of plus_eq_compat_l, by connecting

the hypothesis plus n n1 = plus n n2 to the hypothesis Rplus n n1 = Rplus n n2.

With subword sequence modeling, the model can learn all of this with no need for

semantic information about what each of the reals and naturals represent, or how

their addition functions are related.

In the Passport approach, identifiers are broken into subwords using a byte-pair

encoding algorithm (BPE) [65, 184], an algorithm that has seen success in code

completion models for program synthesis [103, 196]. The algorithm uses the training
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corpus to make a list of common subwords by starting with a vocabulary of single

characters, and iteratively merging common pairs. Then, each identifier is tokenized

by greedily consuming the longest matching vocabulary element.

The Passport approach incorporates these tokens as embeddings in a syntax model.

Program syntax can generally be modeled in two ways. The simplest way is to model

it as an unstructured sequence of words (or more generally, tokens). The alternative

is to parse the syntax into a tree, and use a tree based model to process it. One of

the advantages of the former is that you can tokenize strings in a number of different

ways, including with multiple tokens per identifier (sub-word tokenization). However,

our implementation of Passport builds on a parsed-tree-based model, so there is no

existing string tokenizer that could be used for subword tokenization. Instead, we

embed a sequence model within the leaves of the tree-based syntax model. This means

that our subword sequence model only learns how to combine parts of an identifier

into a fixed embedding for the identifier, and does not need to learn about other parts

of program syntax.

With our category vocabulary indexing, we used separate vocabularies for iden-

tifiers of different categories. However, proof developments sometimes demonstrate

connections between identifiers from different categories. These connections are lost in

using separate vocabularies, so subword encoding is used to maintain these connections.

The Passport approach uses a single subword vocabulary, derived from the global

variable corpus, to encode identifiers from all categories.

Implementation There are several subtleties to the implementation of our subword

tokenization algorithm, and the byte-pair encoding which generates its vocabulary.

Sometimes there were several possible ways to implement the approach; in general, we

made our choices based on the performance of the resulting tool on our benchmarks.

As indicated by the name, byte-pair tokenization often starts with a vocabulary of

bytes, not characters, to allow a reasonable base vocabulary size when working with
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unicode. However this has the downside of sometimes indicating that two identifiers

are similar because they share bytes within a unicode character, even if no characters

are in common. In our implementation, we use characters as our base vocabulary. To

keep our base vocabulary of a reasonable size, we only include those characters which

are present in the training corpus. Since Coq programmers generally only use a small

subset of possible unicode characters, this works well. However, there are in rare cases

unicode characters present in the test data which are not present in the training data.

To address this, our subword tokenizer drops characters which are not present at all in

the vocabulary; this behavior can be changed with a flag to instead produce a special

<unknown> element.

Many different neural architectures have been used to process sequences of tokens.

For language modeling, the most effective models are often those with attention and

forgetfulness mechanisms, to capture the long-range dependencies present in text.

However, the identifiers we work with are generally short, often only a few subwords

long, so we instead use the simplest sequence model, a Recurrent Neural Network,

without any attention mechanism.

As with any sequence-based model, there is a question of how to cap the size

of sequences so that their lengths can be normalized. With Passport, we found

empirically that capping at four tokens per identifier during training, but eight tokens

per identifier when synthesizing proofs, is most effective on our evaluation suite. Four

subwords is enough to encode the entire name of 98.74% of identifiers in our training

data, and eight subwords is enough to encode the entire name 99.97% of the time.

We trained the subword encoder end-to-end alongside the rest of the term encoder

and tactic decoder, so that the encoder is trained to retain information about subwords

particularly relevant to the task of tactic prediction.
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5.3.3 Path Elaboration

The final encoding mechanism in the Passport approach is path elaboration: the

encoding of fully-qualified paths of different identifiers. By paying attention to the

fully-qualified paths of different identifiers, the tools using the Passport approach can

take advantage of any grouping of identifiers into common modules and files already

used by Coq developers to organize development. Tools using Passport approach can

also capitalize on proof development styles that dispatch proofs for entire classes of

related theorems using powerful tactics — a proof development style recommended

by, for example, the popular Coq textbook Certified Programming with Dependent

Types [41].

To gain some intuition for what this means in action, consider this proof of a

theorem from the Coq standard library:

Theorem not_in_cons A (x a : A) (l : list A):

~ In x (a::l) ↔ x<>a ∧ ~ In x l.

Proof.

simpl. intuition.

Qed.

The proof of not_in_cons goes through by just two tactics: simpl and intuition.

The simpl tactic simplifies the initial goal (no assumptions, with the theorem type as

the sole proof obligation) to make it easier to reason about, producing this proof state:

A : Type

x, a : A

l : list A

______________________________________(1/1)

~ (a = x ∨ In x l) ↔ x <> a ∧ ~ In x l

In this case, the simpl tactic has unfolded the In x (a::l) on the left side of the

identifier into (a = x ∨ In x l).

But the resulting goal is still a bit complex because it chains together a number

of logical connectives: if and only if (↔), negation (~), inequality (<>), conjunction

(∧), and disjunction (∨). So the intuition tactic breaks down logical connectives into

simpler subgoals, and dispatches each subgoal automatically.

81



not in cons1

: ∀ (A2 : Type) (x a2 : A) (l2 : list A),

Coq.Init.Logic.iff1

(Coq.Init.Logic.not1

(In1 A x (cons3 A a l)))

(Coq.Init.Logic.and1

(Coq.Init.Logic.not

(Coq.Init.Logic.eq1 A x a))

(Coq.Init.Logic.not (In A x l))).

Figure 5.4: The theorem statement not_in_cons, elaborated with paths. Highlighted
using the same conventions as in Figure 5.1, with other paths omitted for brevity.

Taking a step back, it is natural to wonder how the proof engineer could have

known to use the intuition tactic to dispatch the remaining goals. Intuitively, it

made sense to use intuition here because the goal consisted of simple statements

linked by logical connectives, which intuition excels at. It turns out that the fact

that these operators are logical connectives is explicit in the paths of the identifiers in

the goal — they all reside in the Coq.Init.Logic module — so we can pass it on to

our models by encoding paths.

We can see this by expanding the paths of the identifiers in the theorem statement

of not_in_cons (Figure 5.4). All of the operators in not_in_cons are syntactic sugar

for identifiers, which themselves refer to types defined inductively in Coq. For example,

conjunction (∧) refers to the inductive type and in the path Coq.Init.Logic.

Internally, Coq stores the elaborated theorem with all of these identifiers (like and)

and their fully-qualified paths (like Coq.Init.Logic) explicit.

Inspecting the elaborated version of not_in_cons shows that the fact that these

are logical connectives requires no semantic understanding to deduce — it is explicit

in the grouping of identifiers in the Logic module.

We determined that a simple way to pass this intuition on to our models was

to encode each of the file and module names inside of fully-qualified paths, taking
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advantage of the organization of large proof developments to infer tactics used to

dispatch related goals.

Implementation To implement this, we created a dedicated vocabulary and corre-

sponding <unknown> token for file and module names inside of fully-qualified paths,

much like we did for each category of identifier. We then used this vocabulary for

encoding paths.

As with identifiers, Coq includes fully-qualified paths inside of the ASTs by default,

but TacTok and ASTactic had erased those paths from the AST. For example, in

Figure A.3, the fully-qualified path Coq.Init.Datatypes of the option inductive type

shows up in the AST as a directory_path node, with data [Datatypes; Init; Coq].

Elaborating paths was thus similar to adding each of the categories of identifiers:

First, we modified the post-processing code to avoid erasing paths. Then, we built

a separate vocabulary for common files or modules that paths consisted of, like

Datatypes, Init, and Coq in Figure A.3. We then encoded each file or module along

the path separately, mapping to a dedicated <unknown> token for files or modules in

paths that occurred less frequently than the chosen threshold.

5.4 Passport Evaluation

We evaluated Passport’s ability to successfully prove theorems using the Coq-

Gym benchmark [223], following the evaluation methodology used by several recent

papers [223, 62, 59].

In summary, our results show:

• The Passport approach improves proving power. By comparing to

previous tools — ASTactic and the two base tools, Tac and Tok, that make

up TacTok — we measured additional proving power provided by the Passport

approach’s encoding of identifiers. The combined proving power of the tools
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enhanced by the Passport approach exceeds that of the original tools by 38%, and

combining both the enhanced and un-enhanced tools outperforms the combined

un-enhanced tools by 45% (Section 5.4.2).

• Identifiers improve performance. All three categories of identifiers improve

performance, in aggregate proving 64% more theorems than the individual

un-enhanced tool (Section 5.4.3).

• All three encoding mechanisms improve performance. All three cate-

gories of identifiers in the Passport approach improve performance in Passport

with each of the three encoding mechanisms (Sections 5.4.4 and 5.4.5).

• Our results are meaningful beyond variance introduced by nondeter-

minism. Proof synthesis success rate varies by 0.4% for individual tools, and

combining many varying runs can improve results by 22% (Section 5.4.6).

• Hyperparameter choices impact performance. We choose our hyperpa-

rameters experimentally based on these results (Section 5.4.7).

All our experiments are affected by nondeterminism, and while the bulk of our

experiments only use a single trial, Section 5.4.6 explores the effect on nondeterminism

on the variance of our results and argues that that effect is small.

5.4.1 Experimental Setup

Benchmark The CoqGym benchmark includes 124 open-source Coq projects, split

into three sets. For our evaluation, we trained on 97 projects (containing a total of

57,719 theorems) and synthesized proofs for 26 projects (containing a total of 10,782

theorems). We exclude one project, coq-library-undecidability, from our evaluation

because TacTok’s evaluation [62] was unable to reproduce prior results for ASTactic’s

performance [223] on that project due to internal Coq errors when processing the

proof scripts.
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Projects in the CoqGym benchmark are a mixture of mathematical formalizations,

proven correct programs, and Coq automation libraries. They include several compilers

of varying sizes (such as CompCert [122]), distributed systems (such as Verdi [217]),

formalizations of set theory, and more. Some of the projects in CoqGym (such

as the automation libraries) do not contain any proofs, but we included them for

completeness.

Machines We ran this work’s experiments using two clusters: a GPU cluster for

training and a CPU cluster for synthesizing proofs.

Each node in the GPU cluster has between two and eight NVIDIA GPU cards.

There are four nodes with two NVIDIA Tesla V100 GPUs, and thirty-three nodes

with eight NVIDIA RTX 2080ti GPUs. The nodes in the GPU cluster all run on a

shared ZFS file system, run CentOS Linux, and use Slurm for job scheduling and

resource management. We found that training time varied between 12 and 14 hours

per epoch, and did not differ significantly between the Passport implementation and

the baseline model.

Each node in the CPU cluster has between 24 and 36 cores, with 4 hyperthreads

per core. There are:

• 1 head node with 24 cores of Xeon E5-2680 v4 @ 2.40GHz, 128GB RAM and

200GB local SSD disk.

• 50 compute nodes with 28 cores of Xeon E5-2680 v4 @ 2.40GHz, 128GB RAM

and 200GB local SSD disk.

• 50 compute nodes with 28 cores of Xeon Gold 6240 CPU @ 2.60GHz, 192GB

RAM and 240GB local SSD disk.

• 5 compute nodes with 56 cores of Xeon E5-2680 v4 @ 2.40GHz, 264GB RAM

and 30TB local disk.
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The nodes in the CPU cluster also all run on a shared ZFS file system, run CentOS

Linux, and use Slurm for job scheduling and resource management. The average

inference time for a random sample of generated proofs was 0.4 seconds per tactic for

the Passport implementation, compared to 0.3 seconds for the baseline model.

Experimental Parameters Passport attempts to synthesize each proof for a preset

amount of time, timing out if it fails to to reach Qed in that time. Our evaluation

used 10 minutes for this timeout, following the choice made by ASTactic [223] and

TacTok [62]. Following a design decision made by ASTactic, we limited our search to

a total of 300 attempted tactics, and restrict solutions to be no longer than 50 tactics

long. Our experiments use 200 as the default category vocabulary threshold (recall

Section 5.3.1) and 4,096 as the default byte-pair merge threshold (recall Section 5.3.2).

We use 128 as the default vector dimension for term, grammar, and terminal/non-

terminal symbol embeddings, as well as the dimension of the LSTM controller. For

all other parameters, we follow those used by ASTactic [223] and TacTok [62].

Implementation Overall, the Passport approach implementation is 1.5K lines of

code and took four developers about a year to build. While the conceptual and

design aspects of the Passport approach can extend to all prediction-model-driven,

search-based, proof-synthesis tools, the current implementation is straightforwardly

applicable to all such tools built within the CoqGym environment [223].

This implementation adds three embeddings for category indexes and one for paths,

with 428, 136, 27, and 262 items for global definitions, locals, constructors, and paths,

respectively. This results in a corresponding increase to the first layer of Tok’s term

encoder. The new subword embedding contains 4,164 items and is encoded with an

RNN using a hidden size of 32. When implementing these new model components, we

optimized for simplicity over model size, so we believe that the model size could be

decreased further without significantly impacting accuracy.
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The original ASTactic, Tok, and Tac models used a 256-float symbol embedding

size. However, we observed no significant difference between those models using a

256-float symbol embedding, and using a 128-float symbol embedding. As a result,

our model uses 128-float symbol embeddings, and, where appropriate, we compared to

versions of other models with a 128-float symbol embedding. Overall, these changes

to model size had no significant impact on training time, as described above.

5.4.2 The Passport Approach’s Effect on Proof-Synthesis Tools

In this section, we show that the addition of our identifier information improves

the end-to-end performance of proof search tools. Since Passport is implemented in

the ASTactic/TacTok framework, we were able to evaluate our changes against three

base tools: An ASTactic-like2 tool, Tac, and Tok. ASTactic was developed as part of

the CoqGym project [223], and uses only proof contexts as input to their prediction

model. By contrast, the models in Tac and Tok (developed as part of the TacTok

project [62]) additionally model the proof script up to the current point, with Tac’s

model encoding the tactics in the proof script, and the Tok’s model encoding all the

tokens except punctuation in the proof script.

Figure 5.5 shows the results of adding identifier information to all three of these

tools. Adding identifiers to each of the three tools significantly improves their ability

to prove theorems. Adding identifier information improves our ASTactic-like tool by

29% (304 additional theorems proved), Tac by 14% (136 additional theorems proved),

and Tok by 33% (318 additional theorems proved).

Following TacTok’s [62] and Diva’s [59] evaluations, we also explore how the

differences in theorems proven by multiple tools lead to more theorems proven overall,

and how adding identifier information increases that improvement. When we compute

2We were not able to replicate the original results of ASTactic [223], so for our evaluations we
trained a model with the same embedding vector dimensions as our own models. For this reason we
are using the term ASTactic-like when we describe our results.
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Figure 5.5: The effect of adding all of the three encodings for three identifier types to
several proof-synthesis tools. The purple crosshatch bars represent baseline tools based
on ASTactic, Tok, and Tac. The orange bars represent our new contributions. The
rightmost crosshatch bar, labeled “Combined”, is the number of theorems successfully
proven by at least one of the baseline tools. The orange bar next to that, labeled
“*+P Combined”, is the number of theorems successfully proven by at least one of the
tools enhanced by the Passport approach. Finally, the orange and crosshatched bar
on the far right is the number of theorems proven by at least one of all the presented
tools.

the union of the theorems proven by all our tools enhanced by the Passport approach,

and compare that set to the union of the theorems proven by the base tools, we find

an improvement of 38%. Comparing the union of theorems proven by all the tools to

the union of theorems proven by the three base tools, we find an improvement of 45%.

Next, we examine the complexity of the proofs that Passport generated. Using

human-written proof-script length as a rough proxy for complexity, we note that

Passport successfully synthesized proof scripts for 351 theorems for which the human-

written proof scripts were at least 5 tactics long. For 54 of those theorems, the

human-written proof scripts were at least 10 tactics long. This observation suggests
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that Passport is able to synthesize a significant number of nontrivial proofs. For 280

theorems, Passport was able to synthesize proof scripts that were shorter than the

human-written ones. In one particular case, the human-written script was 139 tactics

long, while Passport’s script was only 2 tactics long. The baseline tool produced

239 proofs for which the human-written proof scripts were at least 5 tactics long, so

Passport proved 46.9% more theorems with human-written proofs of that length. For

theorems with human-written proofs of length 10 or more, the baseline tool produced

37 proofs, so Passport proved 45.9% more such theorems. Finally, the baseline model

produced proofs shorter than the human-written proofs for 171 theorems, so Passport

did so for 63.7% more theorems.

Examining the time it takes Passport to synthesize a proof script, the successfully

generated proof scripts took between 0.08 and 86.6 seconds to generate, with the mean

of 2.9 seconds.

5.4.3 Identifier Categories

In the Passport approach, we model three categories of identifiers. While the

experiment in Section 5.4.2 showed that modeling identifiers from these categories

are effective together, we also want to show the utility of the identifier categories

individually.

Figure 5.6a shows the individual results of just adding local variables, type con-

structors, and global definitions. For consistency, this experiment compares to a

Tok-like tool with a model with smaller embedding sizes, as Passport uses that model

to add identifier information to.

Each of the identifier types added individually increases the number of theorems

proven, though the increase from local variables alone is marginal. Adding type

constructors alone proves 8% more theorems than the baseline, adding global definitions
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alone proves 16% more theorems, and adding local variables alone proves 0.5% more

theorems.

However, no identifier category added individually is close to the impact of adding

all three. Adding all three identifier types, without subword information, proves 33%

more theorems.

Finally, though none of the tools with individual identifier types prove as many

theorems as the one with all of them together, some of these individual identifier-

enriched tools prove theorems that the all-identifiers-enriched tool does not. The

union of the theorems proven by the individual identifier-enriched tools and the

all-identifiers-enriched tool contains 64% more theorems than the baseline tool.

These experiments show that each identifier category is useful for producing a more

effective proof-synthesis tool, and that the identifier categories help with a diverse set

of theorems, so combining the results of adding different subsets of identifiers helps

further.

5.4.4 Subwords

Figure 5.6b shows the impact of adding subword encodings to our identifier-

enriched tools (Section 5.3.2). Adding the subword encoding does not benefit all

types of identifiers individually. In fact, it makes two (type constructors and global

definitions) out of the three identifier categories perform worse than when those

identifiers are used individually, possibly due to overfitting.

However, when subwords are added to the full tool with all the identifier categories,

they improve results by 7%. This improvement is greater than what the cumulative

impact of adding subwords to individual identifier-enriched tools, suggesting that

subwords particularly help with making connections between multiple identifier types.

In fact, even though subword sequence modeling does not help global definitions alone,
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when global definitions are combined with the other identifier types, removing subword

encoding significantly hurts results.

The most likely explanation for these results is that for subwords to be effective, a

sufficiently large number of identifiers is necessary to encounter a non-trivial number of

repeated subwords, allowed for learning semantics of those subwords. Adding subwords

to only a single type of identifier likely does not meet that threshold, but using all

identifiers leads to a significant improvement in the tool’s proving power.

5.4.5 Paths

Figure 5.6c shows the impact of removing path elaboration (Section 5.3.3) from

various identifier types in the Passport model. Since local variables do not have paths,

there is no impact of removing path elaboration. Subwords were not included in this

experiment, as we wanted to isolate the impact of paths.

Path elaboration benefits both type constructors and global definitions: increasing

theorems proven for type constructors alone by 10% and increasing theorems proven

for global definitions alone by 9%. The union of the theorems proven using these

categories alone and the theorems proven with local variables alone (for which the

paths improvement is 0%), is 7% larger than without path elaboration. However,

when we add path elaboration to Passport’s model with all three identifier categories,

it increases the number of theorems proven by 12.6%.

These results indicate that the impact of adding path elaboration to a model that

implements local variables, type constructors, and global definitions is greater than

the combined effect on individual models. Similarly to the subword experiment above,

these results suggest that encoding fully-qualified paths helps connect identifiers across

categories; learning about how type constructors from a particular module behave

helps in dealing with global definitions from that module, and visa versa. However,
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unlike the subword experiment, paths seem to benefit all identifiers for which they are

implemented individually as well as in combination.

5.4.6 Nondeterministic Model Variance

During the course of our evaluation, we found that models trained in the ASTactic

framework had significant variance in their downstream proof-synthesis success rate,

even when the model code and training data were identical. While part of this

variance could be attributed to different hardware and other hard-to-control factors

(see Section 5.5), even when controlling for all those factors, there was still variance.

After months of investigation, we found that the cause was nondeterminism at the

hardware and framework level, some of it undocumented [169, 67].

Nondeterminism in model training is not specific to proof search, and has in fact

been documented in the ML community at large [159, 186, 165]. However, it is not

immediately obvious how these effects would impact proof search, since they are

usually measured as inaccuracy in the top prediction of a model, while proof-search

tools generally use multiple model predictions, smoothing out some inaccuracy.

To measure the impact of nondeterministic training variance on proof search, we

trained our model with identifiers added to Tok’s model 20 times. On average, the tool

using one of these models proved 11.9% (1,279 theorems), with the maximum proving

12.0% (1,294 theorems) and the minimum proving 11.6% (1,256 theorems). The 0.4%

spread (38 theorems) shows that training the same model can lead to small differences

in overall success rates. Our result for adding local variables alone (with no other

identifiers) and without subword encoding is within this variance range. However,

the impact of local variables is better captured with the addition of subwords and

together with other identifiers, which yields results significantly outside of this range.

Interestingly, the union of the theorems proven by the tool using these 20 models is

14.5% (1,564 theorems), an improvement of 22% over the average. This demonstrates
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Figure 5.7: The impact of different vocabulary thresholds for the various categories of
identifiers. A smaller threshold means the vocabulary is larger.

that the scale of the differences in which theorems model-based tools can prove as

a result of nondeterministic training variance is much larger than the scale of the

differences in how many they prove. Thus, the variance from training nondeterminism

serves as a dimension for model diversity, which can be used to improve proof synthesis,

similarly to the approach taken by Diva [59].

5.4.7 Hyperparameters

As discussed in Section 5.3.1, each of the identifier types we add has a vocabulary

of the most common identifiers of that type, giving a fixed encoding of those identifiers

in addition to the subword encoding. We count the occurrences of the identifiers in

the training set to determine which identifiers occur more than a specified threshold,

and then only include those identifiers in our vocabulary. For example, if we have a
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threshold of 100, then all the identifiers that occur at least 100 times in the training

set will be included in the vocabulary. That threshold is a hyperparameter that we

can vary for each type of identifier, and it determines the size of the vocabulary.

Figure 5.7 shows the performance impact of different values of that hyperparameter

for different identifiers. As you can see the performance of various vocabulary sizes for

global definitions, local variables, and type constructors are all fairly jagged, though

they all peak at around 200 occurrences, which we set as the default in the rest of our

experiments.

It is interesting to note that, while the thresholds which produce the best results

are the same for the different identifier categories, this results in drastically different

vocabulary sizes: 427 global definitions meet the threshold, but only 135 local variables

and 26 type constructors do. This justifies our decision to use a fixed occurrence

threshold to pick vocabulary rather than using the n most common identifiers from

each category.

However, there are signs that our method of picking vocabulary to index could be

improved. Sometimes, adding identifiers with fewer occurrences, such as the global

definitions with between 180 and 200 occurrences, helps; while adding those with more

occurrences, such as the global definitions with between 200 and 220 occurrences,

hurts. This suggests that the number of occurrences does not monotonically predict

the usefulness of indexing a particular identifier, even though it is the most common

approach. Future systems should investigate new metrics to pick vocabulary for

indexing. Finally, these experiments indicate that the model — and therefore the

proof-search tool — is sensitive to small changes in hyperparameters, similar to how

model-based tool performance varies greatly from nondeterminism at the hardware

level in model training.

The subword encoding we use also has several hyperparameters which can be

varied; principle among these is the number of byte-pair merges, which determines
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the size of the subword vocabulary. Figure 5.7d shows the effect of different subword

vocabulary sizes on success rate. The default byte-pair merge threshold of 4,096 is

represented as the the highest point on the graph.

5.5 Discussion

We believe that it is prudent to broaden the discourse around machine learning

for proofs to consider not just the tool produced, but also the development processes

in building these tools. It is for this reason that we step back and discuss our

experiences, centering challenges that we encountered in three areas: the feedback

cycle, reproducibility, debugging.

Feedback Cycle The feedback cycle for developing Passport was slow. Every time

we changed an encoding, we had to retrain the model, a process that took around two

days. Mistakes in the code or in the training parameters would often not manifest until

evaluation, at which point we would need to retrain once more. This slow feedback

cycle quickly added up, so that even a small change could take weeks.

In traditional supervised learning, training dominates development time, as evalu-

ating a model means running it just once on the test set. However, in the context

of proof search, evaluation on a large benchmark set often takes as many or more

computational resources as training, though it is usually more parallelizable across

machines.

In the machine-learning literature, techniques have been proposed to make training

faster [163, 120, 167, 124], which could be directly applied in proof search. And more

tooling like data trackers [21], data validation, and static types can help catch bugs

sooner, resulting in fewer training runs needed during development. Finally, some

work in combining multiple models [59] has shown an ability to speed up proof search,

and other search optimizations could also shorten that part of the feedback cycle.
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Reproducibility As discussed and measured in our evaluation (Section 5.4.6),

many current learning frameworks and APIs behave nondeterministically, resulting in

nondeterministic variance in our end-to-end proof results. Much of the nondeterminism

we encountered is difficult but possible to control, when it stems from hardware

differences, random seeds, or OS-level file ordering. However, even when controlling

for those factors and all documented nondeterminism, we found our model training

was still nondeterministic. During the course of our development, we discovered some

PyTorch APIs that were documented as deterministic behaved nondeterministically;

we reported that bug, and the developers marked it as high-priority. 3

A recent paper found this variance in performance across identical training runs to

be pervasive in an evaluation of six popular neural networks on three datasets [159].

This paper found that very few of the researchers or practitioners surveyed in were

aware of possible nondeterminism in these systems. We recommend that future

researchers using machine-learning for proof search document the hardware and

software used to train, and report some measure of the variance in their models’

results.

Debugging The debugging of systems that mix machine learning and symbolic

manipulation, such as Passport, inherits the challenges of both. Instead of failing to

compile or throwing a runtime error, bugs in Passport often manifested solely as drops

in evaluation numbers. It was challenging to identify whether these drops were caused

by bugs to begin with, let alone in which part of the system the bug occurred when

there was one.

We are unable to find any work on debugging machine learning systems outside

of (potentially very useful) folk knowledge encoded in blog posts4 and other informal

3https://github.com/pytorch/pytorch/issues/75240

4http://karpathy.github.io/2019/04/25/recipe/
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sources. Perhaps a more formal exploration of debugging machine learning systems is

warranted. Both better practices [163] and techniques for improved stability [128] may

improve the debugging experience. We suspect that improvements to the challenges

surrounding the feedback cycle and reproducibility will be not just helpful for but in

fact essential to improving debugging, as many debugging difficulties are consequences

of these challenges.

Other Difficulties These were only a few of the difficulties we faced as researchers

applying machine learning to proof search. These systems are also known to have poor

modularity [182] (modifying one component can significantly affect the performance

of others); poor explainability [76, 14, 71, 118] (trained models do not lend themselves

to high-level interpretation); and large hardware costs [85] (expensive hardware is

required to train these models, limiting who can develop them, and often requiring

the use of shared clusters which can slow development).

None of these weaknesses are shared by purely symbolic approaches to proof tasks

such as proof repair [172], or first-order theorem proving [49]. However, current work

indicates that tools using these machine learning models can sometimes overcome

limitations that current existing purely symbolic tools cannot [62], especially when

the solution space is large.

5.6 Contributions

Our Passport approach enriches a model used for proof synthesis with three different

identifier encoding mechanisms: category vocabulary indexing, subword sequence

modeling, and path elaboration. We empirically demonstrate that each encoding

mechanism improves proof-synthesis performance on the CoqGym benchmark suite.

Furthermore, we measured the impact of adding information for each individual

category of identifier: global definitions, local variables, and type constructors. Again,

empirically, each category improved performance.
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These results are consistent with our intuition that identifiers matter for proofs, that

the category of an identifier is useful information, and that drawing connections between

identifiers is useful for proof synthesis. Passport automatically proves 12.7% of the

theorems in CoqGym, an improvement of 38% over Tok (an example proof-synthesis

tool), without changing the core architecture beyond the encoding of identifiers.

Combining the new tools developed using the Passport approach with three baseline

tools automatically proves 17.2% of the theorems in CoqGym, an improvement of 45%

over the baseline tools combined. This intuition and these results will help developers

of other tools for program and proof synthesis in other languages beyond Coq, and is

a fruitful step toward better tools for engineering robust and reliable formally verified

software systems.
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CHAPTER 6

BALDUR: WHOLE-PROOF GENERATION AND REPAIR
USING LARGE LANGUAGE MODELS

The work in this chapter was done in collaboration with Markus N. Rabe, Talia

Ringer, and Yuriy Brun during my time as a student researcher at Google and as

a research assistant at UMass. The following is adapted directly from work that is

currently under review [63].

6.1 Introduction

There are two prior promising approaches for automating proof synthesis. The

first is to use hammers, such as Sledgehammer [156] for the Isabelle proof assistant.

Hammers iteratively apply known mathematical facts using heuristics. The second

is to use search-based neural theorem provers, such as DeepHOL [13], GPT-f [161],

TacticZero [218], Lisa [100], Evariste [112], Diva [59], TacTok [62], and ASTactic [223].

Given a partial proof and the current proof state (which consists of the current goal

to prove and the list of known assumptions), these tools use neural networks to

predict the next individual proof step. They use the proof assistant to evaluate the

proposed next proof steps, which returns a new set of proof states. Neural theorem

provers rely on diverse neural architectures, such as Wavenet [13, 204], graph neural

networks [154], short long-term memory models [59], and language models with the

transformer architecture [161, 82].

In this work, we propose Baldur, a different, simpler approach to proof synthesis.

We show that using large language models (LLMs), fine-tuned on proofs, can produce
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entire proofs for theorems. LLMs are scaled-up transformer models trained on a

large amount of text data, including natural language and code, that have proven

to be remarkably effective across a wide variety of applications, including question

answering, and text and code generation [28, 43]. Here, we show their remarkable

effectiveness for whole proof generation.

The main contributions of our work are:

• We develop Baldur, a novel method that generates whole formal proofs using

LLMs, without using hammers or computationally expensive search.

• We define a proof repair task and demonstrate that repairing incorrectly

generated proofs with LLMs further improves Baldur’s proving power when

the LLM is given access to the proof assistant’s error messages.

• We demonstrate empirically on a large benchmark that Baldur, when com-

bined with prior techniques, significantly improves the state of the art for

theorem proving.

We design Baldur to be able to work with any LLM internally, but we evaluate our

implementation using two versions of Minerva [123], one with 8 billion parameters and

another with 62 billion parameters. By contrast, existing tools that use (L)LMs for

theorem proving, either predict individual proof steps [82, 100, 98], or rely on few-shot

prompting and require the existence of natural language proofs as hints [99].

We evaluate Baldur on the PISA dataset [100] of Isabelle/HOL theorems and their

proofs used in recent state-of-the-art Isabelle/HOL proof synthesis evaluations [100,

98]. The dataset consists of 183K theorems, of which we use 6,336 for measuring

effectiveness. Our evaluation answers the following research questions:

RQ1: How effective are LLMs at generating whole proofs?

LLMs outperform small-model-driven search-based methods. Baldur
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(without repair) is able to generate whole proofs for 47.9% of the theorems

completely automatically, whereas search-based approaches prove 39.0% [98].

RQ2: Can LLMs be used to repair proofs?

LLMs can repair proofs, including their own erroneous proof attempts.

Baldur proves an additional 1.5% of the theorems when given access to a previous

erroneous proof attempt and the error messages produced by the proof assistant,

even when controlling for the computational cost of the additional inference.

The error message is crucial for this improvement.

RQ3: Can LLMs benefit from using the context of the theorem?

In-context learning is remarkably effective for LLM-based theorem

proving. With context, Baldur proves 47.5% of the theorems, but only 40.7%

without context for the same model size.

RQ4: Does the size of the LLM affect proof synthesis effectiveness?

Larger LLMs do perform better, suggesting that our approach will continue

to improve with further developments in LLM research.

RQ5: How do LLMs compare to other state-of-the-art proof generation methods?

Baldur complements state-of-the-art approaches by proving theorems they do

not. Together with Thor [98], a tool that combines a learned model, search,

and a hammer, Baldur can prove 65.7% of the theorems, whereas Thor alone

proves 57.0%. These findings suggest that LLM- and search-based methods’

ideas complement each other and can work together to further improve the

automation of formal verification. An ensemble of 10 different fine-tuned Baldur

models proves 58.0%.

By leveraging LLMs, Baldur simplifies the proof synthesis pipeline, greatly reducing

the complexity and cost of the fine-grained interaction between the prediction model
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and the proof assistant that search-based methods require. This reduction enables

us to leverage the power of LLMs, which would be prohibitively computationally

expensive if synthesis required as many LLM queries as search-based methods. Further,

those calls would require re-encoding with each step the additional information the

LLM might need, whereas our approach allows us to make a single call and process

the context only once, sampling multiple proofs of multiple proof steps, at once.1

Overall, our study strongly suggest that LLMs are a very promising direction of

research for automating formal verification, and identifies several new avenues for

future explorations.

6.2 The Baldur Approach

Prior approaches to proof synthesis employ a neural model to predict the next

proof step given the current proof state. The proof step predictions then guide a search

strategy, such as best-first search or depth-first search. Throughout the search, the

proof assistant needs to check each proof step prediction to determine whether it

is valid. This means that existing proof synthesis tools require a tight interaction

between the neural network and the proof assistant. As we move to using LLMs, this

results in complex systems, as LLMs need to run on specialized hardware (GPUs or

TPUs), while proof assistants run on CPUs.

We explore a simpler, yet effective method: fine-tuning LLMs to generate complete

proofs. This simplification avoids the fine-grained interaction between neural model

and the proof assistant, allowing us to run the jobs of generating proofs and checking

completely separately. Besides reducing complexity, this can also improve efficiency,

because (1) it enables us to use large batch sizes, which can significantly improve

hardware utilization during inference (cf. [162]), and (2) when providing additional

1Alternatively path advanced caching strategies in the prediction servers of large language models
could address this problem. This is beyond the scope of our work.
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context to the model, the context now does not have to be reprocessed for each proof

step, but only once per proof.

We fine-tune LLMs on proof data to generate entire proofs and explore the impact

of giving the LLMs additional information. Our approach and implementation include

the following:

• We fine-tune an LLM to generate an entire proof given only the theorem statement.

We call this model the proof generation model (Section 6.2.1).

• We provide a model a proof attempt that did not check along with the corresponding

error message from the proof assistant so that the model may attempt to find a

better proof. We call this model the proof repair model (Section 6.2.2).

• We provide text from the same theory file that the problem was taken from. We

add only the lines from the theory file that immediately precede the theorem we

want to prove. We call this added information the theory file context and we add it

to the proof generation model (Section 6.2.3).

• The LLM that we fine-tune at the core of all of this is Minerva [123], which is pre-

trained on a mathematics corpus. We describe our Baldur-specific implementation

details for how we use this model (Section 6.2.4).

These fine-tuned LLMs and their interaction with the Isabelle proof assistant make

up our tool Baldur. This section details the Baldur approach, which includes creating

training datasets and leveraging LLMs to generate and repair proofs.

6.2.1 Proof Generation

Existing proof generation methods using neural models generate the proof one

step at a time. In contrast, our approach generates the entire proof, as illustrated

with a single example in Figure 6.1. We use only the theorem statement as input to

our proof generation model. We then sample a proof attempt from this model and

perform proof checking using Isabelle. If Isabelle accepts the proof attempt without

an error, then we have proven the theorem. Otherwise, we can try sampling another
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Proof Generation Model

 <THEOREM> Theorem Statement <PROOF>

Isabelle
(Proof Assistant)

No error Error

Success

  Candidate Proof  

Failure

Input: 

Figure 6.1: An example of using the proof generation model to generate a proof.

proof attempt from the proof generation model. Explicitly, the input and output of

our proof generation model is as follows:

• Input: theorem statement.

• Output: candidate proof.

Example. To illustrate the power of the proof generation approach in our tool

Baldur, we first consider, as an example, the theorem fun_sum_commute.

lemma fun_sum_commute:

assumes "f 0 = 0" and "∧x y. f (x + y) = f x + f y"

shows "f (sum g A) = (Σa∈A. f (g a))"

The theorem states that for an additive function f where f(0) = 0, and an arbitrary

function g, applying f on the sum of the set resulting from applying g on each element

in a given set is equal to the sum of applying g followed by f to each element in

that set. In this context, it is also assumed that the sum over an infinite set is zero.

This theorem is from a project in the Archive of Formal Proofs called Polynomials,

specifically in the file Utils.thy.

The human-written proof distinguishes between two cases: when the set is finite

and when it is not. Induction is used for the finite set case.

proof (cases "finite A")

case True
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thus ?thesis

proof (induct A)

case empty

thus ?case by (simp add: assms(1))

next

case step: (insert a A)

show ?case by (simp add:

sum.insert[OF step(1) step(2)]

assms(2)

step(3))

qed

next

case False

thus ?thesis by (simp add: assms(1))

qed

If we were to derive a training example from this example, the input would be

theorem statement and the target would be this human-written proof.

Our tool Baldur, using the proof generation model, is able to generate the following

correct proof for this statement.

by (induct A rule: infinite_finite_induct)

(simp_all add: assms)

Baldur recognizes that induction is necessary and applies a special induction

rule called infinite_finite_induct, following the same overarching approach as

the human-written proof, but much more succinctly. It is interesting to note that

Sledgehammer, the hammer for Isabelle, cannot prove this theorem by default, as it

requires induction.

Training Data Creation. To train the proof generation model, we construct a

new proof generation dataset. Existing datasets for training models in neural theorem

provers contain examples of individual proof steps. Each training example includes,

at minimum, the proof state (the input) and the next proof step to apply (the target).

Given a dataset that contains individual proof steps, we want to create a new dataset

so that we can train models to predict entire proofs at once. So we extract the

proof steps of each theorem from the dataset and concatenate them to reconstruct
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the original proofs. We use this data to generate training examples for the proof

generation model, where the input consists of the theorem statement and the target

consists of the proof.

In particular, this means that we drop the proof states from the dataset, which

make up most of the text in the dataset. We argue that for Isabelle proofs this is not

necessarily a problem, as Isabelle uses a declarative proof language that is designed to

be human-readable. This is in contrast to other proof assistants, such as Coq, where

the proofs are typically written in a procedural style that is not easy to interpret for

humans without using the proof assistant to generate the intermediate proof states.

Inference. We fine-tune an LLM on our data to predict the entire proof given only

a theorem statement. To synthesize a proof using the fine-tuned LLM, we provide

a potentially unseen theorem statement and sample a fixed number of sequences

(typically 16 or 64) from the language model. We tune the sampling temperature from

a small set (between 0.0 and 1.4 in increments of 0.2), which is a multiplicative factor

on the log probabilities of the distribution of tokens sampled in each step.

Proof checking. After sampling proofs from the model, we check all of them with

the proof assistant. This means that we first load the context in which the theorem

was originally proven and then replace the original proof of the theorem with the one

we sampled from the model. If Isabelle accepts any of the sampled proofs, we report

the theorem as proven.

6.2.2 Proof Repair

If a proof is not accepted, Isabelle returns an error message that is intended to

help humans with debugging their proof script. Existing proof generation methods,

however, have no way to leverage error messages.
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Proof Repair Model

 <THEOREM> Theorem Statement 
<INCORRECT_PROOF> Incorrect Proof 
<ERROR> Error Message <PROOF>

Isabelle
(Proof Assistant)

No error Error

Success

  Candidate Proof  

Failure

Input: 

Figure 6.2: An example of using the proof repair model to repair an incorrect proof.

Building off our proof generation approach, we explore the use of error messages to

improve neural theorem provers by developing a proof repair approach. Starting with

just the problem statement, we apply the proof generation model from Section 6.2.1 to

sample a proof attempt. If Isabelle accepts the proof attempt, we can stop. Otherwise,

we use the error message returned by the proof checker and the incorrect proof attempt

to construct an example to serve as input to the proof repair model. As depicted in

Figure 6.2, we use the theorem statement, the incorrect proof, and the error message

as input to our proof repair model. We then sample the proof attempt from this

model, and perform proof checking in the same way as the proof generation approach.

Explicitly, the input and output of our proof repair approach pipeline are as follows:

• Input: theorem statement, incorrect proof, error message.

• Output: candidate proof.

Example Starting from the theorem fun_sum_commute, we illustrate an example of

the proof repair approach in our tool Baldur. We apply the proof generation model to

obtain more proof attempts. The following is a proof attempt generated by Baldur,

which fails in the proof checker.
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Proof
Generation

Model

Isabelle
(Proof Assistant)

  <THEOREM> Theorem Statement 
<INCORRECT_PROOF> Candidate Proof 

<ERROR> Error Message <PROOF>

No error

Proof Repair Model
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 <THEOREM> Theorem Statement  <PROOF>

Proof Generation Model
Training Example

Error

 Ground Truth Proof 

Ground Truth Proof 

No 
example

  Candidate Proof  

  Error Message  

Input: Output:

Input: Output:

Figure 6.3: Training data creation for the proof repair model.

proof (induct A)

case (insert x A)

thus ?case

by (simp add: assms(2))

qed simp

Baldur attempts to apply an induction, but fails to first break down the proof into

two cases (finite vs. infinite set). Isabelle returns the following error message:

Step error: Unable to figure out induct rule

At command "proof" (line 1)

The error message details where the error occurs (line 1) and that the issue is

regarding the induct rule. With these strings as input, using the proof repair model,

Baldur can attempt to generate a correct proof for this statement. If we want to

instead derive a proof repair training example from these strings, we concatenate the

theorem statement, the failed proof attempt, and the error message to serve as the

input, and we use the correct human-written proof (recall from previous section) as

the target.
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Training Data Creation. To train the proof repair model, we need to generate a

proof repair training set. Figure 6.3 details the training data creation process. Using

the proof generation model, we sample one proof with temperature 0 for each problem

in the original training set used to train the proof generation model. Using the proof

assistant, we record all failed proofs and their error messages. We then proceed to

construct the new proof repair training set. For each original training example, we

concatenate the theorem statement, the (incorrect) candidate proof generated by the

proof generation model, and the corresponding error message to obtain the input

sequence of the new training example. For the target sequence, we reuse the ground

truth proof from the original training example. We fine-tune the pretrained LLM on

the proof repair training set to obtain the proof repair model.

6.2.3 Adding Context

LLMs possess impressive in-context learning abilities (cf. [28, 43]) that allow them

to flexibly use information that is provided as part of the input sequence (and, in

fact, as part of their own output [151, 213]). In order to explore to what extent

in-context learning can help in the theorem proving domain, we extend their inputs

with potentially helpful context. Adding to our proof generation approach, we use

the theory file contexts (the lines preceding the theorem statement) as input to our

proof generation model with context. Explicitly, the input and output of our proof

generation model with context is as follows:

• Input: theory file context and theorem statement.

• Output: candidate proof.

Example. Continuing the example, the theory file context directly preceding

fun_sum_commute is the following theorem statement and its associated proof.

lemma additive_implies_homogenous:

assumes "∧x y. f (x + y) = f x +
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((f (y::’a::monoid_add))::’b::cancel_comm_monoid_add)"

shows "f 0 = 0"

proof -

have "f (0 + 0) = f 0 + f 0" by (rule assms)

hence "f 0 = f 0 + f 0" by simp

thus "f 0 = 0" by simp

qed

The proof generation model with context in Baldur can leverage this additional

information. Strings that appear in the theorem statement for fun_sum_commute,

such as "f 0 = 0", appear again in this context, and so the additional information

surrounding them could help the model make better predictions.

Training Data Creation. We add the lines of the theory file that precede the

theorem statement to serve as additional context. This means that context can include

statements, such as the previous theorems, definitions, proofs, and even natural

language comments. To make use of the available input length of LLMs, we first add

up to 50 preceding statements from the same theory file. During training, we first

tokenize all these statements, and then we truncate the left of the sequence to fit the

input length.

Premise Selection Many proofs make frequent use of definitions and previously

proven statements, also known as premises. Some neural theorem provers, such as

HOList [13], focus entirely on the problem of selecting the right set of premises, which

has been shown to be quite successful in theorem proving.

Premise selection is clearly similar to the addition of context in some aspects, but

we want to emphasize some key differences: (1) Adding context is an extremely simple

technique that only requires rudimentary text processing, (2) by adding the preceding

lines of the theory file, the model can only observe a small fraction of the available

premises, (3) most of the added context consists of proofs.
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6.2.4 Large Language Model

We use Minerva [123], a large language model pretrained on a mathematics

corpus based on the PaLM [43] large language model. Specifically, we use the 8 billion

parameter model and the 62 billion parameter model. The Minerva architecture follows

the original Transformer architecture [206], but has some noteworthy differences. It

is a decoder-only transformer with maximum sequence length of 2,048 tokens. The

model uses

• rotary position encodings [193] instead of sinusoidal absolute position embed-

dings,

• parallel layers [23], which compute the feed forward layer and the attention layer

in parallel and add up their results instead of computing them in sequence, and

• multi-query attention, which uses a single key-value pair per token per layer for

faster decoding [187].

As this model is not a contribution of this work, we refer the reader to prior work for

lower-level details on the Minerva architecture [43].

Baldur-specific implementation details The proof generation task naturally

consists of an input, which is the theorem statement (potentially augmented with

additional information), and the output (target), which is the proof for the theorem.

To work with the decoder-only model, we concatenate the inputs and targets, but the

loss is only computed over the target during fine-tuning. The inputs use bidirectional

attention while the targets use causal attention as in PrefixLM [166].

As the transformer has a maximum context length of 2048, we pad the sequences

with zeros if they are too short, and we need to truncate them if they are too long.

Inputs to the model are truncated to the maximum input length by dropping tokens

on the left. The rationale for dropping tokens on the left is that the additional context
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is given before the theorem statement, and can be truncated more safely than the

theorem statement itself. Similarly, targets (i.e. the proof to generate) are truncated

on the right to the maximum target length.

We used a maximum input length of 1536 and a maximum target length of 512 in

all experiments but the repair study, which used 1024 and 1024 instead. We use a

drop-out rate of 0.1 for both generation and repair models to address overfitting.

During sampling from the language model we restrict the choice of the next token

to the 40 tokens with the highest score, also called top-K sampling [58]. We sample

sequences with a maximal length of 256 tokens. The model was trained to generate

up to 512 tokens, but since most successful proofs are relatively short, this limitation

has little impact on the proof rate while saving some compute.

We use a batch size of 32, and fine-tune for up to 100,000 steps, but we observed

that the model begins to overfit to the training set after 50,000 to 70,000 steps. For

inference, we selected checkpoints from just before the model started to overfit.

6.3 Evaluation

In this section we present several experiments and discuss the following research

questions:

RQ1: How effective are LLMs at generating whole proofs?

RQ2: Can LLMs be used to repair proofs?

RQ3: Can LLMs benefit from using the context of the theorem?

RQ4: Does the size of the LLM affect proof synthesis effectiveness?

RQ5: How do LLMs compare to other SOTA proof generation methods?
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Model 16 samples 64 samples
Baldur 8b generate 34.8% 40.7%
Baldur 8b generate + repair 36.3%∗ —
Baldur 8b w/ context 40.9% 47.5%
Baldur 62b w/ context 42.2% 47.9%
Baldur 8b w/ context ∪ Thor — 65.7%

Table 6.1: Proof rate of different models.
∗The repair approach uses half the number of samples, and then one repair attempt
for each sample.

To answer these questions, we trained several language models using the approach

from Section 6.2, and evaluated them on the PISA benchmark (see Section 6.3.2).

Our main results can be found in Table 6.1 and in Figure 6.4.

6.3.1 Experimental Setup

Machine specification For most of the training runs of the 8b model, we used

64 TPUv3 cores distributed across 8 hosts. For training the 62b model, we used 256

TPUv3 cores distributed across 32 hosts. For most inference jobs, we used 32 inference

servers using 8 TPUv3 cores each.

Proof Checker We use the PISA codebase [100] under a BSD 3-clause license,

which allows us to interact with the Isabelle proof assistant to check proofs. To run

large jobs of the proof checker, we package it in a Docker container and run it on GCP.

We extended the proof checker to discard any proofs that contain “sorry” or “oops”,

which are keywords that skip proofs, but otherwise pass the proof checker. We apply

a timeout of 10 seconds to each proof step in the proof checker.

6.3.2 PISA Benchmark

We derive our datasets from the PISA dataset [100], which includes the Is-

abelle/HOL repository under a BSD-style license and the Archive of Formal Proofs

(AFP) from October 2021. The AFP is a large collection of Isabelle/HOL proof
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developments. PISA includes the core higher-order logic library of Isabelle, as well as

a diverse library of proofs formalised with Isabelle. This includes mathematics proofs

and verification of software and hardware systems. The PISA dataset comes with a

95%/1%/4% split of theorems for the training/validation/test sets, which we follow in

this work as well.

For the test set, prior work randomly chose 3,000 theorems from the test set to

report their results on. We report our results on the complete test set. Some entries

in the dataset are not proper theorems (starting with the keyword “lemmas” instead

of “lemma”), which we filter out, as did prior work. This leaves us with a total of

6,336 theorems in our test set (originally 6,633 theorems).

It is worth noting that, as with any LLM-based work, there is the potential for

proofs from the test set to have leaked into the LLM pretraining data. While the

pretraining data for the Minerva LLM at the base of our models does not include the

PISA dataset, it does contain code that may include some Isabelle/HOL proofs found

in PISA. This should be kept in mind when interpreting the results.

6.3.3 RQ1: How effective are LLMs at generating whole proofs?

We aligned our methodology with the methodology described in the Thor paper [98]

to enable a comparison between various methods. The Thor paper includes informative

baselines for the PISA benchmark, including Sledgehammer, a method relying on

heuristic search, and a language model approach using search.

Sledgehammer and the search-based language model approach achieve 25.6% and

39.0%, respectively. In comparison, our naive proof generation approach with an 8b

language model achieves a proof rate of 34.8% with 16 samples and of 40.7% with 64

samples. The comparison is even more favorable, if we consider the other variants of

Baldur, which achieve a proof rate of up to 47.9%.
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Figure 6.4: Ratio of theorems proven vs inference cost.

We observe that the comparison depends on the computational cost that we spend

during inference. While comparing the cost required for the two methods is involved,

one measure we can use is the amount of computational resources reserved during

proof generation. For a single proof, the language model approach using search [98]

requires a TPUv3 with 8 cores for 216 seconds,2 while our methodology also requires a

TPUv3 with 8 cores for around 35 seconds to sample 64 proofs – a difference of factor

6. This argument disregards the time spent on proof checking, which is intentional:

proof checking is done on CPUs, which is cheap compared to time spent on TPUs. So,

disentangling these two workloads can lead to significant reductions in computational

cost.

RA1: These results demonstrate that LLMs can generate full proofs just as

well as smaller language models augmented with a search strategy.

2Section 4.1 in [98] states that 1000 problems take around 60 TPU hours.
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6.3.4 RQ2: Can LLMs be used to repair proofs?

We trained models for proof generation and repair as detailed in Section 6.2. If we

sample from the proof generation model once with temperature 0, collect the failed

proofs, and then repair once with temperature 0, we generate an additional 266 or

4.2% correct proofs. However, in this comparison, the generate + repair approach uses

two samples, while the generate approach has only one sample. For a fair comparison,

we have to compare the repair approach to the generate approach with additional

inference attempts.

In Figure 6.4, we plot the proof success rate of the generate approach and the repair

approach against the number of proof attempts. Note that the number of samples

for the repair approach does not perfectly align with the number of samples for the

generate approach. This is because the generate approach tends to produce multiple

copies of the same proofs, which we deduplicate before repair, and only generate one

repair attempt per failed proof attempt. For each of the number of samples of the

generate approach, we tune the temperature in the range of 0.0 to 1.4 in increments

of 0.2, and we always use temperature 0 for the repair approach.

We observe that the repair approach consistently outperforms the plain proof

generation model, which only uses the theorem statement as input. However, this does

not yet answer the question of where those gains from. To shed some light on this

question, we trained another repair model that is given the same information, except

that it does not see the error message. Plotting the proof success rate of this model

in Figure 6.4 shows us that while it is able to prove additional theorems, it does not

surpass the performance of the generate model when normalized for inference cost.

This suggests that the information in the error message is crucial for the observed

gains of the repair approach.
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RA2: LLMs can be used to repair proofs, including their own failed proof

attempts, and this can boost overall proving power.

6.3.5 RQ3: Can LLMs benefit from using the context of the theorem?

In Table 6.1, we report the impact of adding theory file context to our plain

generation approach. At 64 samples, the proof rate increases from 40.7% to 47.5% for

the same model size. In Figure 6.5, we plot the proof success rate of the generation

model with and without context against the number of proof attempts. We observe

that the proof generation models with context consistently outperform the plain

generation model.

To get a better understanding of where these gains are coming from, we inspected

5 randomly sampled examples that the model using context was able to solve, but the

plain generation model could not. Appendix B displays these examples and further

details the process we used to select them.

While the sample size is not large enough to make quantitative judgements, it

appears that the model frequently makes use of similar proofs in the context. We

observe that for 3 of the 5 examples (see Appendices B.1, B.3, B.5) the model readily

copies and adapts proofs that exist in its context. For another example (see

Appendix B.2), the model made use of a premise that did not occur in its context,

which happened to also be used in the ground truth proof, but with a different tactic.

In the final example (see Appendix B.4), the model found a simpler proof that did

not occur like this in the context. This suggests that the addition of context does not

play the same role as premise selection.

RA3: LLMs can benefit from the context in which the theorem occurred in the

theory file, both quantitatively by increasing proving power, and qualitatively

by copying and adapting nearby proofs.
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Figure 6.5: Ratio of theorems proven vs inference cost for models with different sizes
and temperatures.

6.3.6 RQ4: Does the size of the LLM affect proof synthesis effectiveness?

We fine-tuned and evaluated the 62b version of Minerva on the proof generation

task with context. In Table 6.1, we report that for 16 samples, the large model can

prove an additional 1.3% over the 8b model, resulting in a total proof rate of 42.2%.

For 64 samples, the large model can prove an additional 0.4% over the 8b model,

resulting in a total proof rate of 47.9%.

In Figure 6.5, we plot the proof success rate of the generation model with context

for the 8b model and the 62b model against the number of proof attempts. We observe

that the 62b proof generation model with context outperforms the 8b proof generation

model with context. One caveat here is that we were not able to tune hyperparameters

as well due to the higher cost of these experiments, so an optimally tuned 62b model

may perform even better.

RA4: Theorem proving performance improves somewhat with the scale of the

language model.
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AFP Topic Test set Baldur Thor
Computer Science 4,019 50.0% 57.5%
Logic 966 51.6% 53.6%
Mathematics 2,200 41.9% 50.5%
Tools 102 53.9% 51.8%

Table 6.2: Proof rate by AFP topic classification, and the number of theorems in each
category. While there are only 6336 theorems in total in the test set, the projects
these theorems appear in can fall into multiple topics.

6.3.7 RQ5: How do LLMs compare to other SOTA proof generation

methods?

While comparisons across different neural theorem provers are hard in general,

we can compare to Thor [98], one of the strongest approaches available. Thor also

relies on language models, but uses smaller models (700m parameters) and uses a

different kind of proof step as its prediction target. Instead of using the human ground

truth proofs, Thor generates a new training set and aims to solve each proof step by

generating a declarative statement, which is then solved using Sledgehammer. That is,

Thor disentangles the planning stage of the next proof step, which is the specification

of the target state (using a “have” statement) and premise selection, which is done by

Sledgehammer. This enables Thor to solve a total of 57% of the problems.

In contrast, our approach solves up to 47.9% of the problems. While there is a

significant gap, we argue that the means by which the two techniques improve over

plain language modeling are largely orthogonal. In Table 6.1, we report a large gain

from 57% to 65.7% when we consider the union of Baldur and Thor, which supports

this hypothesis.

We compare the proof rate of Baldur and Thor on different types of problems. The

AFP is indexed by topic and there are four overarching topics: computer science, logic,

mathematics, and tools. The authors of individual proof developments self-identity

which topics their projects fall into. We use these provided topic labels to determine
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the categories of problems from our test that Baldur and Thor can most effectively

solve. Table 6.2 shows the breakdown of which theorems in the test set fall into which

topics and Baldur’s and Thor’s proof success rates on these theorems. In terms of

relative performance, Baldur performs better than Thor on problems related to tools

and similarly on problems related to logic. We observe that Baldur’s performance

on mathematics and computer science is less than that of Thor’s performance. For

mathematics proofs, we hypothesize that premise selection may be particularly useful,

and Thor’s use of Sledgehammer is likely what gives it a leg up on solving these

mathematics problems.

RA5: Our findings suggest that LLM-based methods and search-based methods

are complementary, and together can lead to large gains in proving power.

6.4 Contributions

This work is the first to fine-tune large language models to generate entire proofs

of theorems without the need for proof search or hammers. We demonstrate that

this approach is more effective and more efficient than prior methods that use one-

step-at-a-time search-based generation, and that it is complementary to existing

search-based and hammer-based approaches. Together, Baldur and prior tools can

fully automatically synthesize proofs for 65.7% of the theorems in a large Isabelle/HOL

benchmark, establishing a new state of the art. We further demonstrate that generate-

and-repair improves proof synthesis when the language model is given access to the

error messages produced by erroneous proofs.

This work opens new avenues of research into (1) using LLMs to automate theorem

proving and simplify formal verification of software properties, (2) repair approaches,

both for proofs and, potentially, more traditional automated program repair tasks,

and (3) the use of context (e.g., failed synthesis attempts and error messages) in proof
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generation. Our very encouraging results suggest a bright future for automated proof

generation and repair using LLMs.
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CHAPTER 7

RELATED WORK

In this chapter, I place my research in the context of related work. The following is

adapted directly from the related work sections within the publications and preprints

corresponding to the prior chapters (refer to the start of those chapters to see the

names of my collaborators).

7.1 Interactive Theorem Provers (ITPs)

ITPs, such as Coq [199], Agda [209], Lean [117], Dafny [119], F* [197], Liquid

Haskel [207], Mizar [202], Isabelle [148], HOL4 [188], and HOL Light [84] are semi-

automated systems for formally proving theorems. I focus on Coq and Isabelle, but

my techniques applicable to other ITPs. Coq has been used to build and verify a

C compiler [121], an operating system kernel [74], an x86 model [137], a file sys-

tem [93], distributed protocols [185] and systems [217], a browser [97], and network

controllers [75].

7.2 Automated Theorem Provers (ATPs)

ATPs, such as Z3 [52], Vampire [110], CVC4 [16], and E Prover [181], use auto-

mated methods to validate conjectures. They are used in practice to efficiently solve

problems [152]. However, ATPs are based on first-order logic, which limits their ability

to express more complex theorems in a higher-order logic.
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7.3 Automation for Proof Systems

Heuristic-based search can partially automate ITPs [29, 30, 24, 5]. Hammers

use external ATPs to automatically find proofs for ITPs [49]. Hammers, such as

CoqHammer [49] and Sledgehammer [156], iteratively use a set of precomputed

mathematical facts to attempt to “hammer” out a proof. While hammers are powerful,

they lack the ability to employ certain tactics, such as induction, preventing them

from proving certain large classes of theorems.

Classical search algorithms, such as A*, can also be used to search for proofs, which

as been done in HOL4 [68]. TacticZero [218] learns not just tactics but also proof

search strategies for end-to-end proof synthesis, rather than relying on a single fixed

proof search strategy. The approach works by way of deep reinforcement learning, and

improves over the previous state of the art on a benchmark for the HOL4 theorem

prover. By contrast, my tools model existing proof scripts, use native tactics, and

prove theorems within the ITP framework.

7.4 Neural Proof Synthesis

Neural proof synthesis tools use a prediction model that, given some information

about a partially written proof, the target theorem being proven, and the current proof

state, predicts a set of next likely proof steps. The methods then use metaheuristic

search [83] to attempt to synthesize a proof. They iterate querying the prediction

model for the likely next steps and, using the proof assistant to get feedback on those

steps and prune non-promising paths, generate a search tree of possible proofs. The

proof assistant also determines when the proof is complete. The tools mostly differ in

the prediction model they use, which are typically learned automatically.

For Coq, ASTactic uses only the proof state [223], TacTok uses the proof state and

the partially written proof script [62], Diva combines the use of many models and also
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uses the proof term [59], and Passport also uses identifier information [180]. These

tools are all evaluated on the CoqGym benchmark suite [223].

Other neural proof synthesis tools for Coq include Proverbot9001 [179], Tacti-

cian [22], Gamepad [92], and ML4PG [109]. The models in these tools do not explicitly

encode the category a particular identifier belongs to, do not encode the path that

an identifier comes from, nor do they apply sub-word tokenization. Passport-style

enhancements may help further improve performance of these tools.

Other neural proof synthesis tools for other proof assistants include TacticToe [69]

for HOL4 and DeepHOL [13, 154] for HOL Light. Prior work has found that hammers

and search-based methods are complementary, each often proving theorems the other

cannot [223, 62, 59]. Thor [98] combines a search-based method with a hammer,

using both a prediction model and Sledgehammer in its search. In contrast, my tool

Baldur uses an LLM to generate an entire proof at once, and then repairs it in a single

attempt.

The most closely related work to my tool Baldur is LISA [100], which fine-tunes a

pretrained language model on a large Isabelle/HOL proof corpus, and uses it inside

of a search procedure to predict proof steps (this work also introduces the PISA

benchmark). GPT-f [161] also combines a generative language model with proof

search to target the MetaMath proof language. A Monte-Carlo tree search approach

outperforms GPT-f in the Lean proof assistant [112].

My tools TacTok, Diva, and Passport model the proof state, and are generalizations

of ASTactic [223], which uses a Tree-LSTM architecture for the proof state. Other

models in this space use sequences [179, 13, 22], other tree architectures [92], and graph

architectures [154, 126] (which demonstrate improvements over tree architectures).

Recent work shows that the choice to encode variable names or not has a significant

impact on the performance of a graph neural network for proof synthesis in HOL on

the HOList benchmark suite [154]. My Passport tool explores this tradeoff at a higher

125



level of granularity, looking at the impacts of including different kinds of variables

and other syntactic information (such as paths), and exploring different tokenization

choices and vocabulary sizes.

7.5 Automated Proof Repair

As demonstrated in the REPLica study, proof engineers continuously perform

proof repair during formal proof development [173]. The effort surrounding the

automation of this task started with symbolic tools for automatic proof repair in the

Coq proof assistant [170]. These tools include Pumpkin Patch, which generates proof

patches when software evolves [174] by learning from a template of a human-written

fix to a similar evolution, and Pumpkin Pi, which repairs the proof term of a broken

proof and then uses a decompiler to generate a proof script [172]. These techniques

have since been integrated into tools for other proof systems [131].

My tool Baldur introduces the proof repair task with error messages. This is a new

machine learning task for formal proofs. Baldur shows that solving this task improves

neural theorem proving performance. My work is among the first to explore proof

repair in a machine learning context, and the first to use error messages for a proof

repair task, and to use repair to improve performance of proof synthesis.

7.6 Software Engineering for Interactive Proof Assistants

My tools can help minimize human effort in formal verification by automatically

synthesizing proofs for some theorems. Other tools that assist humans writing formal

verification proofs can similarly save time, and can be complementary to our work

for theorems they cannot prove fully automatically. iCoq [31, 32], and its parallelized

version PiCoq [155], find failing proof scripts in evolving projects by prioritizing proof

scripts affected by a revision. iCoq tracks fine-grained dependencies between Coq

definitions, propositions, and proof scripts to narrow down the potentially affected
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proof scripts. QuickChick [113], a property-based testing tool for Coq, searches for

counterexamples to executable theorems, helping a programmer gain confidence that

a theorem is correct. Roosterize [147, 145] suggests names for lemmas through using

both syntactic and semantic information found when combining data from multiple

phases of the Coq compiler, including tokens, parse trees, and fully elaborated terms.

Language models can also help automatically format proofs [146] by encoding

spacing information in proof scripts, improving both readability and maintainability.

Mutation analysis is useful for identifying weak specifications when mutating definitions

does not break proofs [33, 96].

There are numerous other tasks that machine learning tools for proofs consider

that may either help users with proof engineering directly, or improve neural theorem

proving performance themselves. For example, PaMpeR [143] predicts proof methods

alongside explanations in Isabelle/HOL. ACL2(ml) [88] generates helper lemmas and

suggests similar theorems in ACL2. Other popular tasks leveraging machine learning

include premise selection and datatype alignment (covered in more detail in the survey

paper, QED at Large [171]).

7.7 Metaheuristic Search

Metaheuristic-search-based software engineering [83] has been used for developing

test suites [135, 210], finding safety violations [4], refactoring [183], project management

and effort estimation [15], and automated program repair [215, 105, 2]. In search, low-

quality fitness functions can lead to low-quality results, such as, for example, incorrect

bug patches [189, 139]. With my tools, the interactive theorem prover provides a

strong assurance that the final produced proof script leads to a correct proof, and

thus, proof script synthesis is particularly well suited for metaheuristic-search-based

methods.
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7.8 Ensemble Learning

Ensemble learning is the generation and combination of multiple models to make

a decision. This is typically used in supervised machine learning tasks [176]. The

idea is that weighing and combining several opinions is better than simply choosing a

single one. When generating a model to be used in an ensemble learning method, the

model should be sufficiently diverse for the ensemble to achieve a desired predictive

performance [53], and the individual model’s predictive performance should be as

high as possible. There are several approaches to generating diverse models, including

input manipulation [35], manipulation of the learning algorithm [127, 27, 133], and

combinations of strategies.

Ensemble learning methods either have dependent models, where the output of

each model affects the generation of the next, or independent models, where each

model is constructed independently from the others [176]. Another way to combine

classifiers is through stacking [55], which uses a classifier to decide which model to

apply to each input. My tool Diva differs from these methods by using independent

models in separate searches of the proof script space since the proof assistant serves

as an oracle for whether the resulting proof scripts are valid.

7.9 Autoformalization

A related problem to neural proof synthesis is autoformalization: the automatic

translation of natural language specifications and proofs into formal, machine-checkable

specifications and proofs. LLMs have shown promise for autoformalization of specifica-

tions, and automatically generated proofs of the resulting autoformalized specifications

have been used to improve a neural theorem prover on a widely used benchmark suite

in Isabelle/HOL [219]. ProofNet [11] introduces a dataset and benchmark suite for aut-

oformalization in Lean, based on undergraduate mathematics, and shows preliminary

promising results autoformalizing proofs on that benchmark using Codex [38] with few-
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shot learning. Autoformalization of both theorems and proofs in Coq shows promise

on a small preliminary benchmark suite [48]. Autoformalization for specification logics

in verification is also promising [81].

The Draft, Sketch, and Prove method (DSP) [99] presents a hybrid between

theorem proving and autoformalization, which, similar to the Baldur approach, makes

use of LLMs for theorem proving. It provides informal proofs as drafts for the LLM

to translate into a formal proof sketch, which is then proven via Sledgehammer. In

contrast, we use fine-tuning for LLMs, do not make use of Sledgehammer, and do not

rely on the availability of natural language proofs.

Pretrained language models can be used to answer natural-language mathematics

questions [150]. Large language models, such as Minerva [123] and PaLM [43], have

been evaluated on natural language mathematics benchmarks, such as GSM8k [45] and

MATH [87]. The ProofNet [11] benchmark suite includes informal proofs alongside

formal proofs as a benchmark.

7.10 Automated Program Repair

The automated program repair field studies the task of taking a program with a

bug, evidenced by one or more failing tests, and automatically producing a modified

version of the program that passes all the tests [116]. Generate-and-validate repair

techniques use search-based techniques or predefined templates to generate many

syntactic candidate patches, validating them against the tests (e.g., GenProg [115],

Prophet [129], AE [214], HDRepair [114], ErrDoc [201], JAID [37], Qlose [51], and

Par [106], ssFix [220], CapGen [216], SimFix [102], Hercules [178], Recoder [229],

among others). Techniques such as DeepFix [79] and ELIXIR [177] use learned models

to predict erroneous program locations, as well as the patches. It is possible to learn how

to repair errors together by learning how to create errors, which can increase the amount

of available training data, but poses an additional challenge of learning to approximate
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making human-like errors [224]. Unfortunately, these automated program repair

techniques often overfit to the available tests and produce patches that, while passing

all the tests, fail to encode the developers’ intent [189, 140, 149, 164]. Improving

the quality of the resulting repairs can be done via improving fault localization

strategies [138, 8, 221, 194, 111, 101, 130], patch generation algorithms (e.g., heuristic-

based [115, 129, 201, 216, 102, 158], constraint-based [2, 105, 211, 78, 134], and learning-

based [40, 79, 177]), and patch validation methodologies [212, 222, 227, 200, 225]. By

contrast, in the theorem proving domain, it is impossible to produce a proof that

appears to prove the theorems, but actually fails to do so, because the theorem prover

acts as an absolute oracle for the correctness of the proof. As a result, it may be

more difficult to produce a proof in the first place, but if techniques in this domain do

produce proofs, they are guaranteed to be correct.

7.11 Language Modeling for Code and Program Synthesis

Language modeling of source code can detect bugs and generate tests [168, 57, 1].

Modeling code with n-grams can help code completion [91, 90]. Modified n-grams can

be used as a cache to capture local dependencies in code [203]. Recent work [103]

demonstrates the benefits of BPE tokenization for code completion, especially in

combination with cache-based models. Other researchers [196] have introduced a

framework for evaluating different design decisions for integrating the structure within

identifiers within a code completion model, and show similar benefits for BPE. VarCLR

explores using contrastive learning to learn which identifiers have similar meanings, in

contrast to simply being related [39]. It does this by mining variable renamings from

GitHub edits, and enables effective use of general purpose language models.

The model beneath Github’s Copilot code auto-complete tool, Codex, is trained

on a large corpus of Github projects, and treats all programs and proofs as text,

regardless of the language [38]. AlphaCode (from DeepMind) and PaLM-Coder (from
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Google) solve a similar tasks [125, 43] Other work from Google [9] showed that large

language models of this kind are promising, but struggle to understand the semantics

of programs.

Applying language models to Coq and HOL4 proof scripts showed that n-gram

models outperform recurrent neural networks [86]. Unlike my tools, this approach did

not consider the proof state or proof term and does not synthesize complete proof

scripts.

Several different models have also been proposed for modeling code, such as AST-

like trees [141], long-term language models [50], and probabilistic grammars [20].

Program synthesis is also widely studied using non-learning based methods [77, 36],

both from types alone [80] and examples and types [153, 64].
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CHAPTER 8

CONCLUSION

8.1 Summary

In this dissertation, I developed various approaches to improve proof synthesis in

Coq and Isabelle. In Chapter 3, I presented TacTok, which is the first proof synthesis

tool to explore modeling proof state and the partially written proof script together. In

Chapter 4, I presented Diva, which is a proof synthesis tool that explores the creation

of diverse models and uses the theorem prover as an oracle for optimally aggregating

model results. In Chapter 5, I presented Passport, which is a proof synthesis tool that

investigates the use of different identifier encoding mechanisms for different categories

of identifiers. In Chapter 6, I presented Baldur, which is the first proof synthesis tool

to fine-tune large language models to generate and repair entire proofs of theorems

without using proof search or hammers.

My tools TacTok, Diva, and Passport improve on CoqHammer and ASTactic to

prove an additional 4.9% of the CoqGym test set. CoqHammer, ASTactic and my

tools for Coq together prove 34.3% of the CoqGym test set. My tool Baldur improves

on Thor to prove an additional 8.7% of the PISA test set. Together, Thor and Baldur

prove 65.7% of the PISA test set.

This dissertation contributes new ideas for improving models of proof synthesis,

and the results support that the improvement is significant. This dissertation also

opens up new avenues of research that warrant continued exploration. By continuing

to improve proof synthesis techniques, we can enable more verification and work

towards a world with more bug-free software.
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8.2 Future Work

This future work section was adapted directly from the discussion section of the

Baldur preprint.

Going forward, there are a few directions that I believe are particularly promising

and important to explore:

1. integrating proof generation and proof repair models into a new learnable proof

search strategy,

2. exploring the collaboration of diverse models at search time,

3. investigating alternative data splits corresponding to different goals, and

4. evaluating techniques across different proof assistants.

8.2.1 Learnable Proof Search

While Baldur’s generate + repair approach to proof synthesis avoids costly proof

search procedures, it also lends itself to a new proof search strategy. The search

strategy would work as follows:

1. use the generation model to sample candidate proofs,

2. use the repair model to attempt to repair those proofs, and

3. continue to use the repair model to repair the repair-model-generated attempts

from (2).

This paves the way for a learnable proof search strategy.

During the development of Baldur, I demonstrated a proof-of-concept of this new

proof search strategy using Baldur’s generation and repair models. I sampled once

using the generation model, repaired the generated sample using the repair model,

and repaired the repair model’s attempt using the repair model. When using both

models, I sampled with temperature 0. So the inference cost in this setup is 3 (1 for

the first generation, 1 for the first repair, and 1 for the second repair).
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The generate + repair approach with inference cost of 2 proves 24.9% of the test

set theorems. With a second repair attempt, it proves an additional 1.3%, for a total

of 26.2%. The generation approach with inference cost of 3 proves 25.4%, which is

0.8% less than the second repair attempt for the same inference cost.

To make this a more viable proof search strategy, future work needs to focus on

generating proof repair training data that better mirrors the required changes for

the subsequent repair attempts. When proof checking, the resulting error message is

for the first occurring error, typically from the first couple of lines of the predicted

proof. So the proof repair model will only learn to address these types of errors. An

alternative approach could be, for example, to take the training examples from the

proof generation model and use the first few lines of the human-written ground truth

proof as a proof prefix. One could then concatenate this proof prefix to the end of the

input. Since it is a decoder-only model, one can simply sample the model’s attempt at

the rest of the proof. If the proof prefix concatenated with the rest of the proof does

not check, then that can serve as a new training example for the proof repair model.

8.2.2 Collaborative Search

With Diva, each diverse model was part of its own tree-search. Even when efficiently

combining the searches such that they interrupted one another, each search and the

predictions from each model still remained separate and independent. A potentially

fruitful avenue of research to explore is having the models collaborate at search time.

One example of a collaboration method could be to have the models vote on their

predictions at each step of the search.

8.2.3 Alternative Data Splits

The benchmarks that I use to evaluate my tools commit to particular data splits

between training data and testing data. It is interesting to note, however, that

different data splits may themselves correspond to different goals, even fixing the same
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evaluation task and metric. Moving forward, it may be useful to consider different

kinds of data splits corresponding to different goals, even fixing the same dataset and

benchmark suite. Here, I consider two different splits: theorem-wise and project-wise.

PISA [100] uses a random theorem-wise split of the theorems appearing the AFP.

This means that for any theorem in the test set, the theorems and (the corresponding

proofs) that appear before or after that theorem may be in the training set. This split

is useful to evaluate since a forward-looking goal of neural theorem prover researchers

is to integrate these tools directly into proof assistants, where they could make use of

the full project context. That project context may include human-written proofs of

nearby theorems that look similar (or even identical) to one another — automatically

repurposing and adapting those proofs can be quite fruitful.

By contrast with PISA, CoqGym [223] uses a project-wise split, where training

and testing data come from entirely different projects. This is useful when the goal is

to help proof engineers who start completely new projects and want an automated

proof synthesis tool to prove as much as it can. A tool that is trained and evaluated

in a setting where it expects that it has seen proofs in a given proof development, as

may happen with a theorem-wise split, may not perform as well in this new setting.

Explicit consideration for the data split and the goals it achieves may help drive neural

theorem proving research even further.

8.2.4 Different Proof Assistants

To make better sense of new strides in neural theorem proving, it makes sense

to evaluate the same techniques across many different proof assistants. But this

remains challenging. Consider once again the problem of data splits: since prover

developments that evaluate on CoqGym, such as TacTok, Diva, and Passport, follow

the same project-wise split as CoqGym, it can be hard to make sense of how those
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developments compare to those trained and evaluated using theorem-wise data splits,

like Baldur.

With Baldur, for example, I used an established benchmark of Isabelle/HOL proofs

to fairly compare Baldur to prior work and to increase the chances that the results

generalize. However, we observed that search-based proof-synthesis tools for other

proof assistants tend to prove a smaller fraction of theorems than we have found in

for Baldur. For example, Diva and CoqHammer together prove 33.8% of the CoqGym

benchmark automatically. This could be a reflection of size and quality of the available

training data or the complexity of the available evaluation data (which, by necessity,

is different from what we use because it involves theorems and proofs in different

languages), or a more fundamental difference in the complexity of synthesizing proofs

in these respective languages.

Future work should allow for direct comparisons by porting the developed tech-

niques across proof assistants. Cross-proof-assistant benchmark suites may help

substantially with this, but still have their limitations. For example, MiniF2F [228]

implements the same benchmark suite for Math Olympiad problems across many

different proof assistants. However, the benchmark does not implement the problems

for Coq. This is because math problems are not evenly represented across proof

assistants, which draw different user communities with different emphases. Thus, fair

comparisons between proof assistants are hard, but we do believe they are necessary.
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APPENDIX A

PASSPORT: CATEGORIES OF IDENTIFIERS

Before we implemented Passport, we manually inspected the proof corpora in

our training dataset, walking through proofs and analyzing the kinds of information

needed to make decisions about which tactic to apply next in a proof. The choice to

include identifiers was a product of realizing how much proof engineers rely on naming

information to reason about these decisions. But the choice of which identifiers to

include was less clear. Consider, for example, local variables: many common local

variable names are used in a variety of contexts which may have little relation with

one another. A variable named x can carry a totally different meaning than the x

from Figure 5.2 in Section 5.2. Without empirical evidence, it was unclear whether

an enriched model could potentially suffer performance degradation from drawing

fallacious connections like this. As a result, experimental data was an important factor

in our selection of which identifiers to include.

Our experiments in Section 5.4 show that all three categories of identifiers help.

In particular, search using the Tok model Passport-enriched with any one of the three

categories of identifiers alone outperforms search using that model with no identifier

information. Furthermore, a search using the Tok model Passport-enriched with all

three categories of identifiers at once outperforms a search using a Passport-enriched

Tok model with just one category of identifiers, for all categories.

The remainder of this Appendix details each of these three categories — global

definitions (Appendix A.1), local variables (Appendix A.1.1), and type constructors
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(Appendix A.2) — and gives intuition for why each of them may be useful for a tactic

prediction model. Finally, Appendix A.3 discusses Passport implementation details.

A.1 Global Definitions

The most straightforward of our categories to include was identifiers referencing

global definitions. These identifiers refer to objects defined globally directly by the

user, using the keywords Definition, Theorem, Inductive, or one of their variants.

Global definitions are generally either an inductive type name, or a name given to

some Gallina term (function, constant value, etc). Crucially, since proof objects

themselves are terms, theorems are global definitions with their names bound to their

proof objects.

In Coq, most code amounts to creating new global definitions, through a variety of

means. The simplest is by writing the term which corresponds to the name explicitly,

and using a vernacular command to bind it to the name, as in Definition n := 5..

This is commonly how the Definition keyword is used, both in defining constant

values and in defining functions. When a definition needs to refer to its own name

within its body, that is done either using a fix in the term, or using the special

vernacular keyword Fixpoint, which is essentially syntactic sugar for the former.

Global definitions can also be defined interactively, using Coq’s tactic system.

For example, the proof script in Figure 5.2 specifies a sequence of tactics which

produce a Gallina term referred to by its identifier posnatMult_comm. In Gallina, this

is indistinguishable from a plain definition — in fact, any term in Coq can be defined

using tactics, though this is most common for proofs of lemmas and theorems.

Finally, inductive types can be created using Coq’s Inductive command. This

command creates a new inductive type or type family, given a set of “type constructors,”

or ways to build objects of the type. When complete, this command defines several
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objects, including the type itself, its type constructors, and recursion and induction

principles for the type. Type constructors are explored in more detail in Appendix A.2.

Encoding the usage of global definitions in terms is extremely useful for predicting

tactics. Often, a particular common identifier will signify that certain lemmas will be

useful. For instance, in the proof context:

n : nat

============================

le (div2 n) n

the presence of the div2 and le identifiers indicates that lemmas involving those opera-

tors will be useful; in fact, the correct next step is to apply a lemma named div2_decr,

which applies to goals of the form le (div2 _)_. Both div2 and le identifiers corre-

spond to global definitions.

A.1.1 Local Variables

Besides global definitions, local variables are the most common type of identifier

in Coq terms. Local variables can be bound to an explicit term, as in a let definition,

but in many cases (function parameters, forall bindings, and existential pairs) are

given only a type binding. This is in contrast to global definitions, which are always

bound directly to terms.

Encoding local variables is often critical to determining the correct next step in a

proof, or even understanding its basic structure. Even when the local variable’s name

is not particularly informative, knowing when local variables repeat is often critical.

For example, consider the following proof context (from VST [6]):

n : nat

============================

n >= div2 n + div2 n

If the n variable were not the same in all three occurrences, this goal would be impos-

sible to prove without more information. However, because the n variable is repeated,

this goal holds by the definition of div2, which is round-down division by two.
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While local variable names often provide useful information, as mentioned above,

common names are often overloaded in their usage. We learned early on that the

possibility of performance regression due to uninformative local variables like x had

concerned the ASTactic authors, and contributed to their decision not to encode

identifiers.1 However, upon closer inspection of the data we determined that even

single-letter identifier names often carry consistent semantic meaning across proofs.

The identifier names hd and tl, for instance, seemed to uniformly refer to the head

and tail of a list; because they carried consistent semantic meaning, these identifiers

were treated similarly within proofs.

Because of these consistencies in naming, we decided to include local variables.

A.2 Type Constructors

Unlike global definitions and local variables, type constructors are not bound on

their own, but are instead defined as part of inductive type definitions. As an example

of how type constructors are defined, Figure A.1 shows the definition of the option

type.

(* Library Coq, directory Init, file Datatypes.v *)

Inductive option1 (A2 : Type) : Type :=

| Some3 : A → option A

| None3 : option A

Figure A.1: The polymorphic option datatype in Coq, found in the fully-qualified path
Coq.Init.Datatypes. Given a type parameter A, an option A in Coq is one of two
things: either it is Some a given an element a of type A, or it is None. For consistency,
identifiers are highlighted using the same conventions from Figure 5.1.

The type definition for option has two type constructors: Some, which creates an

option A for any object of type A, and None, which is a constant value of type option A

1https://github.com/princeton-vl/CoqGym/discussions/60
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1 subgoal

m, n : nat

E1 : ev n

E2 : ev m

IH1 : ev (n + m)

============================

ev (S (S (n + m)))

Figure A.2: A mid-proof context from the first volume of the logical foundations
series [160]

for any A. There are many examples of such type constructors in common inductive

types: S and O for natural numbers, cons and nil for lists, and others. Logically,

just as type definitions correspond to theorems, type constructors are analogous to

introduction rules for types. In the option type in Figure A.1, Some and None encode all

possible ways of introducing terms of type option. Because of this, type constructors

play a special role in deconstructing types — in particular, they appear inside match

statements, which act on the structure of a type by having one branch per type

constructor. Similarly, proofs by induction in Coq prove propositions about inductive

types by having one case per type constructor.

Knowledge of type constructors can be incredibly useful in determining the next

proof step in a proof. In the example from Figure A.2, the goal states that S (S (

n + m)) is even, where m and n are natural numbers. The context shows (n + m) is

even, but does not include information about S. The knowledge that S is a successor

type constructor of nat, and that there exists an ev type constructor ev_SS of type

ev n -> ev (S (S n)), is necessary to solve the goal. Here, running the constructor

tactic results in the goal ev (n + m), which matches one of the hypotheses (IH1).

A.3 Passport Enrichment Implementation

Enriching the data with these three categories of identifiers amounted to modi-

fying inherited data processing code from TacTok and ASTactic that had erased all
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(constructor

(inductive

(file_path

(directory_path [Datatypes; Init; Coq])

(label option1)))

(int 13))

Figure A.3: An unprocessed AST representing a use of the Some type constructor for
the option inductive type from Figure A.1, simplified for the sake of presentation. For
consistency, identifiers are highlighted using the same conventions from Figure 5.1,
and the index 1 of the Some type constructor is highlighted in yellow3. Note that the
identifier of the Some type constructor itself is not present.

information about those identifiers from the data. The inherited code had used the

SerAPI [7] library to serialize Coq proof objects (terms) as well as proof states and

theorems (types), then processed the serialized ASTs returned by SerAPI to erase all

identifier information. Enriching the data with two of the three categories of identifiers

— definition and local variable names — was a straightforward modification of the

post-processing code.

By contrast, adding type constructor names was a more involved process, as Gallina

ASTs do not directly store type constructor names. Instead, like its parent type theory,

the calculus of inductive constructions [47, 46], Coq represents each type constructor

in the AST as a tuple consisting of the name of its inductive type together with the

index of the particular type constructor.

Figure A.3 shows the AST for Some, which is the first (type constructors are

1-indexed) type constructor of the option datatype. Notably, the AST by default

stores the fully-qualified path and name of the inductive type that the type constructor

constructs. Thus, the only remaining step is to look up the type constructor from

the global environment by passing the fully-qualified name of the inductive type and

the index of the type constructor — here, Coq.Init.Datatypes.option and 1 — then

place it back into the AST where the index is.
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To do this, between parsing and encoding, the Passport implementation unparses

subterms that correspond to type constructor nodes into string representations of the

ASTs of the subterms. It then feeds those string representations back through SerAPI,

which performs an environment lookup to recover the type constructor name. As with

the other identifiers, Passport then inserts a child node containing the identifier into

the AST before encoding.

Overall, the Passport approach implementation is 1.5K lines of code and took

four developers about a year to build. While the conceptual and design aspects

of the Passport approach can extend to all prediction-model-driven, search-based,

proof-synthesis tools, the current implementation is straightforwardly applicable to all

such tools built within the CoqGym environment [223].
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APPENDIX B

BALDUR: EXAMPLES OF PROOF GENERATION WITH
CONTEXT

We provide a number of examples that the model using context could solve but

the plain proof generation model could not. We determined the lists of problems each

model could solve, computed their difference, and then sampled 5 examples uniformly

at random. For examples that had multiple correct proofs generated by the model,

we selected one at random. We modified whitespace in the examples to make them

more readable with the reduced line length. Further, we truncated the examples on

the left to help with readability, but we inspected also the full context to ensure that

our conclusions below are not affected. Each example consists of the “context and

problem statement”, the “ground truth proof”, and the “generated proof”.

We can observe in examples 1, 3, and 5 that the model readily copies and adapts

proofs that exist in its context. In example 2, the model made use of a premise that

did not occur in its context, which happened to also be used by the ground truth

proof, but with a different tactic. In example 4, the model found a simpler proof that

did not occur like this in the context.

B.1 Example 1

Context and problem statement:

lemma (in Interpretation) InterpExprWellDefined:

"L\<lbrakk>Vx : A \<turnstile> e :

B\<rbrakk> \<rightarrow> i \<Longrightarrow>

Sig iS \<triangleright> Vx :

A \<turnstile> e : B"
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apply (rule Interp.cases)

by auto

lemma (in Interpretation) WellDefined:

"L\<lbrakk>\<phi>\<rbrakk> \<rightarrow> i

\<Longrightarrow> Sig iS \<triangleright> \<phi>"

apply(rule Interp.cases)

by (auto simp add: InterpExprWellDefined)

lemma (in Interpretation) Bool:

"L\<lbrakk>\<phi>\<rbrakk> \<rightarrow>

(IBool i) \<Longrightarrow> \<exists> A B e d .

\<phi> = (Vx : A \<turnstile> e \<equiv> d : B)"

Ground truth proof:

apply(rule Interp.cases)

by auto

Generated proof:

apply (rule Interp.cases)

by (auto simp add: InterpExprWellDefined)

B.2 Example 2

Context and problem statement:

lemma Aeta_expand_0[simp]:

"Aeta_expand 0 e = e"

by transfer simp

lemma Aeta_expand_inc[simp]:

"Aeta_expand (inc\<cdot>n) e =

(Lam [fresh_var e].

Aeta_expand n (App e (fresh_var e)))"

apply (simp add: inc_def)

by transfer simp

lemma subst_Aeta_expand:

"(Aeta_expand n e)[x::=y] =

Aeta_expand n e[x::=y]"

Ground truth proof:

by transfer (rule subst_eta_expand)
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Generated proof:

by transfer (simp add: subst_eta_expand)

B.3 Example 3

Context and problem statement:

subsubsection \<open>Store and Assignment\<close>

type_synonym \’a store = "string \<Rightarrow> \’a"

definition gets ::

"string \<Rightarrow> (\’a store \<Rightarrow> \’a)

\<Rightarrow> \’a store rel" ("_ ::= _" [70, 65] 61)

where "v ::= e = {(s, s(v := e s)) |s. True}"

lemma H_assign:

"rel_kat.H \<lceil>\<lambda>s.

P (s (v := e s))\<rceil> (v ::= e) \<lceil>P\<rceil>"

by (auto simp:

gets_def

rel_kat.H_def

rel_kat.t_op_def

rel_at_def)

lemma H_assign_var:

"(\<forall>s. P s \<longrightarrow> Q (s (v := e s)))

\<Longrightarrow>

rel_kat.H

\<lceil>P\<rceil> (v ::= e) \<lceil>Q\<rceil>"

Ground truth proof:

by (auto simp:

gets_def

rel_kat.H_def

rel_kat.t_op_def

rel_at_def)

Generated proof:

by (auto simp:

gets_def

rel_kat.H_def

rel_kat.t_op_def

rel_at_def)
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B.4 Example 4

Context and problem statement:

section \<open>Primitive words\<close>

text\<open>If a word w is not a non-trivial power of

some other word, we say it is primitive.\<close>

definition primitive :: "\’a list \<Rightarrow> bool"

where "primitive u = (\<forall> r k.

r\<^sup>@k = u \<longrightarrow> k = 1)"

lemma primI[intro]:

"(\<And> r k. r\<^sup>@k = u \<Longrightarrow> k = 1)

\<Longrightarrow> primitive u"

by (simp add: primitive_def)

lemma prim_nemp:

"primitive u \<Longrightarrow> u \<noteq> \<epsilon>"

Ground truth proof:

proof-

have "u = \<epsilon> \<Longrightarrow>

\<epsilon>\<^sup>@0 = u"

by simp

thus "primitive u \<Longrightarrow>

u \<noteq> \<epsilon>"

using primitive_def zero_neq_one

by blast

qed

Generated proof:

using primitive_def

by force

B.5 Example 5

Context and problem statement:

lemma drop_take_drop:

"drop n (take m xs) @ drop m xs = drop (min n m) xs"

proof cases

assume A: "\<not>m < n"

then show ?thesis
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using drop_append[of n "take m xs" "drop m xs"]

by (cases "length xs < n")

(auto simp: not_less min_def)

qed (auto simp: min_def)

lemma not_distinct_decomp_min_prefix:

assumes "\<not> distinct ws"

shows "\<exists> xs ys zs y.

ws = xs @ y # ys @ y # zs \<and>

distinct xs \<and>

y \<notin> set xs \<and>

y \<notin> set ys "

proof -

obtain xs y ys where

"y \<in> set xs" "distinct xs" "ws = xs @ y # ys"

using assms by (auto simp: not_distinct_conv_prefix)

moreover then obtain xs\’ ys\’

where "xs = xs\’ @ y # ys\’"

by (auto simp: in_set_conv_decomp)

ultimately show ?thesis by auto

qed

lemma not_distinct_decomp_min_not_distinct:

assumes "\<not> distinct ws"

shows "\<exists>xs y ys zs.

ws = xs @ y # ys @ y # zs \<and>

distinct (ys @ [y])"

Ground truth proof:

using assms

proof (induct ws)

case (Cons w ws)

show ?case

proof (cases "distinct ws")

case True

then obtain xs ys where

"ws = xs @ w # ys" "w \<notin> set xs"

using Cons.prems

by (fastforce dest: split_list_first)

then have "distinct

(xs @ [w])" "w # ws = [] @ w # xs @ w # ys"

using \<open>distinct ws\<close> by auto

then show ?thesis by blast

next

case False

then obtain xs y ys zs

where "ws = xs @ y # ys @ y # zs \<and>

distinct (ys @ [y])"

using Cons by auto
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then have "w # ws = (w # xs) @ y # ys @ y # zs \<and>

distinct (ys @ [y])"

by simp

then show ?thesis by blast

qed

qed simp

Generated proof:

proof -

obtain xs y ys where

"y \<in> set xs" "distinct xs" "ws = xs @ y # ys"

using assms by (auto simp: not_distinct_conv_prefix)

moreover then obtain xs’ ys’

where "xs = xs’ @ y # ys’"

by (auto simp: in_set_conv_decomp)

ultimately

show ?thesis by auto

qed
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[195] Sundermeyer, Martin, Schlüter, Ralf, and Ney, Hermann. LSTM neural networks
for language modeling. In Annual Conference of the International Speech
Communication Association (INTERSPEECH) (Portland, OR, USA, 2012).

[196] Svyatkovskiy, Alexey, Lee, Sebastian, Hadjitofi, Anna, Riechert, Maik, Franco,
Juliana, and Allamanis, Miltiadis. Fast and memory-efficient neural code com-
pletion. CoRR abs/2004.13651 (2020).

167

https://ai.googleblog.com/2022/04/reproducibility-in-deep-learning-and.html?m=1
https://ai.googleblog.com/2022/04/reproducibility-in-deep-learning-and.html?m=1
http://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf
http://projects.laas.fr/IFSE/FMF/J3/slides/P05_Jean_Souyiris.pdf
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[200] Tian, Haoye, Liu, Kui, Kaboré, Abdoul Kader, Koyuncu, Anil, Li, Li, Klein,
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