35 research outputs found

    Improvement of Deep Learning Technology to Create 3D Model of Fluid Art

    Get PDF
    Lecture Notes in Computer Science book series (LNCS, volume 13477)21st IFIP TC 14 International Conference, ICEC 2022, Bremen, Germany, November 1–3, 2022, ProceedingsArt is an essential part of the entertainment. As 3D entertainment such as 3D games is a trend, it is an exciting topic how to create 3D artworks from 2D artworks. In this work, we investigate the 3D reconstruction problem of the artwork called “Sound of Ikebana, ” which is created by shooting fluid phenomena using a high-speed camera and can create organic, sophisticated, and complex forms. Firstly, we used the Phase Only Correlation method to capture the artwork’s point cloud based on the images captured by multiple high-speed cameras. Then we create a 3D model by a deep learning-based approach from the 2D Sound of Ikebana images. Our result shows that we can apply deep learning techniques to improve the reconstruction of 3D modeling from 2D images with highly complicated forms

    Unsupervised learning of probably symmetric deformable 3D objects from images in the wild (extended abstract)

    Get PDF
    We propose a method to learn 3D deformable object categories from raw single-view images, without external supervision. The method is based on an autoencoder that factors each input image into depth, albedo, viewpoint and illumination. In order to disentangle these components without supervision, we use the fact that many object categories have, at least approximately, a symmetric structure. We show that reasoning about illumination allows us to exploit the underlying object symmetry even if the appearance is not symmetric due to shading. Furthermore, we model objects that are probably, but not certainly, symmetric by predicting a symmetry probability map, learned end-to-end with the other components of the model. Our experiments show that this method can recover very accurately the 3D shape of human faces, cat faces and cars from single-view images, without any supervision or a prior shape model. Code and demo available at https://github.com/elliottwu/unsup3d

    Sketch-based modeling with a differentiable renderer

    Get PDF
    © 2020 The Authors. Computer Animation and Virtual Worlds published by John Wiley & Sons, Ltd. Sketch-based modeling aims to recover three-dimensional (3D) shape from two-dimensional line drawings. However, due to the sparsity and ambiguity of the sketch, it is extremely challenging for computers to interpret line drawings of physical objects. Most conventional systems are restricted to specific scenarios such as recovering for specific shapes, which are not conducive to generalize. Recent progress of deep learning methods have sparked new ideas for solving computer vision and pattern recognition issues. In this work, we present an end-to-end learning framework to predict 3D shape from line drawings. Our approach is based on a two-steps strategy, it converts the sketch image to its normal image, then recover the 3D shape subsequently. A differentiable renderer is proposed and incorporated into this framework, it allows the integration of the rendering pipeline with neural networks. Experimental results show our method outperforms the state-of-art, which demonstrates that our framework is able to cope with the challenges in single sketch-based 3D shape modeling

    BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

    Get PDF
    We present BlockGAN, an image generative model that learns object-aware 3D scene representations directly from unlabelled 2D images. Current work on scene representation learning either ignores scene background or treats the whole scene as one object. Meanwhile, work that considers scene compositionality treats scene objects only as image patches or 2D layers with alpha maps. Inspired by the computer graphics pipeline, we design BlockGAN to learn to first generate 3D features of background and foreground objects, then combine them into 3D features for the wholes cene, and finally render them into realistic images. This allows BlockGAN to reason over occlusion and interaction between objects' appearance, such as shadow and lighting, and provides control over each object's 3D pose and identity, while maintaining image realism. BlockGAN is trained end-to-end, using only unlabelled single images, without the need for 3D geometry, pose labels, object masks, or multiple views of the same scene. Our experiments show that using explicit 3D features to represent objects allows BlockGAN to learn disentangled representations both in terms of objects (foreground and background) and their properties (pose and identity).Comment: For project page, see https://www.monkeyoverflow.com/#/blockgan/ Accepted to Conference on Neural Information Processing Systemsm, NeurIPS 202

    BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

    Get PDF
    We present BlockGAN, an image generative model that learns object-aware 3D scene representations directly from unlabelled 2D images. Current work on scene representation learning either ignores scene background or treats the whole scene as one object. Meanwhile, work that considers scene compositionality treats scene objects only as image patches or 2D layers with alpha maps. Inspired by the computer graphics pipeline, we design BlockGAN to learn to first generate 3D features of background and foreground objects, then combine them into 3D features for the whole scene, and finally render them into realistic images. This allows BlockGAN to reason over occlusion and interaction between objects’ appearance, such as shadow and lighting, and provides control over each object’s 3D pose and identity, while maintaining image realism. BlockGAN is trained end-to-end, using only unlabelled single images, without the need for 3D geometry, pose labels, object masks, or multiple views of the same scene. Our experiments show that using explicit 3D features to represent objects allows BlockGAN to learn disentangled representations both in terms of objects (foreground and background) and their properties (pose and identity).This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 66599

    Beyond Fixed Grid: Learning Geometric Image Representation with a Deformable Grid

    Full text link
    In modern computer vision, images are typically represented as a fixed uniform grid with some stride and processed via a deep convolutional neural network. We argue that deforming the grid to better align with the high-frequency image content is a more effective strategy. We introduce \emph{Deformable Grid} DefGrid, a learnable neural network module that predicts location offsets of vertices of a 2-dimensional triangular grid, such that the edges of the deformed grid align with image boundaries. We showcase our DefGrid in a variety of use cases, i.e., by inserting it as a module at various levels of processing. We utilize DefGrid as an end-to-end \emph{learnable geometric downsampling} layer that replaces standard pooling methods for reducing feature resolution when feeding images into a deep CNN. We show significantly improved results at the same grid resolution compared to using CNNs on uniform grids for the task of semantic segmentation. We also utilize DefGrid at the output layers for the task of object mask annotation, and show that reasoning about object boundaries on our predicted polygonal grid leads to more accurate results over existing pixel-wise and curve-based approaches. We finally showcase DefGrid as a standalone module for unsupervised image partitioning, showing superior performance over existing approaches. Project website: http://www.cs.toronto.edu/~jungao/def-gridComment: ECCV 202

    Differentiable Programming for Piecewise Polynomial Functions

    Get PDF
    We introduce a new, principled approach to extend gradient-based optimization to piecewise smooth models, such as k-histograms, splines, and segmentation maps. We derive an accurate form of the weak Jacobian of such functions and show that it exhibits a block-sparse structure that can be computed implicitly and efficiently. We show that using the redesigned Jacobian leads to improved performance in applications such as denoising with piecewise polynomial regression models, datafree generative model training, and image segmentation
    corecore