7 research outputs found

    Digital Terrain Model Geospatial Modelling

    Get PDF
    The modelling means the world object cognition based on the analogy. This analogy presents an idea and material imitation of some properties of the existing world. It is processed by various anthropogenic objects, in which the chosen properties are presented, defined and characterised as shapes and relations of original objects. The simplified objects are created. These objects are specially created only for world study. These types of objects are called models. To edit the digital terrain model correctly, it is necessary to understand the geospatial modelling

    Post-analysis of OSM-GAN Spatial Change Detection

    Get PDF
    Keeping crowdsourced maps up-to-date is important for a wide range of location-based applications (route planning, urban planning, navigation, tourism, etc.).We propose a novelmap updatingmechanism that combines the latest freely available remote sensing data with the current state of online vector map data to train a Deep Learning (DL) neural network. It uses a GenerativeAdversarial Network (GAN) to perform image-to-image translation, followed by segmentation and raster-vector comparison processes to identify changes to map features (e.g. buildings, roads, etc.) when compared to existing map data. This paper evaluates various GAN models trained with sixteen different datasets designed for use by our change detection/map updating procedure. Each GAN model is evaluated quantitatively and qualitatively to select the most accurate DL model for use in future spatial change detection applications

    Road Extraction with Satellite Images and Partial Road Maps

    Full text link
    Road extraction is a process of automatically generating road maps mainly from satellite images. Existing models all target to generate roads from the scratch despite that a large quantity of road maps, though incomplete, are publicly available (e.g. those from OpenStreetMap) and can help with road extraction. In this paper, we propose to conduct road extraction based on satellite images and partial road maps, which is new. We then propose a two-branch Partial to Complete Network (P2CNet) for the task, which has two prominent components: Gated Self-Attention Module (GSAM) and Missing Part (MP) loss. GSAM leverages a channel-wise self-attention module and a gate module to capture long-range semantics, filter out useless information, and better fuse the features from two branches. MP loss is derived from the partial road maps, trying to give more attention to the road pixels that do not exist in partial road maps. Extensive experiments are conducted to demonstrate the effectiveness of our model, e.g. P2CNet achieves state-of-the-art performance with the IoU scores of 70.71% and 75.52%, respectively, on the SpaceNet and OSM datasets.Comment: This paper has been accepted by IEEE Transactions on Geoscience and Remote Sensin

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change

    Deep Learning-Based Spatio-Temporal Data Mining Using Multi-Source Geospatial Data

    Full text link
    With the rapid development of various geospatial technologies including remote sensing, mobile devices, and Global Position System (GPS), spatio-temporal data are abundantly available nowadays. Extracting valuable knowledge from spatio-temporal data is of crucial importance for many real-world applications such as intelligent transportation, social services, and intelligent distribution. With the fast increase of the amount and resolution of spatio-temporal data, traditional data mining methods are becoming obsolete. In recent years, deep learning models such as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) have made promising achievements in many fields based on the strong ability in automated feature extraction and have been broadly used in different spatio-temporal data mining tasks. Many methods have been developed, and more diverse data were collected in recent decades, however, the existing methods have faced challenges from multi-source geospatial data. This thesis investigates four efficient techniques in different scenarios for spatio-temporal data mining that take advantage of multi-source geospatial data to overcome the limitations of traditional data mining methods. This study investigates spatio-temporal data mining from four different perspectives. Firstly, a multi-elemental geolocation inference method is proposed to predict the location of tweets without geo-tags. Secondly, an optimization model is proposed to detect multiple Areas-of-Interest (AOIs) simultaneously and solve the multi-AOIs detection problem. Thirdly, a multi-task Res-U-Net model with attention mechanism is developed for the extraction of the building roofs and the whole building shapes from remote sensing images, then an offset vector method is used to detect the footprints of the high-rise buildings based on the boundaries of the corresponding building roofs and shapes. Lastly, a novel decoder fusion model is introduced to extract interior road network from remote sensing images and GPS trajectory data. And this method is effective for multi-source data mining. The proposed four methods use different techniques for spatio-temporal data mining to improve the detection performance. Numerous experiments show that the techniques developed in this thesis can detect ground features efficiently and effectively and overcome the limitations of conventional algorithms. The studies demonstrate that exploiting spatial information from multi-source geospatial data can improve the detection accuracy in comparison with single-source geospatial data

    Learning to generate maps from trajectories

    No full text
    Accurate and updated road network data is vital in many urban applications, such as car-sharing, and logistics. The traditional approach to identifying the road network, ie, field survey, requires a significant amount of time and effort. With the wide usage of GPS embedded devices, a huge amount of trajectory data has been generated by different types of mobile objects, which provides a new opportunity to extract the underlying road network. However, the existing trajectory-based map recovery approaches require many empirical parameters and do not utilize the prior knowledge in existing maps, which over-simplifies or over-complicates the reconstructed road network. To this end, we propose a deep learning-based map generation framework, ie, DeepMG, which learns the structure of the existing road network to overcome the noisy GPS positions. More specifically, DeepMG extracts features from trajectories in both spatial view and transition view and uses a convolutional deep neural network T2RNet to infer road centerlines. After that, a trajectory-based post-processing algorithm is proposed to refine the topological connectivity of the recovered map. Extensive experiments on two real-world trajectory datasets confirm that DeepMG significantly outperforms the state-of-the-art methods.Ministry of Education (MOE)Nanyang Technological UniversityAccepted versionThe research of Cheng Long was supported by the NTU Start-Up Grant and Singapore MOE Tier 1 Grant RG20/19 (S)

    Learning to Generate Maps from Trajectories

    No full text
    corecore