116,157 research outputs found

    Learning to Forget for Meta-Learning

    Full text link
    Few-shot learning is a challenging problem where the goal is to achieve generalization from only few examples. Model-agnostic meta-learning (MAML) tackles the problem by formulating prior knowledge as a common initialization across tasks, which is then used to quickly adapt to unseen tasks. However, forcibly sharing an initialization can lead to conflicts among tasks and the compromised (undesired by tasks) location on optimization landscape, thereby hindering the task adaptation. Further, we observe that the degree of conflict differs among not only tasks but also layers of a neural network. Thus, we propose task-and-layer-wise attenuation on the compromised initialization to reduce its influence. As the attenuation dynamically controls (or selectively forgets) the influence of prior knowledge for a given task and each layer, we name our method as L2F (Learn to Forget). The experimental results demonstrate that the proposed method provides faster adaptation and greatly improves the performance. Furthermore, L2F can be easily applied and improve other state-of-the-art MAML-based frameworks, illustrating its simplicity and generalizability.Comment: CVPR 2020. Code at https://github.com/baiksung/L2

    Meta-Learning Related Tasks With Recurrent Networks: Optimization And Generalization

    Get PDF
    There have been recent interest in meta-learning systems: I.e., networks that are trained to learn across multiple tasks. This paper focuses on optimization and generalization of a meta-learning system based on recurrent networks. The optimization investigates the influence of diverse structures and parameters on its performance. We demonstrate the generalization (robustness) of our meta-learning system to learn across multiple tasks including tasks unseen during the meta training phase. We introduce a meta-cost function (Mean Squared Fair Error) that enhances the performance of the system by not penalizing it during transitions to learning a new task. Evaluation results are presented for Boolean and quadratic functions datasets. The best performance is obtained using a Long Short-Term Memory (LSTM) topology without a forget gate and with a clipped memory cell. The results demonstrate i) the impact of different LSTM architectures, parameters, and error functions on the meta-learning process; ii) that the mean squared fair error function does improve performance for best learning; and iii) the robustness of our meta-learning framework as it generalizes well when tested on tasks unseen during meta-training. Comparison between No-Forget-Gate LSTM and Gated Recurrent Unit also suggest that absence of a memory cell tends to degrade performance

    Fast Adaptation of Neural Networks

    Get PDF
    The ability to learn quickly from a few samples is a vital element of intelligence. Humans can reuse past knowledge and learn incredibly quickly. Also humans are able to interact with others to effectively guide their learning process. Computer vision systems for recognizing objects automatically from pixels are becoming commonplace in production systems. These modern computer vision systems use deep neural networks to automatically learn and recognize objects from data. Oftentimes, these deep neural networks used in production require a lot of data, take a long time to learn and forget old things when learning something new. We build upon previous methods called Prototypical Networks and Model-Agnostic Meta-Learning (MAML) that enables machines to learn to recognize new objects with very little supervision from the user. We extend these methods to the semi-supervised few-shot learning scenario, where the few labeled samples are accompanied with (potentially many) unlabeled samples. Our proposed methods are able to learn better by also making use of the additional unlabeled samples. We note that in many real-world applications the adaptation performance can be significantly improved by requesting the few labels through user feedback (active adaptation). Further, our proposed methods can also adapt to new tasks without any labeled examples (unsupervised adaptation) when the new task has the same output space as the training tasks do

    Deep Learning: Our Miraculous Year 1990-1991

    Full text link
    In 2020, we will celebrate that many of the basic ideas behind the deep learning revolution were published three decades ago within fewer than 12 months in our "Annus Mirabilis" or "Miraculous Year" 1990-1991 at TU Munich. Back then, few people were interested, but a quarter century later, neural networks based on these ideas were on over 3 billion devices such as smartphones, and used many billions of times per day, consuming a significant fraction of the world's compute.Comment: 37 pages, 188 references, based on work of 4 Oct 201

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods
    corecore