
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

10 Oct 2018

Meta-Learning Related Tasks With Recurrent Networks: Meta-Learning Related Tasks With Recurrent Networks:

Optimization And Generalization Optimization And Generalization

Thy Nguyen

A. Steven Younger

Emmett Redd

Tayo Obafemi-Ajayi
Missouri University of Science and Technology, towd2@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
T. Nguyen et al., "Meta-Learning Related Tasks With Recurrent Networks: Optimization And
Generalization," Proceedings of the International Joint Conference on Neural Networks, article no.
8489583, Institute of Electrical and Electronics Engineers, Oct 2018.
The definitive version is available at https://doi.org/10.1109/IJCNN.2018.8489583

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F4826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/IJCNN.2018.8489583
mailto:scholarsmine@mst.edu

Meta-Learning Related Tasks with Recurrent
Networks: Optimization and Generalization

Thy Nguyen
Computer Science Dept.
Missouri State University

Springfield, MO
Nguyen318@live.missouristate.edu

A. Steven Younger
Department of Physics, Astronomy, and Materials Science

Missouri State University
Springfield, MO

SteveYounger@missouristate.edu

Emmett Redd
Department of Physics, Astronomy, and Materials Science

Missouri State University
Springfield, MO

EmmettRedd@missouristate.edu

Tayo Obafemi-Ajayi
Engineering Program

Missouri State University
Springfield, MO

TayoObafemiajayi@missouristate.edu

Abstract—There have been recent interest in meta-learning
systems: i.e. networks that are trained to learn across multiple
tasks. This paper focuses on optimization and generalization
of a meta-learning system based on recurrent networks. The
optimization investigates the influence of diverse structures and
parameters on its performance. We demonstrate the gener-
alization (robustness) of our meta-learning system to learn
across multiple tasks including tasks unseen during the meta-
training phase. We introduce a meta-cost function (Mean Squared
Fair Error) that enhances the performance of the system by
not penalizing it during transitions to learning a new task.
Evaluation results are presented for Boolean and quadratic
functions datasets. The best performance is obtained using a
Long Short-Term Memory (LSTM) topology without a forget
gate and with a clipped memory cell. The results demonstrate
i) the impact of different LSTM architectures, parameters, and
error functions on the meta-learning process; ii) that the mean
squared fair error function does improve performance for best
learning; and iii) the robustness of our meta-learning framework
as it generalizes well when tested on tasks unseen during meta-
training. Comparison between No-Forget-Gate LSTM and Gated
Recurrent Unit also suggest that absence of a memory cell tends
to degrade performance.

Index Terms—meta-learning, recurrent networks, performance
optimization, long short-term memory.

I. INTRODUCTION

Recently, there has been a resurgence of interest in meta-
learning neural networks [1]–[6]. However, recent attempts
revolve mainly around weight-generating networks and few-
shot learning. In weight-generating networks, a network (meta-
network) is trained to modify the weight of another network.
The meta-network can be regarded as a learned optimizer.
Unlike traditional supervised learning, in few-shot learning the
amount of data available for each class is relatively small, thus
the challenge is how to generalize from such limited data.

In this paper, we focus on a different perspective of meta-
learning. This approach tackles how to learn meta-information
underlying multiple related tasks the neural network (NN)
system is trying to solve, rather than training an optimizer in

the meta-network approach or learning to generalize from a
limited amount of training data. Our meta-learning framework
is based on the Fixed-Weight Learning (FWL) Theorem [7].
Let Nc denote a (changing) weight NN with it's associated
learning algorithm such as Backpropagation. The theorem
demonstrates that there exists a FWL recurrent network which
can learn any mapping that Nc can learn, but without changing
synaptic weights, hence the term fixed-weight (changing sig-
nal) learning. This is because the recurrent activation signals
(called potencies) contain information about the particular
mapping or task that is being learned. The learning algorithm
is embedded in (a subset of) the network's fixed synaptic
weights. The FWL-NN computes new potencies that control
the network's learned behavior based on feedback obtained on
the error signals of prior iterations.

The meta-learning framework presented and analyzed in this
work is referred to as Fixed Weight Meta-Learning (FWML).
It is not about the learning of a particular task, but rather
learning to learn better [8], [9]. During meta-learning, the
“fixed synaptic weights are varied so the network can derive
novel and efficient learning methods. It leverages the gradient
and smoothness of the parameter space to find and optimize
effective learning, unlike some other meta-learning techniques
[2], [10]–[13]. In Fixed-Weight Learning Neural Networks
(FWL-NNs) the learning algorithm is encoded in a manner
that differentiable and continuous (i.e. synaptic weights). This
means that means that small changes in the parameters results
in small changes in performance. In all optimization algo-
rithms of which we are aware, this smoothness of the error
surface results in expediting the finding of a solution. The
differentiability of the encoding makes it possible to compute
a multi-dimensional gradient in which to go for improved
performance.

The goal of FWML is to generate an effective embedded
learning algorithm that has learned how to learn a set of related
tasks. This is very useful in design of stable intelligent au-

978-1-5090-6014-6/18/$31.00 ©2018 IEEEAuthorized licensed use limited to: Missouri University of Science and Technology. Downloaded on May 18,2023 at 19:42:21 UTC from IEEE Xplore. Restrictions apply.

tonomous systems that are capable of lifelong learning. FWL-
NNs carry out all computations by the neural network itself
just like in biological brains. Animal behavior and learning
are concurrent and intertwined at a deep level. Extremely
robust and flexible learning capabilities evolved under this
scheme, suggesting that FWL-NNs should also have some of
the robustness and plasticity of biological learning.

This paper presents a systematic optimization and general-
ization of the FWML process by evaluating various topologies
and parameters of the Long Short Term Memory (LSTM)
architecture that are important for derivation of generalized
learning algorithms. The optimization investigates the influ-
ence of diverse structures and parameters on its performance.
By generalization (robustness), we imply ability of the system
to learn across multiple tasks including tasks unseen during
the meta-training phase. We investigate the robustness of the
FWML system to learn related tasks that were not explicitly
seen during the meta-training phase. For both optimization
and generalization, we introduce a meta-cost function, Mean
Squared Fair Error (MSFE) (Section III-A), in contrast to
Mean Squared Error (MSE), to enhance the performance of
the system by not penalizing it during transition interval in
learning a new task. Results obtained for both Boolean and
quadratic functions datasets demonstrates the performance and
robustness of our meta-learning framework.

The remainder of this paper is organized as follows. Section
II presents an overview of meta-learning systems, to provide
a context for this work. We describe the FWML framework in
Section III. Experimental results are presented and discussed in
Section IV while the conclusion and next steps are summarized
in Section V.

II. RELATED WORK

Meta-learning can be defined generally as “learning how to
learn” [14]. There are different approaches and formalizations
of meta-learning. One approach (weight-generating network)
uses two networks in which one network (the meta-network)
generates weights to transfer to another network. Some weight-
generating networks systems, such as in [1], [15], [16], utilize
a recurrent network to meta-train on a variety of networks in-
cluding feed-forward network, LSTM, and deep convolutional
network, on a variety of tasks. Generalization to new tasks
and scalability problems due to a large parameter space is
addressed in [17]. The overall theme of these approaches is
that there exists simultaneous fast and slow changing weights
in the system. Fast weights are generated on the fly to enable
the network adjust to a different input, while slow weights
are gradually updated in the meta-network. In contrast, our
method trains a single network to embed a learning algorithm
and then uses it in learning tasks related to those seen during
training.

According to [4], another approach of meta-learning could
be viewed as training a model on a variety of learning tasks,
such that it can solve new learning tasks using only a small
number of training samples. This is illustrated in one-shot or
few-shot learning, where one or very few examples of each

class is learned. The goal of few-shot meta-learning is to train
a model that can quickly adapt to a new task using only a few
data points and training iterations [4]. The model is trained
during the meta-learning phase on a set of tasks, such that
the trained model can quickly adapt to new tasks using only
a small number of examples or trials. In effect, the meta-
learning problem treats entire tasks as training examples. Koch
et al. [18] trained a Siamese network how to rank similarity
between pairs of input. In [2], [19] memory augmented neural
network are introduced to aid the systems quickly assimilate to
new data. Woodward and Finn [13] incorporates reinforcement
learning with few shot learning to learn when to classify or
skip the data.

In this work, we adopt a more general definition of meta-
learning, which can be viewed as two learning processes
proceeding simultaneously [9]. There is a controlling system,
whose objective is to learn a good learning algorithm for a set
of related tasks. There is also a subordinate learning algorithm,
which attempts to learn a specific single task. Periodically, the
controller alters the subordinate algorithm slightly to improve
its learning performance. The common theme that runs through
these multiple views of meta-learning is the concept of grad-
ually adapting the internal state of the network to adjust to
new tasks. For weight generating networks, this is done by a
learned optimizer with slow changing weights. In the FWML
framework, it is accomplished using the concept of fixed
weights via the memory cell in the LSTM. The meta-learning
problem studied in this work differs from weight generating
networks in that we aim to learn directly from error feedback
to infer higher level meta-information, rather than simply
learning similarity between data points. Hence, a more general
meta-learning framework. Ho Younger et al. [20] presented a
method for FWL-NNs using analytically derived sub-networks
to perform the learning computations. These networks were
applied to the dynamic learning of several classes of problems,
such as learning any mapping with two Boolean inputs and
one Boolean result. They also discussed the possibility of
deriving FWL-NN learning algorithms by an optimization
process, called meta-learning. Hochreiter and Younger [8] used
FWML with the LSTM topology to derive learning algorithms
optimized for classes of problems similar to those used in
[21]. This paper explores FWML in a framework where the
controlling system is a batch-mode Backpropagation Through
Time and the subordinate algorithm is an online FWL-NN
implemented on a LSTM neural network.

III. FIXED-WEIGHT META-LEARNING NETWORK

Given a set of related tasks F to be learned, the FWML
generates an optimized learning algorithm that is meta-trained
using a set of tasks f ∈ F . The goal is to derive a generalized
meta-learned algorithm that can learn all tasks in F including
tasks unseen during the meta-training phase. Given a meta-
training dataset D for a specific F , let Nf denote the number
of tasks f ∈ F presented during meta-training. It should
be noted that Nf counts all tasks in D even repeated ones.
Randomly repeating tasks is important so that the training

2018 International Joint Conference on Neural Networks (IJCNN)Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on May 18,2023 at 19:42:21 UTC from IEEE Xplore. Restrictions apply.

space is more broadly sampled. Beyond this, we also randomly
present multiple exemplars of each task denoted by NE .

Figure 1 illustrates a single training epoch which consists of
Nf task episodes, each consisting of NE exemplars. The first
exemplar of a new task episode is a transition point indicating
the point in time when the system switches from one task
episode to another (e.g. from f3 to f5, from f5 to f2). This
is illustrated by short vertical bars in Figure 1. The transition
region (interval) consists of the first k exemplars starting with
the transition point. During the transition interval, the network
has to adjust its state from the previous task to the present task.
Note that without any input to specify which task is currently
being learned, the FWL-NN is trained to learn across multiple
tasks. Figure 2 illustrates the meta-learning process of FWL-
NN. The input to the network consists of the current input
exemplar of task x(t), the networks output from previous input
exemplar y(t− 1), and the error ε(t− 1) of the last exemplar.
The error is given by ε(t) = y(t) − T (t) where T (t) is the
target or correct value associated with x(t).

There are two different learning mechanisms taking place in
the network. First is the update of weights of the network by a
gradient optimizer on the networks loss function. Second is the
update of the internal states of the network (hidden states and
memory cells) using the recurrent feedback error. This enables
the network to learn which specific task is taking place. The
goal of FWL-NN is then to minimize the error during each
task episode. Algorithm 1 outlines the meta-training phase of
the FWL-NN on a set of tasks. Note that feeding back both the
error and output from the last time step is essential for good
FWML performance (as verified by preliminary experimental
results). The recurrent network unrolls input x, error ε, and
output y from previous time steps to output the value for the
present time step.

Algorithm 1: Fixed-Weight Meta-Learning System Train-
ing

while not done do
Sample D(F,Nf , NE)
for t = 0 : size(D) do

if t = 0 then
Initialize Unroll(0)

end
else

Update Unroll(t) from x(t), y(t− 1), ε(t− 1)
end
y(t) = NN(Unroll(t); Θ)
ε(t) = y(t)− T (t)
Compute MSFE
Accumulate gradient w.r.t Θ:
∂Θ← ∂Θ + ∂(MSFE(y(t), T (t))

end
Update Θ using a gradient optimizer

end

A. Mean Squared Fair Error Function

In traditional supervised learning using NN, the loss func-
tion (Mean Squared Error - MSE) is applied to all of the
data points during training. This approach of computing the
error over all instances of tasks may not be optimal for a
meta-learner. As the training proceeds, the network is exposed
to a series of related but different tasks, instead of a single
task as in supervised learning. Thus, the error is expected
to spike during the transition interval at the beginning of a
new task. As the system adjusts to a new task, this error
should subsequently decrease. We propose that to improve
the learning performance of the FWML system, the system
should not be penalized during these transition intervals. This
is accomplished by utilizing an error function, Mean Squared
Fair Error (MSFE), that ignores (or disregards) the error of
the system during the transition interval. In our experiments,
k is set to 10 i.e. a transition interval consists of first 10
exemplars of a task episode. During testing, we also quantify
the performance of the system using Mean Fair Absolute Error
(MFE), which is defined as the Mean Absolute Error (MAE)
over all data points excluding the error during the transition
intervals, to allow direct comparison with previously published
FWML performance results [8].

B. Subordinate Learning Algorithm: LSTM Variants

One of the objectives of this work is to understand which
features are important for efficient derivation of effective learn-
ing of the FWML framework. Given that there are different
variants of the LSTM, a key contribution of this study is to
understand which variants are most useful for the FWML
and why? LSTM was introduced by [22]. Since then, there
has been several modifications of the LSTM [23]. The Forget
Gate is one of the most significant additions to the LSTM
as introduced in [24]. This study expands on the LSTM
architecture used in [9] which does not utilize a forget gate.
We utilize the standard equations for the gates, memory cell
and outputs of the LSTM [23].

zt = g(Wzx
t +Rzh

t−1 + bz) (1)

it = σ(Wix
t +Rzh

t−1 + bi) (2)

f t = σ(Wfx
t +Rfh

t−1 + bf) (3)

ct = it � zt + f t � ct−1 (4)

ot = h(Wox
t +Roh

t−1 + bo) (5)

yt = ot � Φ(ct) (6)

where σ is the logistic sigmoid, used for activation of the
gates. The g and h functions utilizes hyperbolic tangent for the
block input and output activations. � denotes the point-wise
multiplication between two vectors.

We empirically explored the various LSTM architectures
described in [23]. The following three variants demonstrated
superior performances as the subordinate learning algorithms
for our system: Full LSTM (LSTM), No Forget Gate (NFG),

2018 International Joint Conference on Neural Networks (IJCNN)Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on May 18,2023 at 19:42:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: A meta-learning epoch consists of Nf task episodes, each consisting of NE exemplars. The first exemplar of a new task
episode is a transition point. The transition region consists of the first k exemplars starting with the transition point. During
these transition interval, the network has to adjust its state from the previous task to the present task.

FWL-NN
(LSTM)

1

2

x t

x t

 T t

Delay

 y t

 1y t

Delay
 t y t T t

 1t

Meta-Training LSTM:
• Evaluated in Batch Mode (Many Tasks)
• Over Meta-Training Data Set: ா

• Using Loss Function: Mean Squared Fair Error
• Updates FWL-NN Q (Synaptic Weights)

Fig. 2: Fixed-Weight Meta-Learning Framework

Coupled Input and Forget Gate (CIFG). A large bias for
the forget gate, observed to improve performance in [25], is
implemented for the Full LSTM variant. In the CFG, both the
input gate and forget gate are coupled together and thus jointly
trained i.e: f t = 1− it. The CFG variants exploits the notion
that the input gate and forget Gate are trained independently
in the full LSTM architecture. In the NFG variant, there is no
forget gate, hence, the name and f t = 1. The NFG variant is
analogous to the original LSTM introduced in [22]. The same
architecture was used in [9] to solve the Boolean problem. We
are curious to see the NFG 's performance in comparison with
architecture the forget gate.

The underlying reason for utilizing the LSTM as the re-
current network for the subordinate learning algorithm is its
memory cell ct. This acts as the internal state (potencies) of
the network to learn the high level meta-data across tasks.

Without the memory cell, we hypothesize performance would
suffer. To test this hypothesis, we compare the performance of
the LSTMs to the Gated Recurrent Unit (GRU) in [26] which
does not have memory cell as described by its equations:

zt = σ(Wzx
t +Rzh

t−1 + bz) (7)

rt = σ(Wrx
t +Rrh

t−1 + br) (8)

ht = σ(Whx
t + (st−1 � rt)Rh) (9)

st = (1− zt)� ht + z � st−1 (10)

Since memory cell ct is updated slowly as it learns higher
level information of tasks, there is a need for a mechanism to
regulate ct so it adjusts its states efficiently when transitioning
between different tasks. There are two different approaches to
address this issue. One is learning a forget gate ct as mentioned
in the LSTM equations. A gentler approach is to simply clip
the value of ct to [-1 +1] to prevent a situation when ct gets
too large and takes longer to reset its states to new tasks. The
experiments, presented in SectionIV, compare three different
mechanisms to adjust ct: clipping the memory cell, utilizing
the forget gate, and clipping along with forget gate.

IV. EXPERIMENTS RESULTS AND ANALYSIS

A. Experimental Setup

The overall structure of the FWML network consists of an
RNN variant jointly trained with a two layer fully connected
network with sigmoid activations. The network has a first
hidden recurrent layer of size 24 followed by a perceptron
layer of size 12. The final output node has a sigmoid ac-
tivation function in the Boolean functions experiments; and
tanh activation for the quadratic data. To investigate optimiza-
tion of the FWML framework, we evaluated multiple RNN
architectures: NFG, CIFG, Full LSTM (all LSTM variants
with and without clipping memory cell), and GRU. Note
that it is not possible to clip the memory cell in GRUs due
to its network configuration. The system is implemented is
in Tensorflow [27] using rmsprop as the gradient optimizer.
The code and data is readily available on our GitHub page
(https://github.com/clslabMSU/FwdLearning).

2018 International Joint Conference on Neural Networks (IJCNN)Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on May 18,2023 at 19:42:21 UTC from IEEE Xplore. Restrictions apply.

Our experiments are based on two different sets of related
tasks: Boolean and quadratic. Let Fbool(x1, x2) denote the
Boolean functions space with two Boolean value inputs x1
and x2. The Boolean task set consists of 16 different tasks
(functions) fbool : x1, x2 → y in Fbool. The quadratic task
is defined as follows. Let Fquad(x1, x2) denote the quadratic
functions space. Each function in Fquad has the following form
fquad : x1, x2 → Ax1 + Bx2 + Cx1x2 + Dx21 + Ex22 + F ,
where A,B,C,D,E and F are the coefficients associated to
each function and x1, x2 are randomly drawn from a uniform
distribution. Note that for the quadratic tasks, functions do not
repeat in a training/testing epoch. For both tasks, the training
data consists of Nf = 100 task episodes with NE = 200
exemplars. After each epoch, the task episode order is shuffled
to prevent over-learning.

B. Comparative analysis of meta-training using MSFE vs
MSE as the meta-cost function

The Boolean function experiments investigated the effect of
training using the loss function as the newly defined MSFE in
comparison to MSE (Figure 3). (Note that the testing perfor-
mance for all systems evaluated is quantified using the Mean
Fair Error (MFE) and Mean Absolute Error (MAE), as defined
in SectionIII-A.) The FWML system demonstrated in Figure 3
is the NFG architecture with clipping and two different unroll
values (16, 40). (Unroll parameter can be varied to obtain
a good tradeoff between speed and performance.) As can be
observed from Figure 3, the best performing system, according
to both MFE (Figure 3a) and MAE (Figure 3b) values, is
obtained with the MSFE-trained system with unroll of 40. For
a lower value of unroll (16), according to testing performance
using the MAE criteria, the MSE-trained performed slightly
better than the MSFE-trained for fewer exemplars though
at higher exemplars, there is no difference in performance.
For MAE, a few large errors in a transition interval could
dominate its value over the episode. This can be seen in how
the MAE values of the different systems (Figure 3b) cluster
closely together. The difference which can be seen is that the
MAE for MSFE-trained network for the higher unroll values is
lower. This also highlights the usefulness of using MSFE for
training by not penalizing the system's performance during the
transition interval. For all subsequent experiments, the meta-
training is conducted using MSFE with unroll value of 40.

C. Performance analysis of varied RNN architectures

Table I demonstrates the performance of different network
topologies on the Boolean dataset. As can be observed, the
best performing system is the NFG with clipping of the
memory cell. The results also show that clipping improves
performance in NFG and CIFG but not in the full LSTM. The
clipping mechanism is designed to help the network adjust
to different tasks. When clipping is coupled with another
adapting mechanism such as the forget gate, as in the case of
the full LSTM, it results in a degradation of performance rather
than improvement. Table I also illustrates the usefulness of the
memory cell in the LSTM variants compared to the GRU, the

TABLE I: Performance across diverse RNN architectures using
Mean Square Fair Error as the loss function during meta-
training. Number of exemplars for test dataset is varied from
32 to 250.

FWL-NN Clipped Mean Fair Error on Test Data
32 64 128 200 250

NFG Yes .00434 .00268 .00034 .00062 .00056
NFG No .00522 .00350 .00076 .00099 .00060
CIFG Yes .00512 .00282 .00069 .00079 .00069
CIFG No .00875 .00432 .00086 .00119 .00093
LSTM Yes .00960 .00501 .00176 .00135 .00103
LSTM No .00661 .00340 .00067 .00105 .00080
GRU1 No .02201 .00699 .00342 .00294 .00160

NFG: No Forget Gate LSTM; NFG: No forget Gate; CIFG: Coupled Input and Forget Gate; GRU: Gated Recurrent Unit
Network; 1 Clipping can't be implemented in GRU;

worst performing system. The GRU performs worse in every
case, possibly due to its lack of memory cells. This confirms
our hypothesis that memory cell is central to meta-learning
system, absence of it results in degraded performance.

Figure 4 demonstrates the result of testing the networks with
the MAE function compared to testing with the MFE function.
Lower values of both the MAE and MFE result in higher-slope
trend lines for various NE ranging from 32 to 250 within an
episode. The highest slope indicates the NFG-Clipped network
variation has the best performance. The GRU network has the
worst performance. The points from higher NE are closer to
the origin and shown more clearly in the inset.

D. Generalization of FWML

To demonstrate the generalization of the system to learn
unseen tasks for the Boolean functions, we compared the
performance of FWML on a set of unseen tasks, i.e. tasks
not encountered in meta-training, across multiple architectures.
Based on performance of different topologies in Table I, NFG,
CIFG, GRU with no clipping and LSTM with clipping were
selected for this experiment. The selected networks are meta-
trained on a subset of Boolean tasks. The testing data consists
of new instantiations of tasks seen in meta-training as well as
the unseen tasks. Table II shows the results of generalization to
unseen tasks. In all cases, the performance on tasks seen during
meta-training were better than for unseen tasks. However, NFG
still yielded the best performances across all unseen tasks. We
observed that the GRU still had poor performance as observed
in Table I. A surprise finding is CIFG's poor performance on
unseen task of OR(8) and NAND(15).

Figure 5 shows the absolute error of the FWL-NN on a
series of seen and unseen Boolean tasks. The error can be
observed to rise at the start of task transition, and rapidly falls
once the task is learned. Tasks that were unseen during meta-
training are shaded in yellow. Note that the error occasionally
jumps up after it initially falls. This is more frequent in
unseen tasks, causing the error to be larger for these tasks
(see Figure 5b Task AND at time index 5128-5500). However,
the FWL-NN was still able to learn the unseen tasks in many
cases, although the network's error after learning was larger
than for the functions that it was meta-trained with.

2018 International Joint Conference on Neural Networks (IJCNN)Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on May 18,2023 at 19:42:21 UTC from IEEE Xplore. Restrictions apply.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

32 64 128 200 250

M
e

an
 F

ai
r

Er
ro

r

of Exemplars in Test Dataset

MSE Trained (unroll-40) MSFE Trained (unroll-40)

MSE Trained (unroll-16) MSFE Trained (unroll-16)

(a) Performance evaluated using Mean Fair Error.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

32 64 128 200 250

M
ea

n
Ab

so
lu

te
 E

rr
or

of Exemplars in Test Dataset

MSE Trained (unroll-40) MSFE Trained (unroll-40)

MSE Trained (unroll-16) MSFE Trained (unroll-16)

(b) Performance evaluated using Mean Absolute Error.

Fig. 3: Mean Fair Error (MFE) vs. Mean Absolute Error (MAE) test results for four training variations of the No Forget Gate
(NFG) with Clipping network. Two networks each have unroll values of 16 and 40. Two meta-cost functions, Mean Squared
Error and Mean Squared Fair Error, are used for each network's training. The best performing system during test using both
MFE and MAE metrics occurs with the MSFE-trained network of unroll value of 40.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.005 0.01 0.015 0.02 0.025

M
ea

n
Ab

so
lu

te
 E

rr
or

Mean Fair Error

NFG-Clipped

NFG

CIFG-Clipped

CIFG

LSTM-Clipped

LSTM

GRU

Linear (NFG-Clipped)

Linear (NFG)

Linear (CIFG-Clipped)

Linear (CIFG)

Linear (LSTM-Clipped)

Linear (LSTM)

Linear (GRU)

0

0.005

0.01

0.015

0.02

0 0.001 0.002 0.003

Fig. 4: Comparing Mean Absolute Error (MAE) to Mean Fair Error (MFE) for the networks of Table I. Low MAE and low
MFE indicate good performance. The figure shows that both MAE and MFE errors correlate well. In addition, higher NE give
lower error and are concentrated near the origin as shown in the inset.

2018 International Joint Conference on Neural Networks (IJCNN)Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on May 18,2023 at 19:42:21 UTC from IEEE Xplore. Restrictions apply.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1

1
4

2
2

8
3

4
2

4
5

6
5

7
0

6
8

4
7

9
8

8
1

1
2

9
1

2
7

0
1

4
1

1
1

5
5

2
1

6
9

3
1

8
3

4
1

9
7

5
2

1
1

6
2

2
5

7
2

3
9

8
2

5
3

9
2

6
8

0
2

8
2

1
2

9
6

2
3

1
0

3
3

2
4

4
3

3
8

5
3

5
2

6
3

6
6

7
3

8
0

8
3

9
4

9
4

0
9

0
4

2
3

1
4

3
7

2
4

5
1

3
4

6
5

4
4

7
9

5
4

9
3

6
5

0
7

7
5

2
1

8
5

3
5

9
5

5
0

0
5

6
4

1
5

7
8

2
5

9
2

3
6

0
6

4
6

2
0

5
6

3
4

6
6

4
8

7
6

6
2

8
6

7
6

9
6

9
1

0
7

0
5

1
7

1
9

2
7

3
3

3
7

4
7

4
7

6
1

5
7

7
5

6
7

8
9

7

OR & NAND Untrained

(a) OR & NAND unseen during meta-training.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
1

4
2

2
8

3
4

2
4

5
6

5
7

0
6

8
4

7
9

8
8

1
1

2
9

1
2

7
0

1
4

1
1

1
5

5
2

1
6

9
3

1
8

3
4

1
9

7
5

2
1

1
6

2
2

5
7

2
3

9
8

2
5

3
9

2
6

8
0

2
8

2
1

2
9

6
2

3
1

0
3

3
2

4
4

3
3

8
5

3
5

2
6

3
6

6
7

3
8

0
8

3
9

4
9

4
0

9
0

4
2

3
1

4
3

7
2

4
5

1
3

4
6

5
4

4
7

9
5

4
9

3
6

5
0

7
7

5
2

1
8

5
3

5
9

5
5

0
0

5
6

4
1

5
7

8
2

5
9

2
3

6
0

6
4

6
2

0
5

6
3

4
6

6
4

8
7

6
6

2
8

6
7

6
9

6
9

1
0

7
0

5
1

7
1

9
2

7
3

3
3

7
4

7
4

7
6

1
5

7
7

5
6

7
8

9
7

AND & NOR Untrained

(b) AND & NOR unseen during meta-training.

Fig. 5: Generalization of Learning: Two systems each with two tasks unseen during meta-training. Testing error is shown for
tested tasks. Error is high during task transition. Unseen-tasks are highlighted in yellow; meta-trained-tasks are not.

TABLE II: FWL-NN generalization performance on tasks
unseen during meta-training: AND(2), XOR(7), TRUE(16),
OR(8), NOR(9), NAND(15).

FWL-NN Type Trained Tasks Unseen Tasks
Unseen Tasks MSE MFE MSE MFE

NFG (9,15) .008 .007 .009 .009
NFG (2,8) .013 .012 .010 .010
NFG (2,9) .010 .010 .010 .010
NFG (8,15) .003 .001 .009 .009
NFG (7,16) .011 .010 .038 .037
GRU (9,15) .083 .083 .380 .379
GRU (2,8) .032 .032 .173 .166
GRU (2,9) .021 .021 .057 .055
GRU (8,15) .046 .046 .136 .131
GRU (7,16) .033 .033 .286 .288
CIFG (9,15) .001 .009 .009 .010
CIFG (2,8) .009 .009 .012 .012
CIFG (2,9) .008 .008 .021 .021
CIFG (8,15) .030 .030 .318 .311
CIFG (7,16) .014 .014 .116 .107
LSTM (9,15) .011 .011 .094 .091
LSTM (2,8) .011 .011 .069 .070
LSTM (2,9) .009 .009 .014 .015
LSTM (8,15) .011 .112 .114 .104
LSTM (7,16) .033 .033 .286 .288

Generalization results tested on the quadratic functions
dataset were carried out using NFG LSTM with clipped
memory cells and unroll value of 40. Table III summarizes
the performance on unseen quadratic functions using both
MAE and MFE for two different learning rate values. (The
learning rate for all Boolean functions experiments was fixed
at 0.01.) We can observe that a lower learning rate yields
a better performance. Figure 6 illustrates the absolute error
across multiple time points for a set of unseen quadratic tasks.
The error follows the same pattern as the Boolean dataset,
although the value is higher. The pattern of the error, spiking
during transition intervals and then subsequently decreasing,
demonstrate that the FWML can fit quadratic functions, after

TABLE III: Performance of NFG on unseen quadratic tasks.

Learning rate 128 Exemplars 150 Exemplars
MAE MFE MAE MFE

0.01 0.037 0.027 0.033 0.025
0.001 0.046 0.036 0.044 0.035

Fig. 6: NFG performance on unseen quadratic tasks with NE

of 128 and learning rate 0.01.

learning has taken place.

V. CONCLUSION

This work investigated a systematic optimization and gen-
eralization of the FWML system. The FWML learning algo-
rithm was derived using LSTM-based meta-learning methods
previously used by us and others [8]. Parameters examined
includes unroll values, the presence or absence of LSTM
“forget gates, the presence or absence of clipping of the
LSTM memory neurons, and two meta-cost functions. The
new results presented in this work demonstrate that FWML-
derived learning algorithms have the ability to generalize
and learn new tasks that were not included in the meta-
training process. This ability to generalize is probably due to

2018 International Joint Conference on Neural Networks (IJCNN)Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on May 18,2023 at 19:42:21 UTC from IEEE Xplore. Restrictions apply.

the smoothness (continuous and differentiable) of the FWL-
NN encoding of the learning algorithm. The results suggest
several conclusions: (i) The FWML was able to leverage the
regularities of the meta-training data set to generalize to new
problems that it had not seen before. (ii) The usefulness of
Mean Squared Fair Error as a loss function for the meta-
training phase in improving system performance, as it provided
the FWL-NN a few time steps to learn a new task without
penalty. (iii) It is evident that the Boolean FWL-NN is not just
memorizing the possible functions, since such a scheme would
not generalize to not-before-seen functions. (iv) Since the
meta-training data set contained several examples of functions
of that are logical inverses of each other, the FWML was able
to generalize operation to the extend that it could logically
invert functions that it had been meta-trained on to learn
function that it did not know. (v) The fact that the not-seen-
before functions had larger error after learning suggests that
the FWL-NN learning algorithm was not Backpropagation,
since gradient descent performance would not depend on these
factors.

We plan to extend this work to real-world problems and
continue further performance analysis of the meta-learned
FWL-NN to understand how the learning algorithm works and
how to improve the scope of its generalization ability.

REFERENCES

[1] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, and N. de Freitas, “Learning to learn by gradient descent
by gradient descent,” in Advances in Neural Information Processing
Systems, 2016, pp. 3981–3989.

[2] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in Interna-
tional conference on machine learning, 2016, pp. 1842–1850.

[3] K. Li and J. Malik, “Learning to optimize,” arXiv preprint
arXiv:1606.01885, 2016.

[4] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, D. Precup and Y. W. Teh,
Eds., vol. 70. International Convention Centre, Sydney, Australia:
PMLR, 06–11 Aug 2017, pp. 1126–1135. [Online]. Available:
http://proceedings.mlr.press/v70/finn17a.html

[5] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo,
R. Munos, C. Blundell, D. Kumaran, and M. Botvinick, “Learning to
reinforcement learn,” arXiv preprint arXiv:1611.05763, 2016.

[6] F. Sung, L. Zhang, T. Xiang, T. Hospedales, and Y. Yang, “Learning to
learn: Meta-critic networks for sample efficient learning,” arXiv preprint
arXiv:1706.09529, 2017.

[7] N. Cotter and P. Conwell, “Fixed-weight networks can learn,” in Neural
Networks, 1990., 1990 IJCNN International Joint Conference on. IEEE,
1990, pp. 553–559.

[8] S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to learn
using gradient descent,” in International Conference on Artificial Neural
Networks. Springer, 2001, pp. 87–94.

[9] A. S. Younger, S. Hochreiter, and P. R. Conwell, “Meta-learning with
backpropagation,” in Neural Networks, 2001. Proceedings. IJCNN’01.
International Joint Conference on, vol. 3. IEEE, 2001.

[10] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-
learning,” Artificial Intelligence Review, vol. 18, no. 2, pp. 77–95, 2002.

[11] S. Bengio, Y. Bengio, and J. Cloutier, “On the search for new learning
rules for anns,” Neural Processing Letters, vol. 2, no. 4, pp. 26–30,
1995.

[12] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel, “Rl 2: Fast reinforcement learning via slow reinforcement
learning,” arXiv preprint arXiv:1611.02779, 2016.

[13] M. Woodward and C. Finn, “Active one-shot learning,” arXiv preprint
arXiv:1702.06559, 2017.

[14] J. Schmidhuber, “On learning how to learn learning strategies,” Tech.
Rep., 1995.

[15] J. Ba, G. E. Hinton, V. Mnih, J. Z. Leibo, and C. Ionescu, “Using fast
weights to attend to the recent past,” in Advances In Neural Information
Processing Systems, 2016, pp. 4331–4339.

[16] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” arXiv preprint
arXiv:1609.09106, 2016.

[17] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Col-
menarejo, M. Denil, N. de Freitas, and J. Sohl-Dickstein, “Learned
optimizers that scale and generalize,” arXiv preprint arXiv:1703.04813,
2017.

[18] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in ICML Deep Learning Workshop, vol. 2,
2015.

[19] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in Advances in Neural Information
Processing Systems, 2016, pp. 3630–3638.

[20] A. S. Younger, P. R. Conwell, and N. E. Cotter, “Fixed-weight on-line
learning,” IEEE Transactions on Neural Networks, vol. 10, no. 2, pp.
272–283, 1999.

[21] N. Cotter and P. Conwell, “Learning algorithms and fixed dynamics,”
in Neural Networks, 1991., IJCNN-91-Seattle International Joint Con-
ference on, vol. 1. IEEE, 1991, pp. 799–801.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems, 2017.

[24] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with lstm,” 1999.

[25] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML-15), 2015, pp. 2342–
2350.

[26] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[27] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

2018 International Joint Conference on Neural Networks (IJCNN)Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on May 18,2023 at 19:42:21 UTC from IEEE Xplore. Restrictions apply.

	Meta-Learning Related Tasks With Recurrent Networks: Optimization And Generalization
	Recommended Citation

	Meta-Learning Related Tasks with Recurrent Networks: Optimization and Generalization

