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Abstract

We propose a method to learn 3D deformable ob-
ject categories from raw single-view images, with-
out external supervision. The method is based on
an autoencoder that factors each input image into
depth, albedo, viewpoint and illumination. In order
to disentangle these components without supervi-
sion, we use the fact that many object categories
have, at least approximately, a symmetric structure.
We show that reasoning about illumination allows
us to exploit the underlying object symmetry even
if the appearance is not symmetric due to shading.
Furthermore, we model objects that are probably,
but not certainly, symmetric by predicting a sym-
metry probability map, learned end-to-end with the
other components of the model. Our experiments
show that this method can recover very accurately
the 3D shape of human faces, cat faces and cars
from single-view images, without any supervision
or a prior shape model. Code and demo available at
https://github.com/elliottwu/unsup3d.

1 Introduction
In this paper, we consider the problem of learning 3D models
for deformable object categories. In particular, we study this
problem under two challenging conditions. The first condition
is that no 2D or 3D ground truth information (such as key-
points, segmentation, depth maps, or prior knowledge of a 3D
model) is available. Learning without external supervisions
removes the bottleneck of collecting image annotations, which
is often a major obstacle to deploying deep learning for new
applications. The second condition is that the algorithm must
use an unconstrained collection of single-view images — in
particular, it should not require multiple views of the same in-
stance. Learning from single-view images is useful because in
many applications, and especially for deformable objects, we
only have a source of still images to work with. Consequently,
our learning algorithm ingests a number of single-view images
of a deformable object category and produces as output a deep

*This is an extended abstract of [Wu et al., 2020] published at
CVPR 2020. Please refer to full paper for more details.
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Figure 1: Left: Training requires only single views of the object
category with no additional supervision at all. Right: Once trained,
our model reconstructs the 3D pose, shape, albedo and illumination
of a deformable object instance from a single image.

network that can estimate the 3D shape of any instance given
a single image of it, as illustrated in Fig. 1.

We formulate this as an autoencoder that internally decom-
poses the image into albedo, depth, illumination and view-
point, without direct supervision for any of these factors. How-
ever, without further assumptions, decomposing images into
these four factors is ill-posed. In search of minimal assump-
tions to achieve this, we note that many object categories
are symmetric (e.g. almost all animals and many handcrafted
objects). Assuming an object is perfectly symmetric, one
can obtain a virtual second view of it by simply mirroring
the image. In fact, if correspondences between the pair of
mirrored images were available, 3D reconstruction could be
achieved by stereo reconstruction [Mukherjee et al., 1995;
François et al., 2003]. Motivated by this, we seek to leverage
symmetry as a geometric cue to constrain the decomposition.

However, specific object instances are in practice never fully
symmetric, neither in shape nor appearance. Shape is non-
symmetric due to variations in pose or other details (e.g. hair
style or expressions on a human face), and albedo can also be
non-symmetric (e.g. asymmetric texture of cat faces). Even
when both shape and albedo are symmetric, the appearance
may still not be, due to asymmetric illumination.

We address this issue in two ways. First, we explicitly
model illumination to exploit the underlying symmetry. Fur-
thermore, we show that, by doing so, the model can exploit
illumination as an additional cue for recovering the shape. Sec-
ond, we augment the model to reason about potential lack of
symmetry in the objects. To do this, the model predicts, along
with the other factors, a probability map that each given pixel
has a symmetric counterpart in the image.

We combine these elements in an end-to-end learning for-
mulation, where all components, including the confidence
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Figure 2: Our model decomposes an input image into depth, albedo,
viewpoint and lighting, together with a pair of confidence maps. It is
trained through reconstructing the input without external supervision.

maps, are learned from raw RGB data only. We also show that
symmetry can be enforced by flipping internal representations,
which is particularly useful for reasoning about symmetries
probabilistically.

We demonstrate the quality of our method in several
datasets, including human faces, cat faces and cars. We
provide a thorough ablation study using a synthetic face
dataset to obtain the necessary 3D ground truth. On real
images, we achieve higher fidelity reconstruction results
compared to other methods [Sahasrabudhe et al., 2019;
Szabó et al., 2019] that do not rely on 2D or 3D ground
truth information, nor prior knowledge of a 3D model of the
instance or class. We also demonstrate that our trained face
model generalizes to non-natural images such as face paintings
and cartoon drawings without fine-tuning.

2 Method
Given an unconstrained collection of images of an object
category, such as human faces, our goal is to learn a model
Φ that receives as input an image of an object instance and
produces as output a decomposition of it into 3D shape, albedo,
illumination and viewpoint, as illustrated in Fig. 2.

As we have only raw images to learn from, the learning
objective is reconstructive: namely, the model is trained so
that the combination of the four factors gives back the input
image. This results in an autoencoding pipeline where the
factors have, due to the way they are recomposed, an explicit
photo-geometric meaning.

2.1 Photo-Geometric Autoencoding
An image I is a function Ω → R3 defined on a grid Ω =
{0, . . . ,W − 1} × {0, . . . ,H − 1}, or, equivalently, a tensor
in R3×W×H . We assume that the image is roughly centered
on an instance of the object of interest. The goal is to learn a
function Φ, implemented as a neural network, that maps the
image I to four factors (d, a, w, l) comprising a depth map
d : Ω → R+, an albedo image a : Ω → R3, a global light
direction l ∈ S2, and a viewpoint w ∈ R6 so that the image
can be reconstructed from them.

The image I is reconstructed from the four factors in two
steps, lighting Λ and reprojection Π, as follows:

Î = Π (Λ(a, d, l), d, w) . (1)

The lighting function Λ generates a version of the object based
on the depth map d, the light direction l and the albedo a as
seen from a canonical viewpoint w = 0, assuming Lambertian
shading with a directional light source. The viewpoint w rep-
resents the transformation between the canonical view and the
viewpoint of the actual input image I. Then, the reprojection
function Π simulates the effect of a viewpoint change and gen-
erates the image Î given the canonical depth d and the shaded
canonical image Λ(a, d, l). We use a differentiable renderer
from [Kato et al., 2018]. Learning uses a reconstruction loss
which encourages I ≈ Î (Section 2.2).
Discussion. The effect of lighting could be incorporated in
the albedo a by interpreting the latter as a texture rather than
as the object’s albedo. However, there are two good reasons
to avoid this. First, the albedo a is often symmetric even if
the illumination causes the corresponding appearance to look
asymmetric. Separating them allows us to more effectively
incorporate the symmetry constraint described below. Sec-
ond, shading provides an additional cue on the underlying
3D shape [Horn, 1975]. In particular, unlike the recent work
of [Shu et al., 2018] where a shading map is predicted inde-
pendently from shape, our model computes the shading based
on the predicted depth, mutually constraining each other.

2.2 Probably Symmetric Objects
Leveraging symmetry for 3D reconstruction requires identify-
ing symmetric points in an image. Here we do so implicitly,
assuming that depth and albedo, which are reconstructed in a
canonical frame, are symmetric about a fixed vertical plane.

To do this, we consider the operator that flips a map
a ∈ RC×W×H along the horizontal axis1: [flip a]c,u,v =
ac,W−1−u,v. We then require d ≈ flip d′ and a ≈ flip a′.
While these constraints could be enforced by adding corre-
sponding loss terms to the learning objective, they would be
difficult to balance. Instead, we achieve the same effect indi-
rectly, by obtaining a second reconstruction Î′ from the flipped
depth and albedo:

Î′ = Π (Λ(a′, d′, l), d′, w) , a′ = flip a, d′ = flip d. (2)

Then, we consider two reconstruction losses encouraging
I ≈ Î and I ≈ Î′. Since the two losses are commensurate,
they are easy to balance and train jointly. Most importantly,
this approach allows us to easily reason about symmetry prob-
abilistically, as explained next.

The source image I and the reconstruction Î are compared
via the loss:

L(Î, I, σ) = − 1

|Ω|
∑
uv∈Ω

ln
1√

2σuv
exp−

√
2`1,uv
σuv

, (3)

where `1,uv = |Îuv−Iuv| is the L1 distance between the inten-
sity of pixels at location uv, and σ ∈ RW×H

+ is a confidence

1The choice of axis is arbitrary as long as it is fixed.
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map, also estimated by the network Φ from the image I, which
expresses the aleatoric uncertainty of the model. The loss can
be interpreted as the negative log-likelihood of a factorized
Laplacian distribution on the reconstruction residuals. Opti-
mizing likelihood causes the model to self-calibrate, learning
a meaningful confidence map [Kendall and Gal, 2017].

Modelling uncertainty is generally useful, but in our case
is particularly important when we consider the “symmetric”
reconstruction Î′, for which we use the same loss L(Î′, I, σ′).
Crucially, we use the network to estimate, also from the same
input image I, a second confidence map σ′. This confidence
map allows the model to learn which portions of the input
image might not be symmetric. For instance, in some cases
hair on a human face is not symmetric as shown in Fig. 2, and
σ′ can assign a higher reconstruction uncertainty to the hair
region where the symmetry assumption is not satisfied. Note
that this depends on the specific instance under consideration,
and is learned by the model itself.

Overall, the learning objective is given by the combination
of the two reconstruction errors:

E(Φ; I) = L(Î, I, σ) + λfL(Î′, I, σ′), (4)

where λf = 0.5 is a weighing factor, (d, a, w, l, σ, σ′) = Φ(I)

is the output of the neural network, and Î and Î′ are obtained
according to Eqs. (1) and (2).

2.3 Image Formation Model
We now describe the functions Π and Λ in Eq. (1) in more
detail. The image is formed by a camera looking at a 3D
object. If we denote with P = (Px, Py, Pz) ∈ R3 a 3D point
expressed in the reference frame of the camera, this is mapped
to pixel p = (u, v, 1) by the following projection:

p ∝ KP, K =

[
f 0 cu
0 f cv
0 0 1

]
,


cu = W−1

2 ,

cv = H−1
2 ,

f = W−1

2 tan
θFOV

2

.
(5)

Given that the images are cropped around the objects, we
assume a relatively narrow field of view (FOV) of θFOV ≈ 10◦.

The depth map d : Ω→ R+ associates a depth value duv to
each pixel (u, v) ∈ Ω in the canonical view. By inverting the
camera model Eq. (5), we find this corresponds to the 3D point
P = duv ·K−1p. The viewpoint w ∈ R6 represents an Eu-
clidean transformation (R, T ) ∈ SE(3), where w1:3 and w4:6

are rotation angles and translations in xyz axes respectively.
The map (R, T ) transforms 3D points from the canonical view
to the actual view. Thus a pixel (u, v) in the canonical view is
mapped to the pixel (u′, v′) in the actual view by the warping
function ηd,w : (u, v) 7→ (u′, v′) given by:

p′ ∝ K(duv ·RK−1p+ T ), (6)

where p′ = (u′, v′, 1).
Finally, the reprojection function Π takes as input the

depth d and the viewpoint change w and applies the result-
ing warp to the canonical image J to obtain the actual image
Î = Π(J, d, w) as Îu′v′ = Juv, where (u, v) = η−1

d,w(u′, v′).

The canonical image J = Λ(a, d, l) is in turn generated
as a combination of albedo, normal map and light direction.

No Baseline SIDE (×10−2) ↓ MAD (deg.) ↓
(1) Supervised 0.410 ±0.103 10.78 ±1.01

(2) Const. null depth 2.723 ±0.371 43.34 ±2.25

(3) Average g.t. depth 1.990 ±0.556 23.26 ±2.85

(4) Ours (unsupervised) 0.793 ±0.140 16.51 ±1.56

Table 1: Comparison with baselines. SIDE and MAD errors for 3D
reconstruction in the BFM dataset of our unsupervised reconstruction
method against a fully-supervised and trivial baselines.

To do so, given the depth map d, we derive the normal map
n : Ω → S2 by associating to each pixel (u, v) a vector
normal to the underlying 3D surface. In order to find this
vector, we compute the vectors tuuv and tvuv tangent to the
surface along the u and v directions. For example, the first
one is: tuuv = du+1,v ·K−1(p+ ex)− du−1,v ·K−1(p− ex)
where p is defined above and ex = (1, 0, 0). Then the normal
is obtained by taking the vector product nuv ∝ tuuv × tvuv .

The normal nuv is multiplied by the light direction l to
obtain a value for the directional illumination and the latter
is added to the ambient light. Finally, the result is multi-
plied by the albedo to obtain the illuminated texture, as fol-
lows: Juv = (ks + kd max{0, 〈l, nuv〉}) · auv. Here ks and
kd are the scalar coefficients weighting the ambient and dif-
fuse terms, and are predicted by the model with range be-
tween 0 and 1 via rescaling a tanh output. The light direction
l = (lx, ly, 1)T /(l2x + l2y + 1)0.5 is modeled as a spherical
sector by predicting lx and ly with tanh.

3 Experiments
Datasets. We test our method on human faces and cat
faces, using the public datasets, CelebA [Liu et al., 2015],
3DFAW [Gross et al., 2010; Jeni et al., 2015; Zhang et al.,
2014; Yin et al., 2008], and cat datasets [Zhang et al., 2008;
Parkhi et al., 2012]. We roughly crop the images around the
head region and use the official train/val/test splits. In order
to assess the quality of the 3D reconstructions (since the in-
the-wild datasets lack ground-truth), we generate a synthetic
face dataset (BFM) with variation in shape, pose, texture and
illumination using the Basel Face Model [Paysan et al., 2009],
following the protocol of [Sengupta et al., 2018].

Comparison with baselines. Table 1 uses the BFM dataset
to compare the depth reconstruction quality obtained by our
method, a fully-supervised baseline and two baselines. We
discount the inherent scale ambiguity of the 3D reconstruc-
tion using the scale-invariant depth error (SIDE) [Eigen et al.,
2014]ESIDE(d̄, d∗) = ( 1

WH

∑
uv ∆2

uv−( 1
WH

∑
uv ∆uv)2)

1
2

where ∆uv = log d̄uv − log d∗uv. Additionally, we report the
mean angle deviation (MAD) between normals computed
from ground truth depth and from the predicted depth, mea-
suring how well the surface is captured by the prediction.
The supervised baseline is a version of our model trained to
regress the ground-truth depth maps using an L1 loss. The
trivial baseline predicts a constant uniform depth map, which
provides a performance lower-bound. The third baseline is
a constant depth map obtained by averaging all ground-truth
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input reconstruction

Figure 3: Reconstruction of human faces, paintings and cat faces.

(a) symmetry plane (b) asymmetry visualization

Figure 4: Symmetry plane and asymmetry detection. (a): our model
uncovers the “intrinsic” symmetry plane of an in-the-wild object
even though the appearance is highly asymmetric. (b): asymmetries
(highlighted in red) are detected with the confidence maps.

depth maps in the test set. Our method largely outperforms
the two constant baselines and approaches the results of super-
vised training. Improving over the third baseline (which has
access to GT information) confirms that the model learns an
instance specific 3D representation.

Qualitative results. In Fig. 3 we show reconstruction results
of human faces and cat faces as well abstract face paintings
from the Internet. The 3D shapes are recovered with high
fidelity. The reconstructed 3D face, for instance, contain fine
details of the nose, eyes and mouth even with extreme facial
expression. Our method also generalizes well on paintings,
even though it has never seen such images during training.

Symmetry and asymmetry detection. Since our model
predicts a canonical view of the objects that is symmetric
about the vertical center-line of the image, we can easily vi-
sualize the symmetry plane, which is otherwise non-trivial
to detect from in-the-wild images. In Fig. 4, we render the
center-line of the canonical image and warp it to the input
viewpoint. The symmetry planes detected by our method are
accurate despite the presence of extreme asymmetric texture
and lighting effects. We also overlay the predicted confidence
map σ′ onto the image, confirming that the model assigns low
confidence to asymmetric regions in a sample-specific way.

Comparison with SOTAs. We compare the reconstruction
quality of our method with two recently proposed unsuper-
vised reconstruction methods, LAE [Sahasrabudhe et al.,
2019] and [Szabó et al., 2019]. Our method produces much
higher quality reconstructions than both methods, with fine
details of the facial expression, whereas LAE recovers 3D
shapes poorly and [Szabó et al., 2019] generates unnatural
shapes. Note that [Szabó et al., 2019] uses an unconditional
GAN that generates 3D faces from random noise, and cannot
recover 3D shapes from images. The input images for [Szabó

input LAE ours

input Szabó et al. ours

Figure 5: Compared to state-of-the-art methods, our method recovers
much higher quality shapes.

et al., 2019] in Fig. 5 were generated by their method.

4 Related Work
Traditional Structure from Motion (SfM) [Faugeras and Lu-
ong, 2001] can reconstruct the 3D structure of individual
rigid scenes given multiple views of each scene as well as
2D keypoint matches between the views. Learning-based
methods have recently been leveraged to reconstruct objects
from a single view. A variety of supervisory signals apart
from direct 3D ground-truth have been explored, including
videos [Zhou et al., 2017], keypoint annotations [Kanazawa
et al., 2018b], object masks [Chen et al., 2019], predefined
shape models [Kanazawa et al., 2018a; Gerig et al., 2018].
These prior models are constructed using specialized hardware
and/or other forms of supervision, which are often difficult to
obtain for deformable objects in the wild, such as animals, and
also limited in shape details.

Only recently have authors attempted to learn the geometry
of object categories from raw, monocular views only. [Sa-
hasrabudhe et al., 2019] leverages deformation fields from
DAE [Shu et al., 2018] learned with a heavy bottleneck con-
straint and further extracts 3D shape and lighting. Others
have considered adversarial learning. In particular, Holo-
GAN [Nguyen-Phuoc et al., 2019] only uses raw images but
does not obtain an explicit 3D reconstruction. [Szabó et al.,
2019] generates 3D meshes of faces using an unconditional
GAN and cannot predict from images. [Henzler et al., 2019]
also learns from raw images, but only experiments with images
with a white background, akin to supervision with masks.

Our work is also inspired from shape from symme-
try [Mukherjee et al., 1995; François et al., 2003] and shape
from shading [Horn and Brooks, 1989].
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