Aalto University
School of Science

Master’s Programme in Computer, Communication and Information Sciences

RINU BONEY

FAST ADAPTATION OF NEURAL NETWORKS

Master’s Thesis

Espoo, 26.02.2018

Supervisor: Prof. Juho Kannala

Thesis Advisor: D.Sc. (Tech.) Alexander Ilin

Al

Aalto University
AALTO UNIVERSITY School of Science

SCHOOL OF SCIENCE

ABSTRACT OF THE MASTER’S THESIS:

Author: Rinu Boney

Title of the thesis: Fast Adaptation of Neural Networks
Date: 26.02.2018

Language: English

Number of pages: 46

Major: Machine Learning and Data Mining
Supervisor: Prof. Juho Kannala

Thesis Advisor: D.Sc. (Tech.) Alexander Ilin

The ability to learn quickly from a few samples is a vital element of
intelligence. Humans can reuse past knowledge and learn incredi-
bly quickly. Also, humans are able to interact with others to effec-
tively guide their learning process. Computer vision systems for
recognizing objects automatically from pixels are becoming com-
monplace in production systems. These modern computer vision
systems use deep neural networks to automatically learn and rec-
ognize objects from data. Oftentimes, these deep neural networks
used in production require a lot of data, take a long time to learn
and forget old things when learning something new.

We build upon previous methods called Prototypical Networks
and Model-Agnostic Meta-Learning (MAML) that enables ma-
chines to learn to recognize new objects with very little supervision
from the user. We extend these methods to the semi-supervised
few-shot learning scenario, where the few labeled samples are ac-
companied with (potentially many) unlabeled samples. Our pro-
posed methods are able to learn better by also making use of the
additional unlabeled samples. We note that in many real-world
applications the adaptation performance can be significantly im-
proved by requesting the few labels through user feedback (ac-
tive adaptation). Further, our proposed methods can also adapt
to new tasks without any labeled examples (unsupervised adapta-
tion) when the new task has the same output space as the training
tasks do.

Keywords: deep learning, few-shot learning, meta-learning, active
learning

ii

ACKNOWLEDGEMENTS

This master’s thesis was done at The Curious Al Company. I would
like to thank Curious Al for the resources and the inspiring envi-
ronment. I would like to thank everybody at the company for their
encouragement and support. I would like to thank Hotloo Xiranood
for his enthusiastic company and Vikram Kamath for proofreading
the thesis.

I am deeply grateful to my advisor Dr. Alexander Ilin for his
invaluable guidance and support.

I would like to thank my supervisor Prof. Juho Kannala for his
continuous support.

I would like to thank my parents and sister for their love and support.

Finally, I thank Silu for her encouragement and love.

iii

CONTENTS

1 INTRODUCTION

1.1 Motivation

1.2 Contributions

1.3 Structure .

2 FEW-SHOT LEARNING
2.1 Meta-Learning L
2.2 Task Description.

2.3 Approaches

2.4 Siamese Networks
2.5 Matching Networks
2.5.1 Relation to Gaussian Processes

2.6 Meta-LSTM

2.7 Prototypical Networks
2.8 Model-Agnostic Meta-Learning
2.8.1 Learning Initialization as Meta-Learning
2.8.2 Learning-Rate Schemes
2.9 Experiments on minilmagenet
2.10 Continual Learning with PN

2.11 Conclusion

3 SEMI-SUPERVISED ADAPTATION
3.1 Semi-Supervised Adaptation with PN
3.2 Semi-supervised Adaptation with MAML
3.3 Experiments on SyntheticData
3.4 Experiments on minilmagenet

3.5 Conclusion

ACTIVE ADAPTATION

4.1 Active Adaptation withPN
4.2 Experiments with minilmagenet
4.3 Visualizations

4.4 Conclusion

5 UNSUPERVISED ADAPTATION
5.1 Unsupervised Adaptation with Prototypical Networks
5.2 Unsupervised Adaptation with MAML
5.3 Experiments on Synthetic Data

5.4 Conclusion
6 CONCLUSION

BIBLIOGRAPHY

iv

W W N R

R 0Oy O OB

20
20
22
23
25
28

29
29
30
31
33

36
36
36
37
39

40

42

LIST OF FIGURES

Figure 1
Figure 2

Figure 3

Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Figure 12

Figure 13
Figure 14

Figure 15
Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Learning Scenarios 2
Episodic formulation of data in few-shot clas-
sification 7

[llustration of Recurrent Neural Net-
work (RNN) based approach to few-shot

learning oo oL 8
Illustration of the structure of Matching Net-
works 9
Ilustration of the structure of a Meta-LSTM
network L 12
Computational graph of supervised adapta-
tion with Prototypical Networks (PN). 13

Computational graph of supervised adapta-
tion with Model Agnostic Meta Learning (MAML) 14
Intuition behind MAML L. 15
Comparison of different learning rate schemes. 15
[lustration of semi-supervised clustering for

semi-supervised adaptation 22
Computational graph of semi-supervised
adaptation with MAML 24
An example task from the sine classification
dataset. 25

Example of semi-supervised adaptation with PN 25
Example of semi-supervised adaptation with
MAML 26
Semi-supervised adaptation results with
MAML and PN on the sine classification dataset 26
[llustration of a reasonably well clustered 3-
way 1-shot minilmagenet task. 33
[lustration of a 3-way 1-shot minilma-
genet task in which the supervised and
semi-supervised adaptations fail but active

adaptation produces reasonable results. 34
[lustration of a failure case of active adapta-
tion in a 3-way 1-shot minilmagenet task. . . . 35

[llustration of a 3-way 1-shot minilmagenet
task in which the samples are not properly

clustered. 35
Computational graph of unsupervised adapta-
tionwith MAML 37

Examples of unsupervised adaptation using PN 38

Figure 22

Figure 23

List of Figures

Examples of unsupervised adaptation using
MAML . o ottt 38
Unsupervised adaptation results with MAML
and PN on the sine classification dataset 39

Vi

LIST OF TABLES

Table 1
Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Average 5-way testing classification accuracy

(with 95% confidence intervals) on minilmagenet. 17

Average 20-way testing classification accuracy

(with 95% confidence intervals) on minilmagenet. 17

Results of fully supervised adaptation using
PN as a function of the number k of samples
per class during training
Average 5-way 1-shot classification accuracy
on minilmagenet for the semi-supervised
scenario for different number of unlabeled
samplesperclass
Average classification accuracy on minilma-
genet for the semi-supervised scenario as a
function of the number of K-means iterations.
Average 1-shot classification accuracy of PN
(ours) on minilmagenet for the active learning
scenario for different number of unlabeled
samplesperclass
Average 1-shot classification accuracy of Resnet
PN on minilmagenet for the active learning
scenario for different number of unlabeled
samplesperclass
Average 1-shot classification accuracy on mini-
Imagenet for the active learning scenario for
different number of iterations

vii

27

ACRONYMS

mamr Model Agnostic Meta Learning
pN Prototypical Networks

srL Bayesian Program Learning

~ncm Nearest Class Mean

rnN Recurrent Neural Network

st Long Short-Term Memory

sep Stochastic Gradient Descent

cr Gaussian Processes

viii

INTRODUCTION

The ability to learn quickly from a few samples is a vital element of
intelligence. Humans can reuse past knowledge and learn incredibly
quickly. This thesis explores fast adaptation of deep neural networks
to generalize quickly to new tasks from a few samples. Training such
models involve learning general internal representations that are suit-
able for a wide range of tasks. In real-world problems, it is often the
case that the problem at hand has few labeled data and more unla-
beled samples and there usually exists datasets that are similar with
plenty of labeled data and practically unlimited unlabeled data. This
thesis explores the question — How to quickly adapt to this new task
from a few samples in a short amount of (wall clock) time? In this the-
sis, we characterize a new task by a change in the environment, that
is change in the input distribution (domain adaptation) or a change in
the output space.

Consider the transfer learning scenario illustrated in Figure 1. We
assume that we have a set of different tasks at any given time. Each
task consists of labeled and unlabeled data and we want to produce
a good model for each task. Knowledge gained from training mod-
els for previous tasks can be leveraged to improve performance in
training models for new tasks, an ability known as transfer learning.
Improved performance can be obtained as a side-effect of the advan-
tage of additional data accumulated over time. The training algorithm
itself can be modeled and improved over time with experience. This
problem is known as meta-learning. Meta-learning can enable rapid
generalization to new tasks. When the number of examples for a par-
ticular task is very low, the problem is called few-shot learning. The
system should be able to generalize from the samples by leveraging
knowledge extracted from previous tasks.

Under the assumption that the tasks are all sufficiently related, it
is also possible to build a single model that is able to perform all
the tasks. Ideally, the model should still be able to perform previ-
ously trained tasks and does not forget them over time. This ability is
known as continual learning. Neural networks easily forget previous
tasks when trained on new tasks, a problem referred to as catastrophic
forgetting [23]. Similar to how humans learn, the complexity of tasks
can be increased over time to enable easier learning. The learning
system can slowly develop more complex models from simple ones.
This scenario is called curriculum learning. Learning multiple tasks at
the same time enables learning better shared representations that im-
prove generalization. This approach is termed as multi-task learning.

We explore fast
adaptation of deep
neural networks to
new tasks from a few
samples in a short
amount of time.

1.1 MOTIVATION 2

Ideally, under certain assumptions on the similarity of the tasks, the
training time and amount of data required should gradually decrease

over time.

i

i

Trainingli

Trainingz]

t

f

f

1
1
[(Labeled and Unlabeled)

)

[

DataEi
(Labeled and Unlabeled)

]

Training -

Trainingm

f

f

[atag.y]
(Labeled and Unlabeled)

[

Data,,
(Labeled and Unlabeled)

Taskl]

Taskz]

Task,

(N-1))

Taskm

Past Knowledge

New Tasks

Figure 1: [llustration of different learning scenarios.

1.1 MOTIVATION

Adaptation is
favorable in

nonstationary
environments

We present two different motivations for fast adaptation of neural
networks:

* Nonstationarity: Fast learning and adaptation in a quickly chang-
ing environment are very important. An agent or system de-
ployed in dynamic or interactive environments should be able
to adapt to the changes in the environment.

e Lack of data: Oftentimes, real-world problems have few labeled
samples and there usually exists data sources that are similar,
with plenty of labeled data and practically unlimited unlabeled
data. It is possible to adapt to these problems by leveraging the
knowledge extracted from similar data sources.

In many real-world applications, it is possible to interact with the
user. A lot of information is present in these interactions. In such in-
teractive learning environments, the interactions can be used to guide
the adaptation in a more effective manner. We also explore this possi-
bility in this thesis.

A common feature of photo management applications is the auto-
matic organization of images based on limited interactive supervision
from the user. The classes relevant to a specific user are likely to be
different from the classes in publicly available image datasets such as
ImageNet [40], thus there is a need for adaptation. The user can facil-
itate the adaptation by labeling a few images according to personal
preferences.

1.2 CONTRIBUTIONS

1.2 CONTRIBUTIONS

This thesis builds upon two previously introduced methods for few-
shot learning — Prototypical Networks (PN) [46] and Model-Agnostic
Meta Learning (MAML) [12]. The core contributions of this thesis can
be listed as follows:

¢ Introduction of unsupervised, semi-supervised and active few-
shot adaptation problems.

* Extension of PN for unsupervised, semi-supervised and active
adaptation.

e Extension of MAML for unsupervised and semi-supervised
adaptation.

¢ Extension of the metric learning approach in few-shot classifica-
tion to regression problems.

Further, both methods are also compared in various settings.

1.3 STRUCTURE

The problem of few-shot learning is formally introduced in Chapter 2.
Then, we list and describe the related works to the methods proposed
in the thesis. We consider two previously introduced methods for
few-shot learning - Prototypical Networks (PN) and Model-Agnostic
Meta-Learning (MAML). They are formally introduced in Chapter 2.
In Chapter 3, we introduce the problem of semi-supervised adapta-
tion. We relate semi-supervised adaptation to the problem of semi-
supervised clustering and show how to perform this using features
extracted with PN. We present improvements in the minilmagenet
benchmark by making use of unlabeled data. Also, we extend MAML
for semi-supervised adaptation and present results on synthetic data
and compare it to PN. In Chapter 4, we consider semi-supervised
adaptation using PN and show how to make more effective use of un-
labeled data by taking user feedback into account. We present further
improvements on the minilmagenet benchmark using active adapta-
tion with PN. In Chapter 5, we extend both PN and MAML for unsu-
pervised adaptation and present results on synthetic data. In Chap-
ter 6, we compare the proposed methods and discuss some further
improvements and possible future research directions.

FEW-SHOT LEARNING

Few-shot learning is the ability to generalize quickly from few avail-
able examples, that is learning new concepts from a few examples
of the concept. Humans are easily able to do this but machines still
struggle to do this well. In particular, models trained with gradient-
based methods require a large amount of data to generalize well.

The more constrained problem of few-shot classification deals with
the adaptation of classifiers to previously unseen classes from a few
samples. Models for few-shot classification should have the capacity
to model the diversity of forms in objects around us. Such models
may contain tens of thousands or millions of parameters and hence
will require millions of samples to learn the parameters. So, learning
good representations for image classification requires a large number
of labeled samples. However, a six-year-old human child can recog-
nize more than 10% categories of objects and is also able to learn many
new categories per day [6]. Few-shot learning is inspired by the abil-
ity of humans to classify instances of new classes from just one, or a
handful of instances. Humans are able to do this by utilizing knowl-
edge gained from previous experience. Similarly, in few-shot learning,
knowledge gained from previously learned classes are used to learn
new classes. A Bayesian implementation of this idea was presented by
Fei-Fei, Fergus, and Perona [11] for one-shot learning of new object
categories. In [11], the information abstracted from learning previous
classes is represented in form of a prior density function in the space
of model parameters. Then, this prior is updated based on new train-
ing samples to produce the posterior density which can be used to
recognize the new categories.

The problem of few-shot learning has gained attention since the
introduction of the Omniglot dataset [27]. Lake, Salakhutdinov, and
Tenenbaum [27] introduced a framework called Bayesian Program
Learning (BPL) to achieve human-level performance in this dataset,
outperforming existing deep learning approaches at the time. In BPL,
concepts are represented as simple stochastic programs that are able
to explain the observed examples. The programs are enforced to be
simple under a Bayesian criterion. A program represents a concept
compositionally from parts, subparts and spatial relations. BPL also
defines a generative model that can generate new concepts by combin-
ing its constituents in novel ways. However, BPL induces prior knowl-
edge about the data such as pen strokes into the model. Since then,
deep learning models have been developed to achieve competitive
performance on this task from the observed pixels.

Few-shot learning is
the ability to
generalize quickly
from few available
examples.

FEW-SHOT LEARNING

Metric learning [5, 25] approaches have been successfully applied
to few-shot learning [24, 46, 51]. Deep convolutional Siamese net-
works used for image verification were tested in the Omniglot dataset
[27]. Siamese networks were able to significantly outperform the base-
lines and demonstrate competitive performance. Siamese networks
are described in detail in Section 2.4. Siamese networks have also
been successfully applied to lower the amount of data required to
make meaningful predictions in drug discovery [2]. Matching Net-
works [51] proposed an attention mechanism over a learned embed-
ding space to perform few-shot learning. Matching Networks are de-
scribed in detail in Section 2.5.

Mensink et al. [31] explored large-scale image classification meth-
ods that are able to learn new classes continuously over time. They
consider distance-based non-parametric methods such as K-nearest-
neighbors and Nearest Class Mean (NCM) classifiers to learn large-
scale image classification datasets with 1,000 and 10,000 classes to
achieve competitive results with the state-of-the-art results at the time.
Prototypical Networks [46] developed for few-shot learning can be
viewed as a NCM classifier in a learned embedding space. Prototypi-
cal Networks are described in detail in Section 2.7.

Another recent approach to few-shot learning is based on optimiza-
tion [36]. Ravi and Larochelle [36] proposed a method called Meta-
LSTM in which an LSTM called the meta-learner is used to adapt the
parameters of another LSTM network called the learner to perform
few-shot learning. Meta-LSTM is described in detail in Section 2.6.
Finn, Abbeel, and Levine [12] took a similar approach and proposed
a method called MAML to learn an initialization of the parameters of
a network such that it can be adapted to a new task from a few sam-
ples in a few gradient update steps. MAML is described in detail in
Section 2.8.

Various other approaches have been taken towards few-shot learn-
ing. Attentive Recurrent Comparators [45] use an RNN-based con-
troller with an attention mechanism to match similar images to per-
form few-shot learning. Neural networks with augmented memory
are able to encode and retrieve data efficiently enabling them to make
accurate inferences from few examples [39]. Deep generative models
have been exhibited to perform one-shot generalization by uncondi-
tional sampling, generating new exemplars of a given concept, and
generating new exemplars of a family of concepts [39]. An exten-
sion of variational autoencoders has been used to learn to compute
summary statistics of different datasets in a completely unsupervised
manner [10].

In few-shot learning, during the training phase of development,
the model is trained with a background set that enables the model
to have general background knowledge about the data. In the testing
phase, a test set of k samples from N novel classes are used and the

2.1 META-LEARNING

model is expected to assign each sample to one of the N classes. The
few-shot learning problem can be approached in different ways. In
this thesis, we adopt a meta-learning approach to the problem.

2.1 META-LEARNING

Meta-learning or learning to learn is a skill that enables rapid ac-
quisition of new concepts [44, 50]. Meta-learning is the modeling of
the process of learning itself and improving it by experience. Meta-
learning aims to train a model on a variety of different learning tasks,
such that it can solve new learning tasks using only a small number
of training samples. Meta-learning is enabled by the slow extraction
of the similarities in the learning process across different tasks and
generalizing to new tasks. Meta-learning considers the occurrence
of learning at two different levels: quick acquisition of knowledge
within each task (we refer to this as adaptation) and slower extraction
of information across all tasks. The slower learning process guides the
adaptation. Meta-learning has been successfully applied to the prob-
lem of few-shot learning [12, 34, 36]. In the meta-learning approach, a
model or classifier is explicitly optimized to adapt itself to new tasks
or classes from a few samples. This is possible because of the knowl-
edge extracted by the model from previous experience with related
classes.

2.2 TASK DESCRIPTION

To be consistent throughout the thesis and to avoid ambiguity,
this section describes the mathematical formulation of few-shot
learning. In few-shot learning, the dataset D consists of different
tasks/episodes. Each task t consists of a support set S; and a query
set Q¢. The dataset D is split into Diain, Dvalidation and Diest as is
standard practice in machine learning. However, few-shot learning
operates at a higher level of abstraction where the dataset itself
consists of smaller datasets for different tasks. We are interested in
learning an adaptation procedure that can adapt the model to a task
t from the support set St of the task to perform well on the query set
Qt.

Few-shot classification models are tested using N-way k-shot clas-
sification tasks. In an N-way k-shot classification task, the support set
St ={(x1,Y1), .-, (Xn, yn)} consists of k labeled examples for N unseen
classes and the model is evaluated in its ability to correctly classify
new samples in the query set Q¢ = {(Xn+1,Yn+1), - Xn+m, Yn+m)}
into one of the N classes where x; are inputs and y; are the corre-
sponding labels. This episodic formulation of data in few-shot clas-
sification is illustrated in Figure 2. In practice, the support set for a
new task is created by sampling N different classes from a dataset

Meta-learning is the
modeling of the
process of learning
itself and improving
it by experience.

Few-shot
classification models
are tested using
N-way k-shot
classification tasks.

2.3 APPROACHES

Support set 5, Query set O,

N T

Train set

—_——— = .4

Test set

Figure 2: Episodic formulation of data in few-shot classification.

with a larger number of classes and k samples from each of the N
classes. The query set is formed by sampling a particular number of
additional samples (m) from the same N classes in the support set.

2.3 APPROACHES

In this section, we outline the common approaches taken to solving
the problem of few-shot learning;:

1. Similarity-Based

In this approach, new tasks are handled similarly to previous
experience with similar tasks. There exist different ways to do

this:

a) Model-Based

b)

Few-shot learning can be cast as a sequence-to-sequence
modeling problem where each task is a sequence of input-
output pairs. This approach is taken by [32, 34, 42]. The
RNN based approach used by [42] is illustrated in Figure 3.
Classification tasks are sampled in an episodic manner as
described in Section 2.2 and an RNN with augmented mem-
ory is trained to classify new images based on the previ-
ously provided image-label pairs in the same episode. This
approach is flexible but less efficient than others because it
should develop learning capabilities from scratch.

Metric-Based

This is a more explicit approach in which we learn a metric
space based on the similarity of the images so that similar
images are closer. New images are assigned a label based
on its distance (in the learned metric space) to the images
in the support set. This approach is used by [24, 46, 51].

2.4 SIAMESE NETWORKS

Class Prediction

(XpYe1) (X191 Labels (x1,0) (%9,01)
| | Classes
Episode Samples

Figure 3: Illustration of RNN based approach to few-shot learning. Figure
taken from [42].

2. Optimization-Based

This approach involves learning a good initialization and up-
date mechanisms to adapt to new tasks. The gradient provides
useful information for unseen data. Use of gradients can help
in adapting to unseen situations. This approach is taken by [36]
and [12].

We consider only the metric-based (Prototypical Networks) and
optimization-based (Model-Agnostic Meta-Learning) approaches in
this thesis.

2.4 SIAMESE NETWORKS

If there exists a model that can compare two images and predict the
probability that they belong to the same class, then unseen images in
the query set can be classified by comparing it with all images in the
support set and classifying it to the class with the highest probability.
One such model, a Siamese network [24] consists of two networks
that share weights (hence the name) to embed two images and then a
logistic regression classifier on top of it to predict the probability that
the images belong to the same class based on the distance between
their embeddings. Siamese networks are a simple yet effective metric
learning approach commonly applied in few-shot learning problems
[2, 24]. Siamese networks increase the effective size of the data by pair-
ing all the samples. However, this requires sampling pairs of samples
from the whole dataset and it might take a long time to go through
the whole dataset.

2.5 MATCHING NETWORKS

Vinyals et al. [51] points out the obvious but important fact that few-
shot learning is easier if we train the network to do few-shot learning.
A basic principle in machine learning is to match training and testing

8

A basic principle in
machine learning is
to match training
and testing
conditions.

2.5 MATCHING NETWORKS

conditions. In Vinyals et al. [51], the classes in the training dataset
Dirain are sampled into N-way k-shot classification tasks with support
and query sets similar to testing conditions.

Neural networks require lots of data and are time-consuming to
train due to their parametric nature. Non-parametric models such
as K-nearest-neighbors are able to quickly assimilate new classes. A
Matching Network [51] is essentially a fully end-to-end nearest neigh-
bor classifier in which nearest neighbor classification is performed on
features extracted by a neural network. The structure of Matching
Networks is illustrated in Figure 4. Matching Networks in its sim-
plest form can be expressed as:

0= al&xi)yi, (1)
i=1
where a is the attention kernel. Note that this form does not limit it
to classification problems. Equation 1 can be viewed as an attention
function. Generally, an attention function maps a query and a set of
key-value pairs (support set) to an output. This is also the require-
ment of few-shot classification tasks.

Figure 4: lllustration of the structure of Matching Networks. The support set
is embedded using a feature extractor gg and the query sample is
embedded using a different (can also be the same) feature extrac-
tor fg. Then, the cosine similarity of the embedding of the query
sample with embeddings of the support samples are computed
and the final classification is performed by weighing the class la-
bels of the support samples with the softmax of these similarities.
Figure taken from [51].

Neural networks
require lots of data
and take time to
learn due to its
parametric nature.

2.5 MATCHING NETWORKS 10

2.5.1 Relation to Gaussian Processes

Gaussian Processes (GP) are non-parametric probabilistic models ap-
plied to classification and regression problems. A GP defines a prior
over functions. These prior functions are converted to a posterior over
functions based on the training data. The distribution over the func-
tions are defined at values at a finite, but arbitrary, set of points, say
X1,...,XN. GP models the similarity of data points using a kernel func-
tion and predicts the value for an unseen sample based on its simi-
larity to all samples in the training data. In GP, the distribution over
function values p(f(x1), ..., f(xn)) is assumed to be jointly Gaussian
with mean p and covariance X. The covariance matrix X is computed
using a positive-definite kernel function: Zi; = k(xi,%;). In GP, we
can analytically compute the posterior distribution over the functions
from the priors and the training samples.

Assume that we have training samples defined by input-output

pairs {(X1 Y1)/ ceer (XN/UN)} Let

:[X1]TI
y =ly1.ynl",
£ = [f(x1)...fyn)]"
wx = k(& x1).K(R, x)F,
k(x1,%1) k(x1,x2) ... k(x1,xn)
F oK. — k(Xz.,M) k(x2,%x2) ... k(x2,xNn)
(k(xnoxa) ke, x2) e ko, X |

where x and y are the vector of input and output values respectively.
The prior is often assumed to have zero mean:

f~N(0, Kix) -

The kernel function k is parametrized by parameters 6 which can
be estimated by maximizing the log marginal likelihood. Making pre-
dictions in GP is performed using the predictive distribution

p(OI%, {(xi, yi)}) = N(9[p, L)
for an unseen sample X. Then, the posterior mean is computed as:
f=kexKy &)
and the posterior variance is computed as:
£ =K% %) — kaxKi kg,

From Equation 2, we can see that the posterior mean is computed
as a linear combination of the outputs y in the training set. The out-
puts are weighted by the similarity of the unseen sample % to all the

2.6 META-LSTM

training samples x (in the term ky,) and also by the inverse of the
correlation between all the training samples (in the term Kg'). The
basic form of Matching Networks (Equation 1) also computes the pre-
diction of unseen input % as a linear combination of the outputs in
the support set. Comparing them, we can see that Equation 1 does
not model the correlation between all the training samples. Matching
Networks [51] embeds each training sample x; in the context of the
support set using a bidirectional Long Short-Term Memory (LSTM).

2.6 META-LSTM

Consider the update rule of gradient descent used to train deep neu-
ral networks:
Ot =0¢t—1—tVe, ;Lt1,

where 0¢_7 and 0 are the parameters before and after the update at
timestep t respectively, o is the learning rate at time t and Vg, ,£{¢
is the gradient of a loss function computed with respect to the param-
eters 0 at 0¢_1. Now consider the update rule for cell state in an LSTM
cell [18]:

ct =ftOct—1 +1t ©C,

where c¢_1 and c¢ are the cell states at timesteps t — 1 and t respec-
tively and ¢; is the candidate value for new cell state. The new cell
state c¢ is computed by gating the old cell state c¢_; with a for-
get gate fy and the candidate cell state ¢; with an input gate i;. It
can be seen that the parameter update rule of standard optimiza-
tion algorithms such as Stochastic Gradient Descent (SGD) resembles
the update rule of an LSTM cell (when fy =1, ¢ct—1 = 0¢_1, it =
o, and & = —Vg, ,£L¢). This was used in Andrychowicz et al. [3]
to learn better optimizers using LSTM networks. Inspired by [3], Ravi
and Larochelle [36] noted that optimization is a good model for few-
shot learning. Few-shot learning can be cast as an optimization prob-
lem to adapt the parameters of a network from a few samples. This
involves learning initializations and parameters update mechanisms
that enable this efficient adaptation. In [36], an LSTM network (called
a meta-learner) is used to learn the update rule of another LSTM net-
work (called the learner). The structure of the network is illustrated in
Figure 5. The parameters of the learner network are updated by the
meta-learner network based on the gradients computed from a few
samples. Parameters of the learner and the meta-learner network are
trained together in an end-to-end fashion in the few-shot setting. It
should be noted that the size of meta-learner LSTM cell grows rapidly
with increasing the number of parameters. In practice each coordi-
nate in the parameter vector has its own hidden and cell state values
but the LSTM parameters are the same across all coordinates.

11

The update rule of
standard
optimization
algorithms resembles
the update rule of an
LSTM cell

2.7 PROTOTYPICAL NETWORKS

(X4,Y1) (X2, Y32) (X3,Y3) (XT:*YT) (X+Y)

¥ + +
A |Ll r. — .
—
er L v L) (\ £2) .‘-:\'"_’i L1 l
-"-‘ ‘*
Hl ET 1 ﬁ(M(X. U_T'+1), Y)
e e

Meta-learner

Figure 5: [llustration of the structure of a Meta-LSTM network. The meta-
learner LSTM network updates the weights of the learner LSTM net-
work based on the gradients computed using the samples in the
support set. Figure taken from [36].

2.7 PROTOTYPICAL NETWORKS

Similar to the correspondence between Matching Networks and K-
nearest neighbors, Prototypical Networks (PN) is essentially a deep
equivalent of a Nearest Class Mean (NCM) classifier [31]. Prototypi-
cal Networks compute representations of the inputs x using an em-
bedding function f parameterized with 0: z = fg(x). Each class ¢
is represented in the embedding space by a prototype vector which
is computed as the mean vector of the embedded inputs for all the

examples S,([C) of the corresponding class c:

me=— Y folx). G)

sl
| t (xj/yj)GS,(cc)

The distribution over predicted labels y for a new sample x is com-
puted using softmax over negative distances to the prototypes in the
embedding space:

exp(—d(fe (x), mc))
>_crexp(—d(fe(x),mc))

Parameters © are updated so as to improve the likelihood com-
puted on the query set:

> logply =yjlxj, {mc}),
(x5,45)€Q¢

ply =clx,{m.}) = (4)

which is computed using Equation 4 with the estimated prototypes.
The computation graph of supervised adaptation with PN is illus-
trated in Figure 6.

2.8 MODEL-AGNOSTIC META-LEARNING

Bayesian hierarchical modeling can be used a theoretical framework
to formalize meta-learning as inference for a set of parameters that

12

Prototypical
Networks (PN) is
essentially a deep
equivalent of a
Nearest Class Mean
classifier

2.8 MODEL-AGNOSTIC META-LEARNING

Query Set
Q = {(xj'y_f)}
Yi =D 1y,=clogp(y; =)
Support Set I
S = {(xi,yi)}
1
m, = : fo(xi) s — &) — exp(—d(fe(x;), m.))
ERJ (x“_y%si_.} ‘ PO =0 = e d(foloxy), mi))
X Yi X5

Figure 6: Computational graph of supervised adaptation with PN. Parame-
ters are represented by rounded rectangles and computations are
represented by rectangles. The loss function used for training is
highlighted in a dashed rectangle.

are shared across different tasks [15]. MAML can be viewed as a
method for probabilistic inference in a hierarchical Bayesian model.
In MAML, we model the prior knowledge across different tasks as: an
initialization in the model parameter space, the learning rate and the
number of iterations required to adapt the initialization to different
tasks. The initialization of the parameters is learned such that they
can be adapted to a particular distribution of tasks in a few gradient
steps. Suppose there exists a set of related classification tasks in
which each task t is described by data D) = {(x5,y;)} with inputs x;
and targets y; belonging to the support set Sy = {(x1,Y1), ..., (Xn, Yn)}
and query set Q¢ = {(Xn+1,Yn+1), - Xn+m, Yn+m)}. In MAML, a
common classifier y ~ fg(x) is adapted to task t by updating its
parameters © using one or more gradient descent steps of the form

9t=9*—0éZVeL (fo (), y5) , (5)
00,

(xj,4;5) €St =
where L is the loss function computed on the samples in the support
set S;. In classification tasks, the loss function L is often the cross-
entropy function:

L(S,8)=— > yjlogplyj;,0). 6)
(Xj,Uj)ESt

The initial values 6, and the vector of learning rates « are the
parameters tuned during MAML training. Training happens by going
through a set of tasks, adapting the classifier to each task t using
Equation 5 and updating the parameters 0., & so as to optimize the
performance of the adapted models fg, (x) on the query sets Q¢. The

13

2.8 MODEL-AGNOSTIC META-LEARNING

objective function for meta-training can be mathematically expressed
as,

min > > L(fex).5) -)
t~p(t) (x5,9;)€Q¢

where p(t) is the distribution of tasks. This optimization is performed

using standard backpropagation, which involves a gradient through

a gradient since the computation of 8 contains VgL. The computa-

tional graph of supervised adaptation using MAML is illustrated in

Figure 7.

Support Set Query Set
S ={(xi,yi)} Q= {(xj,y,)}

Yi ﬂ E(Sri,yi) }\",L‘ Vi —+ E(S’jayhi) ‘

(6 | Fi=fox) | — 0«0-aVer — 3i=fo(x) |

X X

Figure 7: Computational graph of supervised adaptation with MAML. Pa-
rameters are represented by rounded rectangles and computations
are represented by rectangles. The loss function used for training
is highlighted in a dashed rectangle.

It is notable that MAML does not induce any additional parameters.
It is applicable to any differentiable model and it can be directly ap-
plied to classification, regression or reinforcement learning problems.

2.8.1 Learning Initialization as Meta-Learning

One particular approach to meta-learning is to directly optimize for
an initial representation that can effectively be adapted to a new task
from a small number of samples in a few gradient steps. Finn, Abbeel,
and Levine [12] showed that learning an initialization and using the
standard gradient-descent update rule to adapt it is a simple yet ef-
fective approach to meta-learning. The intuition behind MAML is illus-
trated in Figure 8. During training, the parameters of the network are
optimized to learn good initializations that are close to the optimal
parameters of different tasks.

2.8.2 Learning-Rate Schemes

The plot in Figure g illustrates the convergence during training for
different learning rate schemes of MAML. We use the synthetic sine re-

14

One approach to
meta-learning is to
optimize for an
initial representation
that can effectively
be adapted to a new
task from a small
number of samples
in a few gradient
steps.

2.9 EXPERIMENTS ON MINIIMAGENET

— meta-learning

9 ---- learning/adaptation
VL
VL,
. O
VEl P
. ,/,/ \\\
1. 093

Figure 8: MAML optimizes for an initialization of the parameters 6 that can
be efficiently adapted to different tasks in a few gradient steps
with a few samples. Figure from [12].

gression dataset introduced in [12]. Parameter-wise learning rates per-
form the best, converging faster and to a better minimum. This sup-
ports the results presented by Li et al. [29]. However, parameter-wise
learning rates are memory expensive and layer-wise learning rates
perform competitively with much smaller memory requirements.

10!

—— Constant {global)
Trainable (global)

—— Trainable (layer-wise)
Trainable (param-wise)

10°

Post-update Cost

0 10000 20000 30000 40000 50000 60000 70000
Meta Iterations

Figure 9: Comparison of different learning rate schemes.

2.9 EXPERIMENTS ON MINIIMAGENET

In this thesis, we consider two existing methods — Prototypical Net-
works (described in Section 2.7) and Model-Agnostic Meta-Learning
(described in Section 2.8). In this section, we evaluate these methods
for supervised adaptation on image data. We consider the minilma-
genet recognition task proposed by Vinyals et al. [51] to test the meth-
ods proposed in this thesis. The dataset involves 60,000 color images
downsampled to a resolution of 84 x 84; the images are from 64 train-
ing classes, 12 validation classes, and 24 test classes from ImageNet

15

=y

2.9 EXPERIMENTS ON MINIIMAGENET

[40]. We use the same split as [36] and follow the experimental setup
which involves N-way k-shot classification, similarly to [51] that is,
every task at test time contains N classes with k labeled examples
from each class. Following previous works, we use 15 test samples
per class for each task during training and for evaluation. We evalu-
ate the model on 2400 tasks which involve the 24 classes reserved for
testing.

For comparability, we use the same convolutional architecture used
in previous works [12, 36, 46, 51] which consists of four convolutional
blocks (we refer to this as the four-block architecture). Each block con-
sists of a 3 x 3 convolutional layer with 64 channels followed by batch
normalization [20], ReLU non-linearity and a 2 x 2 max-pooling layer
which results in an embedding space of dimensionality 1600. In Pro-
totypical Networks [46], the model was fine-tuned by having more
classes at training time than at test time (e.g., 30-way training and
5-way testing) and a learning rate decay schedule. We use a constant
learning rate and 5-way training for simplicity. In this thesis, the re-
sults obtained with our implementation of PN are distinguished as
“PN (ours)”.

One challenge with the minilmagenet data set is that it requires
rather complex features but it contains relatively little amount of data.
Therefore, preventing overfitting becomes an important issue. Most
previous works [12, 36, 46, 51] used conventional convolutional net-
works with a small number of layers to prevent overfitting. This sim-
ple network may not be expressive enough to capture the relevant
complex features. So, we also consider a Residual Network [16] as
the embedding network. Residual Networks achieve state-of-the-art
performance on the ImageNet dataset [19] and have also been suc-
cessfully applied to other problems such as object detection [38] and
semantic segmentation [8]. We use a Wide Residual Network [53] of
depth 16 and a widening factor of 6. We also use an 8 x 8 pooling
with a stride of 4 at the end to obtain embeddings of dimensionality
384. The network is regularized with dropout with a rate of 0.3. We
use the Adam optimizer [22] with a learning rate of o.01 for train-
ing the ResNet and 0.001 for training the four-block architecture. We
perform early stopping to prevent overfitting." We train the ResNet
model with N = 30 classes in each task for 1-shot classification and
N = 20 classes in each task for 5-shot classification, similarly to the
original PN paper [46]. For the ResNet model, we tried varying the
number of classes during training and observed that it had a much
smaller impact on the results compared to the observations in [46].
This suggests that tuning this regularization parameter is less impor-
tant for this architecture.

Residual Networks are typically trained using stochastic gradient descent with mo-
mentum and we expect better results by doing the same and fine-tuning the hyper-
parameters.

16

2.10 CONTINUAL LEARNING WITH PN

The 5-way testing results presented in Table 1 and 20-way test-
ing results presented in Table 2 show that our approach scales to
both feature extractor architectures. One can observe that using the
Wide ResNets to learn the embedding space yields noticeable im-
provements of the classification accuracy compared to the baseline
methods. The improvements are more significant for the 20-way clas-
sification.

MODEL 1-SHOT 5-SHOT
fine-tuning baseline [36] 28.86+0.54 49.79 +0.79
nearest-neighbor baseline [36] 41.08 £0.70 51.04 +0.65
Meta-LSTM [36] 4344 +£0.77 60.60 +0.71
Matching nets [51] 46.6 60.0
MAML [12] 48.70 £1.84 63.11+0.92
PN [46] 4942 +0.78 68.20 +0.66
Meta-SGD [29] 5047 £1.87 64.03+0.94
PN (ours) 48.06 +0.82 64.65+0.72
Resnet PN (ours) 51.69+042 69.57 +£0.64

Table 1: Average 5-way testing classification accuracy (with 95% confidence
intervals) on minilmagenet.

MODEL 1-SHOT 5-SHOT
Meta-LSTM [36] 16.70+0.23 26.06 +0.25
Matching nets [51] 17.314+£0.22 22.69+0.20
MAML [12] 1649 £0.58 19.29 £0.29
Meta-SGD [29] 1756 +£0.64 28.92+0.35
PN (ours) 20.36 £0.24 34.42+0.23
Resnet PN (ours) 23.354+0.28 41.10+0.25

Table 2: Average 20-way testing classification accuracy (with 95% confidence
intervals) on minilmagenet.

2.10 CONTINUAL LEARNING WITH PN

Assuming that the embeddings of samples are clustered (according
to the classes) in the embedding space produced by feature extractors
in PN, we can classify each class by merely storing all the prototypes.
A new sample can be classified by assigning it to the class of the
nearest prototype in the feature space. In PN, the feature extractor

17

2.10 CONTINUAL LEARNING WITH PN

TRAINING SHOT

TESTING sHOT

18

1-SHOT 5-SHOT
48.06 +£0.82 63.204+0.77

PN (ouRrs) 42,71 £0.75 64.65+0.72
48.12+0.78 64.84 +0.70

51.69 £0.47 67.43 +£0.63

ReEsNET PN 50.44 +0.48 69.57 £0.59
[1..5] 5140+ 0.46 68.97 +0.55

Table 3: Results of fully supervised adaptation using PN as a function of
the number k of samples per class during training. [1..5] denotes
varying k in the range [1, 5].

remains the same after training. This enables us to perform continual
learning during test time.
Continual learning can be done as follows: train PN on a back-
ground training set and store the prototypes of all training classes.
During test time, compute prototypes for new classes using the pre-
trained feature extractor and maintain a moving average for the pro-
totypes of all classes. Add samples of new classes to the training set.
Once in a while, re-train the feature extractor with the new training
set. We acknowledge this possibility but do not further explore this
idea. We propose to use a
Snell, Swersky, and Zemel [46] showed that the classification per- ~ varying number of
formance of Prototypical Networks is sensitive to the number N of ‘;ﬂm.p fes per class
: e . uring training for
classes per task during training and that it was necessary to match poer goneratization
the number k of samples per class during training and testing. We to the number of
believe that using a larger number of classes (N way) works as a reg- shots during test
ularizer. However, varying N effectively changes the batch size and time.
therefore the learning rate needs to be adapted to N. By tuning the
learning rate for different N, we observed a smaller effect of this reg-
ularization on the adaptation accuracy.
The dependency on k implies that the embedding learned by the
network does not generalize well to a different number of samples
during test time. This is inconvenient especially if the number of the
labeled example is unknown in advance and it can grow, for example,
as a result of interaction with the user. To address this problem, we
propose to use a varying number of samples per class during training
for better generalization to the number of shots during test time. The
results in Table 3 illustrate that this strategy is effective and reduces
the sensitivity to k during training.

2.11 CONCLUSION

2.11 CONCLUSION

In this chapter, we formally introduced the problem of few-shot learn-
ing. Then, we introduced the existing relevant work on few-shot learn-
ing and described them. Mainly, we introduce Prototypical Networks
(PN) and Model-Agnostic Meta-Learning (MAML). Further, we evalu-
ated PN and MAML for supervised adaptation on the minilmagenet
image classification benchmark. Finally, we considered the possibility
of continual learning with PN and proposed to use a varying number
of samples per class during training for better generalization to the
number of shots during test time.

19

SEMI-SUPERVISED ADAPTATION

We consider the problem of fast adaptation to new classification tasks
using a few labeled samples and (potentially many) unlabeled sam-
ples. This problem of semi-supervised few-shot adaptation is relevant
to many practical applications. Consider the previously introduced
application of automatic photo organization. In this case, the user
can facilitate the adaptation by labeling a few images by personal
preferences. However, the learning system also has access to lots of
unlabeled images and it can make use of them to improve the classi-
fication accuracy.

Semi-supervised learning methods make certain assumptions on
the underlying distribution of data [7]. Commonly used assumptions
are:

1. Smoothness assumption: the label function is smoother in high-
density regions than in low-density regions, that is the points
that are close to each other are likely to share the same label.

2. Cluster assumption: the data points tend to form clusters and
points in the same cluster are likely to share the same label.

3. Manifold assumption: the data lie approximately on a low-di-
mensional manifold.

3.1 SEMI-SUPERVISED ADAPTATION WITH PN

We address the problem of semi-supervised classification by making
the cluster assumption. This is motivated by the observation that PN
tends to produce clustered data representations in the embedding
space. This is indirectly induced by the formulation of PN which en-
forces samples in a particular class to be closer to the cluster mean
estimated from very few samples. The clustering approach to semi-
supervised learning is often referred as semi-supervised clustering
[4]. We relate semi-supervised few-shot adaptation to the problem of
semi-supervised clustering. Semi-supervised clustering is a problem
considered mainly in the context of text document clustering [1, 21].
Our proposed algorithm performs semi-supervised adaptation dur-
ing test time. We use a feature extractor from a PN trained with the
standard training procedure which involves sampling of tasks, com-
puting the prototypes of each class and updating parameters 6 of
the embedding network using stochastic gradient descent, where the
gradient is computed using samples of the query set. At test time,

20

PN tends to produce
clustered data
representations on
the embedding space

We relate
semi-supervised
few-shot adaptation
to the problem of
semi-supervised
clustering.

3.1 SEMI-SUPERVISED ADAPTATION WITH PN

the prototypes are first estimated with the labeled data using Equa-
tion 3. We then perform the standard K-means algorithm [30] on the
embeddings of both labeled and unlabeled data initializing the clus-
ter means with the prototypes computed from the labeled data. This
corresponds to the seeding approach of K-means proposed by Basu,
Banerjee, and Mooney [4]. The algorithm typically converges in just
a few iterations (see Table 5). We have also tried the constrained K-
means approach in which the cluster membership of the labeled ex-
amples is never changed. Both approaches yielded similar results and
therefore we present only the results of the seeding approach, which
was slightly better.

The proposed algorithm is illustrated in Figure 10. Consider a 3-
way 1-shot classification task (sampled from minilmagenet). That is,
a classification task with three classes and one labeled sample per
class. Consider that we also have 15 unlabeled samples per class.
Such a task is illustrated in Figure 10a. The two-dimensional visu-
alizations are produced by projecting the 384-dimensional features
onto the principal subspace of the prototypes computed from the
support set. In Figure 10a, the true labels of both the labeled and un-
labeled samples are illustrated for comparison of performance of the
adaptation mechanisms. The labeled samples (support set) are segre-
gated using triangle markers and unlabeled samples are segregated
using circle markers. The initial condition with labeled and unlabeled
samples are shown in Figure 10b. The three different classes are col-
ored as red, green and blue. Unlabeled samples are colored as orange.
The prototypes for each class are computed as the mean of samples
in each class. In this case, the prototypes are the samples in the sup-
port set itself since there is only one labeled sample per class. The
predictions produced using the original PN procedure is shown in
Figure 10c. Now we initialize the K-means clustering algorithm with
the class prototypes and the evolution of the prototypes and labeling
of the unlabeled samples is shown in Figure 10d, Figure 10e and Fig-
ure 10f. The predictions immediately get slightly better after the first
iteration but it already nears convergence in the next iteration and
converges in less than 10 iterations.

The proposed algorithm is related to the one concurrently devel-
oped by Ren et al. [37] who do semi-supervised few-shot classifica-
tion using the constrained K-means clustering. The main difference is
that they perform clustering also at training time and therefore they
use soft cluster assignments to keep the computational graph differ-
entiable. They do only one iteration of K-means, as doing more itera-
tions does not improve the performance. We obtained similar results
using soft cluster assignment and found experimentally that K-means
with hard clustering behaves more robustly (see results in Table 5).
Furthermore, Ren et al. [37] consider the scenario in which the unla-
beled support set may contain samples from irrelevant classes.

21

We perform
semi-supervised
adaptation by
seeding K-means
clustering (on the
PN embedding space)
with the prototypes.

3.2 SEMI-SUPERVISED ADAPTATION WITH MAML

A A *
° ° ° °
° °
::‘ ® o ::% ® o
[L]) °
A 2 co ees®
.... .. ° °
° o0 % ° o0%
) X
A S A *x 8

(a) True Labels (b) Initial Conditions (c) Initial Labeling (PN)

[] [] [] [] [] []
L L]

?:‘ o o .":‘ o o :’O‘ e o

[} [] [} ° Y °
® e .*.. ..’r oo ...* ..'8' o e .:;*. :3’
[1] [[1]) (L] []

° o o L ° [Y ° ° o 0 °
,k o® % ® 19 % ° 2o %
%) o0)
o 8 o 8 e 8

(d) After 1st Iteration (e) After 2nd Iterations (f) After 10 Iterations

Figure 10: [llustration of semi-supervised clustering for semi-supervised
adaptation with PN.

3.2 SEMI-SUPERVISED ADAPTATION WITH MAML

For semi-supervised adaptation, we perform classification in two
steps:

1. Inputs x are transformed into features z using function z =
fo(x) with parameters 6;

2. Predicted labels are computed using function {j = g« (z) with
parameters w.

The proposed method for semi-supervised adaptation using MAML is
as follows: We first use unlabeled data to adapt the feature extractor
parameters © using Equation 5 with an unsupervised cost function
C:

0 = 0, —ocZVeC (fo(x;))
X €St

/ (8)

0=0.

where C is some kind of a cost function that measures the quality
of the extracted features. Several auxiliary cost functions using unla-
beled data have been proposed in the literature to improve the clas-
sification performance in the semi-supervised scenario [see, e.g., 14,
26, 33, 35, 49]. Instead of specifying that extra cost, we propose to
parametrize it with a neural network C, (z) with parameters w.
and learn it in the same meta-training procedure.

22

We perform
classification in two
steps: feature
extraction and
classification.

We first adapt the
feature extractor
using unlabeled data
and then the
classifier using
labeled data.

We parametrize the
unsupervised loss
function with a
neural network and
meta-learn it.

3.3 EXPERIMENTS ON SYNTHETIC DATA

Finally, we use labeled data to adapt the classifier parameters w
using an update rule similar to Equation 5:

Wi =W, —&w Y Vel (gu(fe, (x)),;) : 9)

(x5,Y5) €S+ W=,

The difference to the fully supervised case is that the loss function
is computed using the adapted features z instead of raw inputs x. Sim-
ilar to supervised adaptation, the parameters are tuned to optimize
the performance on the query sets Q¢:

min Z Z L (gwl(fe,(x5)),u5) - (10)

0,x,w.,Ww,xw
t~p(t) (x%5,9;)€Q+

The tuned parameters are 6, &, w., w and . The full compu-
tational graph for semi-supervised adaptation is illustrated in Fig-
ure 11.

Note that using different learning rates « and «, was crucial to
make this approach work. This could be attributed to the difficulty
in balancing the training signals provided by the labeled and unla-
beled samples. In the method proposed here, the unsupervised cost
is forced to be developed because the feature extraction part of the
network is adapted solely using the unsupervised loss. We explored
different learning rate schemes in MAML and found layer-wise or
parameter-wise learning rates to be an important factor in balancing
the signals.

3.3 EXPERIMENTS ON SYNTHETIC DATA

To test the proposed methods, we created a synthetic data set
which is fast to experiment with. The dataset consists of a set of
two-dimensional classification tasks with two classes, in which the
optimal decision boundary is a sine wave (see Figure 12). The ampli-
tude A of the optimal decision boundary varies across tasks within
[0.1,5.0] and the phase ¢ varies within [0, 7t]. The first dimension of
the data samples is drawn uniformly from [-5,5] and the second
dimension is computed as

x2 = Asin(x] +¢) + €

where € is a noise term with the Laplace distribution with mean +2
(depending on the class) and scale parameter o.5. We sampled 100
tasks for training and 1000 tasks for testing.

Examples of the decision boundaries produced by PN on a semi-
supervised test task are shown in Figure 13. Examples of the decision
boundaries produced by MAML on two test tasks are shown in Fig-
ure 14. Note that even for a small number of labeled examples, the
adapted decision boundaries resemble the sine wave, thus the knowl-
edge is transferred between tasks.

23

PN generally
performs better in
the fully supervised
setting, while MAML
is much more
efficient in making
use of unlabeled
data.

24

3.3 EXPERIMENTS ON SYNTHETIC DATA

-9[3ue3da paysep e ur payy3ySiy st Sururer 103 Pasn UOHdUNJ SSO[YT, "S9[3ue3dar Aq pajuasaidor
are suoneindwod pue sa[3ueidar papunor Aq pajussaidar are siejowere] “TAVIN Ym uoneldepe pasiazedns-rwss jo ydeid jeuoneindwo)) ;11 arndig

[(@9=7] ([[(9%=7 {7z b = -{4]

[(=)6=% Iuapauwaﬁii (96=16 |—{m) = (12)") | —{m)
T.J_.,: 10g

.................. 125 uoddns

[(F8+fx)

}=0

195 AanD

(44)7

— 4

AH_...f-.._uﬂ”_— .____r___

195 poddng
pa1aqen

pajageiun

3.4 EXPERIMENTS ON MINIIMAGENET

oQ OO Q%
4 o
Q0 © R
© ©° od’ @©
. - %o .
s’
/ M O g .\\ P
’xog.\oo o o J ..\C@
° /«®® et © S /@ eg 10
’ “. \ o s AN

Figure 13: Left: Example of supervised adaptation using PN to a test task
from 10 labeled samples. Right: Example of semi-supervised
adaptation using PN to a test task from the same 10 labeled sam-
ples and 100 unlabeled samples. The blue dots correspond to un-
labeled samples.

The classification accuracy of semi-supervised adaptation with PN
and MAML are shown in Figure 15. We use a fully connected network
with two hidden layers of size 100 with ReLU non-linearity as the fea-
ture extractor for both PN and MAML. For MAML, the sum of squares
of a two-dimensional linear projection is used as the parametrization
of the unsupervised cost. One can see that in this experiment, PN gen-
erally performs better in the fully supervised setting, while MAML is
much more efficient in making use of unlabeled data. In fact, its per-
formance was very close to the fully supervised case using true labels
of the unlabeled samples.

3.4 EXPERIMENTS ON MINIIMAGENET

We tested the proposed method for semi-supervised adaptation with
PN on the minilmagenet recognition task described in Section 2.9.

25

3.4 EXPERIMENTS ON MINIIMAGENET

@

Figure 14: Examples of semi-supervised adaptation using MAML to two dif-
ferent test tasks with 10 labeled samples and 100 unlabeled sam-
ples. The blue dots correspond to unlabeled samples.

Classification Error (%)

Figure 15: Semi-supervised adaptation results with MAML and PN on the
sine classification dataset using 10 labeled plus n unlabeled sam-
ples. The dashed and dotted lines depicts the error rates of the
(fully supervised) adapted model using 10 and n + 10 labeled sam-
ples respectively.

For semi-supervised adaptation, in addition to the k labeled samples
from each class, we assume the existence of M unlabeled samples per
class at test time. In Table 4, we show how the number of unlabeled
examples at test time (M) affects the classification accuracy of the
trained PN. The results indicate that increasing the number of unla-
beled samples yields better performance, however, the improvement
plateaus very quickly with the increase of the number of unlabeled
samples. This agrees with the results obtained on the synthetic data
reported in Section 3.3. Notably, the classification performance of the
four-block architecture scales well with increasing the number of un-
labeled samples, closely matching the performance of the ResNet in

26

3.4 EXPERIMENTS ON MINIIMAGENET 27

the case of 120 unlabeled samples per class. The evolution of the clas-
sification accuracy with increasing the number of K-means iterations
is shown in Table 5. Our proposed method for semi-supervised adap-
tation with MAML did not yield any improvements on this bench-
mark.

M 1-SHOT 5-SHOT
15 51.07£0.90 65.52+0.71
PN (ours) 30 53414+0.94 65.80£0.67
60 5448+£0.98 65.94+0.69
120 55.23+1.04 65.96+0.68
15 54.05+047 70.924+0.66
Resnet PN 3° 54.70 £0.46 71.86 +0.59
60 55.66+0.46 72.21+0.55
120 55.67+£045 72.55+0.52

Table 4: Average 5-way 1-shot classification accuracy (with 95% confidence
intervals) on minilmagenet for the semi-supervised scenario for dif-
ferent number of unlabeled samples per class (M) available at test

time.
HARD K-MEANS SOFT K-MEANS
o 48.06+0.82 48.06 & 0.41
PN (ours) 1 50.13 £0.88 51.36 £0.75
2 50.76 £0.93 46.53 £ 0.68
10 51.07 £0.90 37.16 £ 0.34
o) 51.69 +£0.42 51.69 +£0.42
Resnet PN 1 53.42 +£0.48 54.65 +0.45
2 53.98 £ 0.50 50.62 £0.41
10 54.054+0.47 38.19 £0.42

Table 5: Average classification accuracy (with 95% confidence intervals) on
minilmagenet for the semi-supervised scenario as a function of the
number of K-means iterations. Each task consists of 1 labeled sam-
ple and 15 unlabeled samples.

3.5 CONCLUSION

3.5 CONCLUSION

In this chapter, we extended PN and MAML for semi-supervised adap-
tation. We evaluated semi-supervised adaptation with PN and MAML
using synthetic data. Further, we evaluated semi-supervised adap-
tation with PN on the minilmagenet benchmark. While MAML was
much more efficient in making use of unlabeled data in our experi-
ments with synthetic data, it did not yield any improvements on the
minilmagenet benchmark.

28

ACTIVE ADAPTATION

There are two sources of errors which the semi-supervised adaptation
algorithm proposed in Chapter 3 can accumulate: 1) errors due to
incorrect clustering of data, 2) errors due to incorrect labeling of the
clusters. The second type of error can occur when the few labeled
examples are outliers which end up closer to the prototype of another
class in the embedding space. In this thesis, we advocate that the most
practical way to correct the second type of errors can be through user
feedback, since in many applications of the semi-supervised few-shot
adaptation, interaction with the user is possible. This idea is inspired
by the work of Cohn, Caruana, and McCallum [9] who introduced a
clustering approach that allows a user to iteratively provide feedback
to a clustering algorithm.

Consider the previously introduced example of few-shot learning
in photo management applications. Although it is possible to ask the
user to label a few photographs and use those labels to classify the
rest of the pictures, it is extremely difficult and tiresome for the user
to scroll through all the photos and decide which samples should
be labeled. Instead, using the observation that “it is easier to criti-
cize than to create” [9], one can initially cluster the photos and then
request the user to label certain photos (or provide other types of
feedback) so that the data is properly clustered and labeled.

4.1 ACTIVE ADAPTATION WITH PN

In this thesis, we assume that the user can provide feedback only in
the form of labeling a particular sample or labeling the whole cluster.
We propose to use PN as a feature extractor, cluster the samples in
the embedding space using K-means and then label the clusters by
requesting one labeled example for each cluster from the user. For
each cluster ¢/, we choose sample z.s to be labeled by the user by
maximizing an acquisition function a(z,c’):

Z., = max a(z,c’),
zeU,/

where U,/ is the set of embedded inputs belonging to cluster c’. We
explore a few acquisition functions:

e RanpoMm: Sample a data point uniformly at random from each
cluster. This is a baseline approach.

29

We perform active
learning by first
clustering and then
requesting for labels

“it is easier to
criticize than to
create”

4.2 EXPERIMENTS WITH MINIIMAGENET

* NEAREST: Select the data point which is closest to the cluster
center:
a(z,c¢’) = —d(z,me/),

where m.: is the mean (cluster center) of cluster c’.

¢ ENTROPY: Select the sample with the least entropy:
a(z,c’') = Zp(y = clz)logp(y = clz)
C

Thus, we select a sample with the least uncertainty that it be-
longs to a certain cluster.

* MARGIN: Select a sample with the largest margin between the
most likely and second most likely labels.

a(z,c’) =ply=ci(z)lz) —ply = c2(z)z)

where c1(z) and c;(z) are the most likely and the second most
likely clusters of embedded input z respectively. This quantity
was proposed as a measure of uncertainty by Scheffer, Deco-
main, and Wrobel [43].

We also try to simulate a case when the user can label the whole
cluster, as in some applications it can certainly be possible. This ap-
proach directly measures the clustering accuracy and we call it ‘ora-

7

cle’.

* OrAacLE: We label each cluster based on the distance of the clus-
ter mean to the prototypes computed from the true labels of all
the samples.

4.2 EXPERIMENTS WITH MINIIMAGENET

We test our proposed active learning approach using the minilmagent
dataset. Similar to the semi-supervised scenario, we use a PN trained
in the episodic mode as the feature extractor. We perform active learn-
ing on test tasks by first doing K-means clustering in the PN embed-
ding space and then requesting one labeled example for each cluster
using the acquisition functions described earlier. Note that multiple
clusters can be labeled to the same class if the requested labels guide
it that way. This is one of the largest source of error as shown in Fig-
ure 19). Table 6 and Table 7 presents the classification performance
of each strategy for test tasks with one labeled sample and a varying
number of unlabeled samples. There, we also present the accuracy
of the oracle clustering. We use the same PN and Resnet PN feature
extractors from the semi-supervised scenario. Overall, the MARGIN
approach worked best in our experiments. The 1-shot classification

30

The 1-shot
classification
accuracy with 120
unlabeled samples
per class even
surpassed the 5-shot
accuracy of some
well-recognized
previous methods.

4.3 VISUALIZATIONS 31

M RANDOM NEAREST ENTROPY MARGIN ORACLE
15 49.19 54.42 53.95 56.12 58.96
30 49.23 54.73 56.02 57.58 60.27
60 50.73 56.12 57.63 59.24 62.09
120 50.74 57.45 57.88 61.42 63.23

Table 6: Average 1-shot classification accuracy (with 95% confidence inter-
vals) of PN (ours) on minilmagenet for the active learning scenario
for different number of unlabeled samples per class (M) available
at test time.

M RANDOM NEAREST ENTROPY MARGIN ORACLE
15 51.10 57.50 58.24 60.00 62.44
30 51.16 57.63 59.45 60.29 62.94
60 51.36 57.68 59.77 60.43 63.21
120 51.56 58.09 60.19 60.49 63.71

Table 7: Average 1-shot classification accuracy (with 95% confidence inter-
vals) of Resnet PN on minilmagenet for the active learning scenario
for different number of unlabeled samples per class (M) available
at test time.

accuracy with 120 unlabeled samples per class even surpassed the 5-
shot accuracy of some well-recognized previous methods. Similar to
the semi-supervised scenario, the four-block architecture scales well
with increasing the number of unlabeled samples closely matching
the performance of the ResNet in the case of 120 unlabeled samples
per class and even outperforming it while using the MARGIN strategy.

4.3 VISUALIZATIONS

In this section, we analyze the embeddings produced by the PN fea-
ture extractor. We produce two-dimensional visualizations by project-
ing the 384-dimensional features onto the principal subspace of the
prototypes computed from the support set. The support set is repre-
sented using triangle markers, the query set using circle markers and
the prototypes using star markers. The colors represent the true labels
in the first column and the labels produced with different adaptation
strategies in columns 2-5. Each row corresponds to one 3-way 1-shot
task from minilmagenet.

Different 3-way 1-shot minilmagenet tasks are illustrated in Figures
16, 17, 18 and 19. The captions of the figures are described below:

e True Labels: The true labels.

4.3 VISUALIZATIONS

NUMBER OF ITERATIONS: 1 2 3 10
Random 47.29 47.74 48.08 49.19
PN (ours) Nearest 5298 5331 53.89 53.92
Entropy 5251 53.80 53.95 5442
Margin 54.67 54.98 55.74 56.12
Oracle 57.83 5845 58.89 58.96
Random 49.19 49.74 51.03 51.10
Resnet PN Nearest 55.69 56.88 57.27 57.50
Entropy 5717 57.63 5824 58.52
Margin 57.92 58.68 59.11 60.00
Oracle 61.36 6232 6239 6244

Table 8: Average 1-shot classification accuracy (with 95% confidence inter-
vals) on minilmagenet for the active learning scenario for different
number of iterations. Each task consists of 1 labeled sample and 15

unlabeled samples.

* Optimal: Predictions based on the prototype computed from the
true labels of all the samples.

* Supervised: Predictions based on the prototypes computed from

the support set.

» Semi-supervised: Predictions based on the prototypes (or cluster
means) computed after K-means clustering seeded by the proto-

types of the support set.

* Active: Predictions based on the prototypes (or cluster means)
computed by K-means and labeling the clusters using the NEAR-

EST approach.

In Figure 16, the samples in the task are reasonably well clustered
and supervised adaptation performs quite well. The labeling is fur-
ther slightly improved by semi-supervised and active adaptation. In
Figure 17, the support sample of the red class is an outlier and using
it as a prototype leads to misclassifications. Even seeding the clus-
tering with these prototypes (semi-supervised classification) leads to
incorrect clustering. However, the active adaptation is able to find a
reasonable solution. Figure 18 illustrates a failure case of the NEAR-
EST approach of the active adaptation where the samples are prop-
erly clustered but incorrectly labeled. In Figure 19, the samples are
not properly clustered in the feature space. The supervised and semi-
supervised approaches fail badly, while the active approach produces

somewhat usable results.

32

4.4 CONCLUSION 33

Y A Wk
o % ° Ys% o 5%
1 X 5.’
..' o ° ..' [] ° ..' [] °
.o‘...: . .’..': ° .o'..': °
A o * A o * * o *
3 %, 3 *‘ o : %,
o0 o% o
.A 9,
(a) True Labels (b) Optimal (c) Supervised
Y A
° *..o ° *..o
.... ° °
o ° o °
[] . []
.'o~ o o o o % o
A o . ° A o . °
° t&. ° *3.0
A A
(d) Semi-supervised (e) Active

Figure 16: Illustration of a reasonably well clustered 3-way 1-shot minilma-
genet task.

4.4 CONCLUSION

In this chapter, we advocated that in many real-world applications
the semi-supervised adaptation performance can be significantly
improved by requesting the few labels through user feedback. We
demonstrate good performance of the active adaptation strategy
with PN using image data.

The user can provide feedback in various forms and therefore can
effectively introduce various constraints that can further guide the
clustering process. For example, a user can assign the whole cluster
to a particular class, assign a sample to a particular cluster, mark that
a particular sample does not belong to the assigned cluster, split and
combine clusters. These constraints could be easily induced in basic
clustering algorithms such as K-means. For examples, Wagstaff et al.
[52] introduced constraints between samples in the data set such as
must-link (two samples have to be in the same cluster) and cannot-
link (two samples have to be in different clusters) and the clustering
algorithm finds a solution that satisfies all the constraints.

Even outside the context of few-shot learning, this active learning
approach can be used to adapt a pre-trained classifier. Assume that
we have a classifier that clusters the classes of a particular classifica-
tion task such as ImageNet. Then, during test time it is possible to
interactively split clusters to make coarse-grained classifications or to

4.4 CONCLUSION

A A *
e %0 e %o 0%
° .. Y .. ° N [
A a..:h' . ,..°° A c-..éf: . f." * c..:f-' 0....°°
° '50. ° '30. ° ° ..:o. ®
° g ° hd ° g
o o ;
A A
(a) True Labels (b) Optimal (c) Supervised
A A
. o ® 000 . o ® 000
N2 |l TR =,
[]
° 0:0. ® ° °:o. °
.. ° .. *.
*
[J [J
A A

(d) Semi-supervised (e) Active

Figure 17: lllustration of a 3-way 1-shot minilmagenet task in which the su-
pervised and semi-supervised adaptations fail but active adapta-
tion produces reasonable results.

assign multiple clusters to a super-cluster (to make hierarchical pre-
dictions).

The fundamental bottleneck of the proposed approach in improv-
ing the classification performance is the ability of the feature extrac-
tor to cluster unseen data. Although we used an embedding network
trained using Prototypical Networks, the adaptation mechanisms pro-
posed in this thesis can be performed using other feature extractors as
well. A feature extractor explicitly trained to cluster data can further
improve the few-shot classification performance and this is an area
of active research [28, 47, 48]. Building feature extractors that allow
better generalization is largely a unsolved problem and it requires
further exploration [see, e.g., 17, 41].

34

The fundamental
bottleneck of the
proposed approach is
the ability of the
feature extractor to
cluster unseen data

4.4 CONCLUSION

[] A [] [] A [[] * [}
[[] o
L) L)
° O: ° o..oo ° ° 0: .‘*o..oo ° ° 0: ° o..oo
LA o* LA * o° oK o°
o ®° e, o ® A o °® A
[} [] °
[] []
o oo [] *. e oo
te °3 88 L °3
[1Y A ..A ..*
(a) True Labels (b) Optimal (c) Supervised
[A [[A °
[]
L)
° ..~ . *.'o.. ° ..‘ .‘*Oo..
LA & o® SA K °®
e ®® o o ®% o
[] []
[] []
[[J
® oo ® oo
L o ok s
[1Y A ..A
(d) Semi-supervised (e) Active

Figure 18: Illustration of a failure case of active adaptation in a 3-way 1-shot
minilmagenet task.

A A *
° o.. “.: (] o.~ .: ® o..“.:
° : e g ° o. * o0 g ° : Yl
° N :- o* :-o ° 8.
T T L T B £
(a) True Labels (b) Optimal (c) Supervised
A A
* :
W hoxd
N ; ®e0 g N : °Y 0o0 1
G ® ° []
A 3’ * A * .. ¢
(d) Semi-supervised (e) Active

Figure 19: llustration of a 3-way 1-shot minilmagenet task in which the sam-
ples are not properly clustered.

35

UNSUPERVISED ADAPTATION

In many practical applications, the classification tasks to which a clas-
sifier needs to adapt share the same output space. The classifier needs
to adapt to different input distributions (domain adaptation). Since the
output space remains constant, the adaptation to changes in the input
distributions can be performed in an unsupervised fashion.

Consider a material recognition system deployed in multiple facto-
ries. The same categories of materials need to be recognized at differ-
ent sites, however, factories may have slightly different lighting con-
ditions or other factors affecting the recognition process, motivating
the need for adaptation of each recognition system.

As an additional example, consider a vehicle detection system to be
deployed in different kinds of challenging environments in different
parts of the world. Since data annotation is a laborious process, it is
only possible to obtain labeled data from a few diverse conditions.
Deploying the system in different environmental conditions such as
snow or rain that was not present during training is challenging and
demands adaptation.

5.1 UNSUPERVISED ADAPTATION WITH PROTOTYPICAL NET-
WORKS

We propose to perform unsupervised adaptation with PN as follows:
after the standard PN training procedure, we compute the average
of the prototypes of the corresponding classes from all the training
tasks. It is to be noted that the classes are consistent across all the
tasks. At test time, we cluster the samples using K-means and then
simply assign each cluster to the class of the closest prototype. This
is possible since the feature extractor becomes invariant to certain
changes in the input distribution and produces embeddings that are
clustered according to the classes in the training set.

5.2 UNSUPERVISED ADAPTATION WITH MAML

Similar to semi-supervised adaptation, we perform classification in
two steps:

1. Inputs x are transformed into features z using function z =
fo (x) with parameters 0;

2. Predicted labels are computed using function §j = g« (z) with
parameters w.

36

We explore
unsupervised
adaptation to
classification tasks
with the same
output space

5.3 EXPERIMENTS ON SYNTHETIC DATA

The difference to the semi-supervised case is that the parameters w

of the classifier g, are not adapted due to the lack of labeled data.
The proposed method for unsupervised adaptation using MAML

is as follows: We use unlabeled data to adapt the feature extractor

parameters © using Equation 5 with an unsupervised cost function
C:

0 =0.—a) VeC (fo(x))

XjESt

. (11)

0=0.

where similar to semi-supervised adaptation, C is parametrized with
a neural network C, (z) with parameters w. and learnt in the same
meta-training procedure. The classifier g is not adapted and has the
same output space for all tasks. Similar to supervised adaptation, the
parameters are tuned to optimize the performance on the query sets

Qe
minw Z Z L(gw(fet(xj)),yj)/ (12)

0,x,w¢,
t~p(t) (x5,95)€Q

the tuned parameters are 0, «, w. and w. The full computational
graph for semi-supervised adaptation is illustrated in Figure 20. This
approach is similar to the two-head architecture introduced by Finn
etal. [13].

Query Set
Q= 1{(xj,¥;)}

yi— £Givi) |

Support Set

S = {(xu)}

(we — Cos, (21) }”\ [w H Vi = 9uw(z;) ‘

[0 H zr = fo(xi) H 0" +— 0 — aVel H z; = for(x;) ‘

Xk x4

Figure 20: Computational graph of unsupervised adaptation with MAML. Pa-
rameters are represented by rounded rectangles and computa-
tions are represented by rectangles. The loss function used for
training is highlighted in a dashed rectangle.

5.3 EXPERIMENTS ON SYNTHETIC DATA
We experimented with the proposed unsupervised adaptation meth-

ods on the synthetic sine classification dataset introduced in Sec-
tion 3.3. Examples of the decision boundaries produced by PN on

37

5.3 EXPERIMENTS ON SYNTHETIC DATA

two different unsupervised test tasks are shown in Figure 21. Exam-
ples of the decision boundaries produced by MAML on two test tasks
are shown in Figure 22. Note that both methods are able to adapt
despite the lack of labeled examples and the adapted decision bound-
aries still resemble a sine wave, closely matching the true decision
boundary.

e XL °
° ° ate
. .
® . . .
L]
4 e o o 8
',/’\ LI
2 * 7 e ‘, ’ °e
o Joo® o //
e (54
s .\ . 4 $e)
0 S e\ A °s P
L4 1 °
° N, ® /e ee "
2 g . o o \
/ \ . \
s L4 N, / W)
. N e
-4 L4 .
« *®
° o8
-6 L]

Figure 21: Examples of unsupervised adaptation using PN to two different
test tasks with 100 unlabeled samples. The blue dots correspond
to unlabeled samples.

|9

Figure 22: Examples of unsupervised adaptation using MAML to two differ-
ent test tasks with 100 unlabeled samples. The blue dots corre-
spond to unlabeled samples.

The classification accuracy of unsupervised adaptation with PN and
MAML are shown in Figure 23. Similar to the semi-supervised case, we
use a fully-connected network with two hidden layers of size 100 with
ReLU non-linearity as the feature extractor for both PN and MAML. For
MAML, the sum of squares of a two-dimensional linear projection is
used as the parametrization of the unsupervised cost. It can be seen
that both PN and MAML are able to make use of unlabeled data. How-
ever, MAML is much more efficient in making use of the unlabeled
data. In fact, its performance was very close to the fully supervised
case (using true labels of the unlabeled samples) with increasing num-
ber of unlabeled samples. This means that MAML is able to effectively
label the unlabeled data.

38

Both PN and MAML
are able to make use
of unlabeled data.
MAML is much more

efficient.

5.4 CONCLUSION

Classification Error (%)

—e— MAML

—— PN

10

Figure 23: Unsupervised adaptation results with MAML and PN on the sine
classification dataset. The dotted lines depicts the accuracy of the
adapted model using the same number n of labeled samples.

5.4 CONCLUSION

In this chapter, we considered the problem of adaptation to new tasks
without any labeled examples (unsupervised adaptation) when the
new task has the same output space (classes) as the training tasks do.
We proposed extensions to PN and MAML to perform unsupervised
adaptation. Using synthetic data, we showed that both methods are
able to adapt successfully by making use of the unlabeled data while
MAML was much more efficient in making use of the unlabeled data.

39

CONCLUSION

In this thesis, we build upon two existing methods for few-shot adap-
tation — Prototypical Networks and Model-Agnostic Meta-Learning
(MAML). We extended PN to adapt to new classification tasks in the
semi-supervised few-shot learning scenario when a few labeled ex-
amples are accompanied with many unlabeled examples from the
same classes. We proposed to use the clustering approach to semi-
supervised classification when the clustering process is guided by
the labeled examples. We also advocated that in many real-world
applications it can be possible to request the few labeled examples
from the user, which can yield better performance. We identify that
the fundamental bottleneck in our proposed method is the ability of
the feature extractor to cluster unseen data. Also, we proposed an ex-
tension of MAML to the cases of unsupervised and semi-supervised
few-shot adaptation. Using a synthetic dataset, we show that MAML
can be more efficient in using unlabeled data compared to PN. We
continue investigating the possibility of combining the good proper-
ties of MAML and PN in a single adaptation scheme. Further, we make
a comparison of MAML and PN under various criteria.

PN is simpler and more intuitive than MAML. PN is essentially a
deep equivalent of a Nearest Class Mean (NCM) classifier. It is possi-
ble to easily induce domain specific priors into PN by modifying the
feature extractor or the distance function. It is unclear how to achieve
this with MAML.

In fully-supervised adaptation, we find that PN generally works
better than MAML. The performance of MAML improves well with
increasing number of shots (labeled samples per class). In contrast,
Snell, Swersky, and Zemel [46] showed that the feature extractor of
PN is sensitive to the number of shots used during training. To reduce
this sensitivity, we proposed to use a varying number of samples per
class during training for better generalization to the number of shots
during test time in Section 2.10.

In our experiments on synthetic data, MAML adapts with close to
optimal performance under the availability of increased unlabeled
data. Our proposed method for unsupervised and semi-supervised
adaptation with MAML makes effective use of unlabeled data in our
experiments with synthetic data. However, while PN is able to make
use of unlabeled data, it is not optimal. We showed how to perform
active adaptation with PN by taking into account feedback from the
user. With PN, active adaptation yields noticeable improvements in

40

CONCLUSION

the classification accuracy over semi-supervised adaptation. It is un-
clear how to extend MAML to perform active adaptation.

MAML is able to adapt the features depending on the task. The fea-
ture extractor in PN remains the same after training. MAML has been
tested in different domains such as image classification and reinforce-
ment learning [12]. On the other hand, PN has only been tested in
few-shot image classification tasks. MAML is applicable to any dif-
ferentiable model and has been used in classification and regression
tasks in a straightforward manner. It is unclear how to extend PN to
regression tasks.

MAML ‘“forgets’ the previous tasks and is only adapted to one task
at a time. Since the feature extractor of PN remains the same, it can
be easily extended to perform continual learning. We explore this
possibility in Section 2.10. Since MAML adapts the parameters of the
model to different tasks, it is required to store a different copy of
the parameters for each task. The number of parameters of a deep
neural network is very large. A typical image classification network
contains millions of parameters. Besides these expensive memory re-
quirements, MAML requires computation of second order gradients
for training (However, Finn, Abbeel, and Levine [12] showed that a
first order approximation works as well on the minilmagenet bench-
mark). In contrast, PN only has modest memory requirements.

41

BIBLIOGRAPHY

[1]

[2]

[3]

(4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Charu C Aggarwal and ChengXiang Zhai. “A survey of text
clustering algorithms.” In: Mining text data. Springer, 2012,

pp- 77-128.

Han Altae-Tran, Bharath Ramsundar, Aneesh S Pappu, and Vi-
jay Pande. “Low data drug discovery with one-shot learning.”
In: ACS central science 3.4 (2017), pp. 283—293.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew
W Hoffman, David Pfau, Tom Schaul, and Nando de Freitas.
“Learning to learn by gradient descent by gradient descent.”
In: Advances in Neural Information Processing Systems. 2016,
Pp- 3981-3989.

Sugato Basu, Arindam Banerjee, and Raymond Mooney. “Semi-
supervised clustering by seeding.” In: In Proceedings of 19th In-
ternational Conference on Machine Learning (ICML-2002. Citeseer.
2002.

Aurélien Bellet, Amaury Habrard, and Marc Sebban. “A survey
on metric learning for feature vectors and structured data.” In:
arXiv preprint arXiv:1306.6709 (2013).

Irving Biederman. “Recognition-by-components: a theory of hu-
man image understanding.” In: Psychological review 94.2 (1987),
p. 115.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien.
“Semi-supervised learning (chapelle, o. et al., eds.; 2006)[book
reviews].” In: IEEE Transactions on Neural Networks 20.3 (2009),
PP- 542-542.

Liang-Chieh Chen, George Papandreou, lasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. “Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolution,

and fully connected crfs.” In: arXiv preprint arXiv:1606.00915
(2016).

David Cohn, Rich Caruana, and Andrew McCallum. “Semi-
supervised clustering with user feedback.” In: Constrained Clus-
tering: Advances in Algorithms, Theory, and Applications 4.1 (2003),
pp- 17-32.

Harrison Edwards and Amos Storkey. “Towards a neural statis-
tician.” In: arXiv preprint arXiv:1606.02185 (2016).

Li Fei-Fei, Rob Fergus, and Pietro Perona. “One-shot learning
of object categories.” In: IEEE transactions on pattern analysis and
machine intelligence 28.4 (2006), pp. 594—611.

42

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Bibliography

Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-
Agnostic Meta-Learning for Fast Adaptation of Deep Net-
works.” In: International Conference on Machine Learning. 2017,

pp. 1126-1135.

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and
Sergey Levine. “One-Shot Visual Imitation Learning via Meta-
Learning.” In: arXiv preprint arXiv:1709.04905 (2017).

Yves Grandvalet and Yoshua Bengio. “Semi-supervised learn-
ing by entropy minimization.” In: Advances in neural information
processing systems. 2005, pp. 529-536.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and
Thomas Griffiths. “Recasting Gradient-Based Meta-Learning as
Hierarchical Bayes.” In: arXiv preprint arXiv:1801.08930 (2018).

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun.
“Deep residual learning for image recognition.” In: Proceedings
of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770-778.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. “Matrix
capsules with EM routing.” In: International Conference on Learn-
ing Representations (2018).

Sepp Hochreiter and Jiirgen Schmidhuber. “Long short-term
memory.” In: Neural computation 9.8 (1997), pp. 1735-1780.

Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation net-
works.” In: arXiv preprint arXiv:1709.01507 (2017).

Sergey loffe and Christian Szegedy. “Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift.” In: International conference on machine learning. 2015,

pp- 448-456.

Liping Jing. “Survey of text clustering.” In: Department of Math-
ematics, The University of Hong Kong, HongKong, China, ISBN
(2008), pp. 7695-1754.

Diederik Kingma and Jimmy Ba. “Adam: A method for stochas-
tic optimization.” In: arXiv preprint arXiv:1412.6980 (2014).

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan,
John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. “Overcoming catastrophic forgetting in neural networks.”
In: Proceedings of the National Academy of Sciences 114.13 (2017),

PP 3521-3526.
Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.

“Siamese neural networks for one-shot image recognition.” In:
ICML Deep Learning Workshop. Vol. 2. 2015.

43

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Bibliography

Brian Kulis et al. “Metric learning: A survey.” In: Foundations
and Trends in Machine Learning 5.4 (2013), pp. 287-364.

Samuli Laine and Timo Aila. “Temporal Ensembling for
Semi-Supervised Learning.” In: arXiv preprint arXiv:1610.02242
(2016).

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenen-
baum. “Human-level concept learning through probabilistic
program induction.” In: Science 350.6266 (2015), pp. 1332-1338.

Marc T Law, Raquel Urtasun, and Richard S Zemel. “Deep spec-
tral clustering learning.” In: International Conference on Machine
Learning. 2017, pp. 1985-1994.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. “Meta-
SGD: Learning to Learn Quickly for Few Shot Learning.” In:
arXiv preprint arXiv:1707.09835 (2017).

Stuart Lloyd. “Least squares quantization in PCM.” In: IEEE
Transactions on Information Theory 28.2 (1982), pp. 129-137.

Thomas Mensink, Jakob Verbeek, Florent Perronnin, and
Gabriela Csurka. “Distance-based image classification: Gener-
alizing to new classes at near-zero cost.” In: IEEE transactions
on pattern analysis and machine intelligence 35.11 (2013), pp. 2624—
2637.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter
Abbeel. “Meta-Learning with Temporal Convolutions.” In:
arXiv preprint arXiv:1707.03141 (2017).

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken
Nakae, and Shin Ishii. “Distributional smoothing with virtual
adversarial training.” In: arXiv preprint arXiv:1507.00677 (2015).

Tsendsuren Munkhdalai and Hong Yu. “Meta Networks.” In:
arXiv preprint arXiv:1703.00837 (2017).

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri
Valpola, and Tapani Raiko. “Semi-supervised learning with
Ladder networks.” In: Advances in Neural Information Processing

Systems. 2015, pp. 3546—3554.

Sachin Ravi and Hugo Larochelle. “Optimization as a model
for few-shot learning.” In: International Conference on Learning
Representations. 2017.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin
Swersky, Joshua B Tenenbaum, Hugo Larochelle, and Richard
S Zemel. “Meta-Learning for Semi-Supervised Few-Shot Classi-
fication.” In: International Conference on Learning Representations.
2018.

44

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Bibliography

Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun.
“Faster R-CNN: Towards real-time object detection with region
proposal networks.” In: Advances in neural information processing

systems. 2015, pp. 91—-99.
Danilo Rezende, Ivo Danihelka, Karol Gregor, Daan Wierstra, et

al. “One-shot generalization in deep generative models.” In: In-
ternational Conference on Machine Learning. 2016, pp. 1521-1529.

Olga Russakovsky et al. “ImageNet Large Scale Visual Recog-
nition Challenge.” In: International Journal of Computer Vision
(IJICV) 115.3 (2015), pp. 211-252.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. “Dynamic
routing between capsules.” In: Advances in Neural Information
Processing Systems. 2017, pp. 3859-3869.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan
Wierstra, and Timothy Lillicrap. “Meta-learning with memory-
augmented neural networks.” In: International conference on
machine learning. 2016, pp. 1842—1850.

Tobias Scheffer, Christian Decomain, and Stefan Wrobel. “Ac-
tive hidden Markov models for information extraction.” In: In-
ternational Symposium on Intelligent Data Analysis. Springer. 2001,

pp- 309-318.

Jirgen Schmidhuber. “Evolutionary principles in self-
referential learning, or on learning how to learn: the meta-
meta-... hook.” PhD thesis. Technische Universitat Miinchen,
1987.

Pranav Shyam, Shubham Gupta, and Ambedkar Dukkipati.
“Attentive Recurrent Comparators.” In: arXiv preprint arXio:
1703.00767 (2017).

Jake Snell, Kevin Swersky, and Richard S Zemel. “Proto-
typical Networks for Few-shot Learning.” In: arXiv preprint
arXiv:1703.05175 (2017).

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese.
“Deep metric learning via lifted structured feature embedding.”

In: Computer Vision and Pattern Recognition (CVPR), 2016 IEEE
Conference on. IEEE. 2016, pp. 4004—4012.

Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin Mur-
phy. “Deep metric learning via facility location.” In: Computer
Vision and Pattern Recognition (CVPR). 2017.

Antti Tarvainen and Harri Valpola. “Weight-averaged consis-
tency targets improve semi-supervised deep learning results.”
In: arXiv preprint arXiv:1703.01780 (2017).

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer
Science & Business Media, 2012.

45

[51]

[52]

[53]

Bibliography

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra,
et al. “Matching networks for one shot learning.” In: Advances
in Neural Information Processing Systems. 2016, pp. 3630—3638.

Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrodl, et
al. “Constrained K-means clustering with background knowl-
edge.” In: ICML. Vol. 1. 2001, pp. 577-584.

Sergey Zagoruyko and Nikos Komodakis. “Wide residual net-
works.” In: arXiv preprint arXiv:1605.07146 (2016).

46

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure

	2 Few-shot Learning
	2.1 Meta-Learning
	2.2 Task Description
	2.3 Approaches
	2.4 Siamese Networks
	2.5 Matching Networks
	2.5.1 Relation to Gaussian Processes

	2.6 Meta-LSTM
	2.7 Prototypical Networks
	2.8 Model-Agnostic Meta-Learning
	2.8.1 Learning Initialization as Meta-Learning
	2.8.2 Learning-Rate Schemes

	2.9 Experiments on miniImagenet
	2.10 Continual Learning with PN
	2.11 Conclusion

	3 Semi-Supervised Adaptation
	3.1 Semi-Supervised Adaptation with PN
	3.2 Semi-supervised Adaptation with MAML
	3.3 Experiments on Synthetic Data
	3.4 Experiments on miniImagenet
	3.5 Conclusion

	4 Active Adaptation
	4.1 Active Adaptation with PN
	4.2 Experiments with miniImagenet
	4.3 Visualizations
	4.4 Conclusion

	5 Unsupervised Adaptation
	5.1 Unsupervised Adaptation with Prototypical Networks
	5.2 Unsupervised Adaptation with MAML
	5.3 Experiments on Synthetic Data
	5.4 Conclusion

	6 Conclusion
	Bibliography

