4,906 research outputs found

    DoorGym: A Scalable Door Opening Environment And Baseline Agent

    Full text link
    In order to practically implement the door opening task, a policy ought to be robust to a wide distribution of door types and environment settings. Reinforcement Learning (RL) with Domain Randomization (DR) is a promising technique to enforce policy generalization, however, there are only a few accessible training environments that are inherently designed to train agents in domain randomized environments. We introduce DoorGym, an open-source door opening simulation framework designed to utilize domain randomization to train a stable policy. We intend for our environment to lie at the intersection of domain transfer, practical tasks, and realism. We also provide baseline Proximal Policy Optimization and Soft Actor-Critic implementations, which achieves success rates between 0% up to 95% for opening various types of doors in this environment. Moreover, the real-world transfer experiment shows the trained policy is able to work in the real world. Environment kit available here: https://github.com/PSVL/DoorGym/Comment: Full version (Real world transfer experiments result

    Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search

    Full text link
    In principle, reinforcement learning and policy search methods can enable robots to learn highly complex and general skills that may allow them to function amid the complexity and diversity of the real world. However, training a policy that generalizes well across a wide range of real-world conditions requires far greater quantity and diversity of experience than is practical to collect with a single robot. Fortunately, it is possible for multiple robots to share their experience with one another, and thereby, learn a policy collectively. In this work, we explore distributed and asynchronous policy learning as a means to achieve generalization and improved training times on challenging, real-world manipulation tasks. We propose a distributed and asynchronous version of Guided Policy Search and use it to demonstrate collective policy learning on a vision-based door opening task using four robots. We show that it achieves better generalization, utilization, and training times than the single robot alternative.Comment: Submitted to the IEEE International Conference on Robotics and Automation 201

    Learning Contact-Rich Manipulation Skills with Guided Policy Search

    Full text link
    Autonomous learning of object manipulation skills can enable robots to acquire rich behavioral repertoires that scale to the variety of objects found in the real world. However, current motion skill learning methods typically restrict the behavior to a compact, low-dimensional representation, limiting its expressiveness and generality. In this paper, we extend a recently developed policy search method \cite{la-lnnpg-14} and use it to learn a range of dynamic manipulation behaviors with highly general policy representations, without using known models or example demonstrations. Our approach learns a set of trajectories for the desired motion skill by using iteratively refitted time-varying linear models, and then unifies these trajectories into a single control policy that can generalize to new situations. To enable this method to run on a real robot, we introduce several improvements that reduce the sample count and automate parameter selection. We show that our method can acquire fast, fluent behaviors after only minutes of interaction time, and can learn robust controllers for complex tasks, including putting together a toy airplane, stacking tight-fitting lego blocks, placing wooden rings onto tight-fitting pegs, inserting a shoe tree into a shoe, and screwing bottle caps onto bottles

    Deep Visual Foresight for Planning Robot Motion

    Full text link
    A key challenge in scaling up robot learning to many skills and environments is removing the need for human supervision, so that robots can collect their own data and improve their own performance without being limited by the cost of requesting human feedback. Model-based reinforcement learning holds the promise of enabling an agent to learn to predict the effects of its actions, which could provide flexible predictive models for a wide range of tasks and environments, without detailed human supervision. We develop a method for combining deep action-conditioned video prediction models with model-predictive control that uses entirely unlabeled training data. Our approach does not require a calibrated camera, an instrumented training set-up, nor precise sensing and actuation. Our results show that our method enables a real robot to perform nonprehensile manipulation -- pushing objects -- and can handle novel objects not seen during training.Comment: ICRA 2017. Supplementary video: https://sites.google.com/site/robotforesight
    • …
    corecore