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Robots are progressively spreading to urban, social and assistive domains. Service
robots operating in domestic environments typically face a variety of objects they have
to deal with to fulfill their tasks. Some of these objects are articulated such as cabinet
doors and drawers. The ability to deal with such objects is relevant, as for example
navigate between rooms or assist humans in their mobility. The exploration of this
task rises interesting questions in some of the main robotic threads such as perception,
manipulation and learning. In this work a general framework to robustly operate different
types of doors with a mobile manipulator robot is proposed. To push the state-of-the-
art, a novel algorithm, that fuses a Convolutional Neural Network with point cloud
processing for estimating the end-effector grasping pose in real-time for multiple handles
simultaneously from single RGB-D images, is proposed. Also, a Bayesian framework
that embodies the robot with the ability to learn the kinematic model of the door from
observations of its motion, as well as from previous experiences or human demonstrations.
Combining this probabilistic approach with state-of-the-art motion planning frameworks,
such as the Task Space Region, a reliable door and handle detection and subsequent
door operation independently of its kinematic model is achieved with the Toyota Human
Support Robot (HSR).
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1 Introduction

Robots are no longer confined to factories and they are progressively spreading to urban,
social and assistive domains. According to the International Federation of Robotics, a
service robot is a robot which operates semi or fully autonomously to perform services
useful to the well being of humans. This development is especially interesting against
the background of the increasing importance of the service sector. As our economy relies
more than ever on the value created by services, they are the key to future competitive
advantage. Analogously to the industrial context, automation through the employment
of service robots becomes a means to increase the competitiveness of a service. However,
in order to become handy co-workers and helpful assistants, they must be endowed with
quite different abilities than their industrial ancestors [73, 79].

Human environments have a number of challenging characteristics that will usually be
beyond the control of the robot creator. Among these challenges, dynamic enviroments,
real-time constraints, and variations in the size and appearance of the manipulated ob-
jects can be pointed out. Everyday tasks people take for granted would stump the best
robot bodies and brains in existence today. The research efforts to overcome the cur-
rent limitations could be divided into three main threads: perception, manipulation and
learning.

Robot simulation in controlled enviroments indicates that robots can perform well if
they know the state of the world with certainty. Although robots in human environments
will almost always be working with uncertainty due to their limited view of a changing
world, perceptual systems have the potential to reduce its uncertainty and enable robust
autonomous operation. As such, perception is one of this most important challenges that
the robotics field faces [33].

When it comes to the robot interacting with the enviroment a lesson is that manip-
ulation is hard. Robots crash against Moravec’s paradox, machines can be taught to
solve difficult problems but it is really hard to make them do the most simple tasks.
Even the most sophisticated robot could be unable to fetch and carry a glass of water.
Within perfectly modeled worlds, motion planning systems perform extremely well. Once
the uncertainties of dynamic human environments are included, alternative methods for
control become important. Control schemes must have real-time capabilities in order to
adapt to changes in the enviroment.

Finally, by learning from the natural statistics of human environments, robots may
be able to infer unobservable properties of the world or select appropriate actions that
implicitly rely on these unobserved properties. Learning can also help address imple-
mentation problems. Directly programming robots by writing code can be tedious, error
prone, and inaccessible to non-experts. Through learning, robots may be able to reduce
this burden and continue to adapt once they have left the factory [33].
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In order to accelerate the service robotics research, Toyota Partner Robot has devel-
oped a compact and safe research platform, Human Support Robot (HSR) which can be
operated in an actual home environment (Figure 1.1).

Figure 1.1: Toyota Human Support Robot (HSR) provides life support and assistance

HSR was adopted as the Standard Platform for RoboCup@Home. It was used at the
Domestic Standard Platform League (DSPL) for home service robots since RoboCup
2017 Nagoya. Moreover, it has been adopted as a standard platform for the service robot
competition of the World Robot Summit (WRS) which is scheduled to be held in 2020
in Japan after the Tokyo Olympic Games [84].

This project aims to contribute to the development of robots that can assist people
at home. Service robots operating in domestic environments typically face a variety of
objects they have to deal with to fulfill their tasks. Some of these objects are articulated
such as cabinet doors and drawers. The ability to deal with such objects is key, for
example, to open doors when navigating rooms and to open cabinets to pick up objects
in fetch-and-carry applications. The exploration of this task rises interesting questions in
robotics fields such as visual perception, object recognition, control algorithms, manipu-
lation under uncertainty, and learning from experience or from humans demonstrations.

In order to correctly operate a door the robot must:

1. Be able to identify doors and their corresponding handle.

2. Grasp the handle.

3. Unlatch the handle.

4. Open the door according to its kinematic model.

In this work, using the Toyota HSR platform, the problem of operating multiple types
of doors with a unified framework is adressed. It will be described how progressively,
overcoming the challenges that arise in the main threads of service robotics research, the
aim of this project is achieved.
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In chapter II, the literature regarding the door opening task from different perspectives
will be reviewed. In chapter III, it will be presented an approach to identify multiple
classes of doors and their corresponding handle as well as their relevant 3D geometric
features in real-time. In chapter IV, the main manipulation algorithms used to operate
the door taking advantage of the robot sensing capabilities will be studied. In chapter V,
a probabilistic framework to learn the kinematic model of doors, that enables the robot
to operate unkown doors, learn from experience and human demonstrations. Finally, in
chapter VI, the main conclusions of this work will be outlined.
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2 Previous Works

The problem of opening doors and drawers with robots has been treated extensively in
the specialized literature, in aspects of the task such as the detection of doors and handles
[9,37,44,60,68,71,85] and the planning and control of movements for the opening motion
[29,34,53,56,59,80]. However, these approaches usually focus either on a particular type
of door or in a certain aspect of the whole task and a unified framework for operating
different doors completely autonomously has not been proposed.

Regarding the detection of doors and handles, several approaches have been proposed.
These techniques incorporate the usage of either images [12,71], or depth data [9,68,85],
or both [3,30,37,44,60]. The state-of-the-art in this problem could be discussed through
three works: Chen et al. [12] propose a door detection algorithm via convolutional neural
network (CNN) for robot autonomous navigation. The proposed algorithm can predict
the door poses from a 2D color image of the scene, but does not have any capacity for
the detection and segmentation of the handles. Banerjee et al. [6] develop an approacht
that enables an ATLAS robot, in a semi-structured environment, as specified by the
requirements of the DARPA Robotics Challenge, to detect closed doors. Doors are
detected by finding consecutive pairs of vertical lines at a specific distance from one
another in a 2D image of the scene. The lines are then recalculated in a 3D space with
RANSAC. If there is a flat surface between each pair of lines, it is recognized as a closed
door. Handle detection is subsequently carried out by means of color segmentation. This
approach makes several assumptions that limit its applicability, since the autors define a
specific size, and demand different colors on the door and handle (Fig. 2.1). Llopart el
al. [44] describe the implementation of a CNN to extract a Region of Interest (ROI) from
an RGB-D image corresponding to a door or cabinet, but the algorithm does not directly
detects the handle. For it, they use a combination of several vision based techniques,
to detect handles inside the ROI and its 3D positioning, with a complementary plane
segmentation method, to differentiate door from the handle, which complicates the image
processing prior to the grasp (Fig. 2.1). However, the use of a one-step CNN real-time
method to detect the doors is a proposal that has inspired our project.

Since processing this kind of data involves the management of a lot of information, the
main common limitation is the computation time that does not fulfill the requirements for
real-time applications. Additionally, the assumption that only a single handle is present
on the scene is made.
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Figure 2.1: Approaches for door and handle detection proposed by Banerjee et al. [6], to
the left, and by Llopart et al. [44]

Figure 2.2: Model approaches for door manipulation proposed by Meeussen et al. [48], to
the left, and by Diankov et al. [20], to the right

There is a variety of ways to open a door, which humans unconsciously choose and
execute depending on the situation. Similarly, to adress the door manipulation problem
with robotics systems different approaches have been proposed [22]. Most of these ap-
proaches assume substantial knowledge about the model and its parameters [50] or are
model-free [31]. Although approaches relying on “a priori” parameters are constrained to
a reduced set of doors, whereas model-free approaches release designers from providing
any “a priori” model information, the knowledge about objects and their articulation
properties supports state estimation, motion prediction, and planning.

Among the approaches that assume an implicit kinematic model of the articulated
object, the following can be highlighted. Meeussen et al. [48] describe an integrated nav-
igation system for mobile robots including vision and laser-based detection of doors and
door handles that enables the robot to open doors successfully using a compliant arm
(Fig. 2.2). Diankov et al. [20] formulate door and drawer operation as a kinematically
constrained planning problem and propose to use caging grasps to enlarge the configu-
ration space (Fig. 2.2). Wieland et al. [83] combine force and visual feedback to reduce
the interaction forces when opening kitchen cabinets and drawers.
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Figure 2.3: Probabilistic approaches for door manipulation proposed by Nemec et al. [51],
to the left, and by Welschehold et al. [82], to the right

Among the model-free approach, a first solution could be those proposed by Lutscher
et al. [45] and Karayiannidis et al. [31] approaches. They take advantage of the robot
compliant behavior to accomplish the opening door task without estimating the direction
of motion or the kinematics of the door. Lutscher et al. [45] propose to operate the
unknown constrained mechanisms based on an impedance control method, which adjusts
the guiding speed by impedance control to achieve two-dimensional plane operation.
Karayiannidis et al. [31] propose a methodology that consists of a velocity controller
which relies on force/torque measurements and estimation of the motion direction. These
methods are suitable for any velocitiy controlled manipulator with a force/torque sensor
at the end-effector. The force/torque control regulates the applied forces and torques
within given constraints, while the velocitiy controller ensures that the end-effector of
the robot moves with a task-related desired tangencial velocity. These methods, however,
require a rich sensory feedback from the end-effector and advanced hardware capabilities
of the robot in order to open a door. Another solution has been proposed by Banerjee
et al. [6], with an approach that enables an ATLAS robot to open doors using motion
planning with a optimiser that only involves kinematic constraints.

Finally, other works use probabilistic methods that are off-line and do not consider
interaction force issues. Nemec et al. [51] use a reinforcement learning approach combined
with intelligent control algorithm to open doors with an articulated robot (Fig. 2.3).
Welschehold et al. [82] propose a probabilistic approach to learn joint robot base and
gripper action models for door opening from observing demonstrations carried out by
a human teacher (Fig. 2.3). The probabilistic approach proposed by Sturm et al. [76]
could be considered the state-of-the-art, and has been adopted as a basic reference since it
allows the robot to infere the kinematic model from observations of its motion. However,
even if a framework for exploiting prior knowledge is proposed, it has not been analyzed
extensively.

This work aims to overcome the current limitations and extend the state-of-the-art for
the door opening task with a mobile manipulator robot.

6



3 Toyota Human Support Robot (HSR)

The Toyota Human Support Robot (HSR) is one of the Toyota Partner Robots (Figure
3.1) designed to support human activities and provide assistance to handicapped people
for independent living at home. The HSR Robot has been designed to safely interact with
people (Figure 3.2), and it is equipped with a folding arm. A force relaxation mechanism
to prevent possible accidents from excessive external force applied on joint axes is used.
Furthermore, obstacle avoidance helps the HSR to operate safely in a human-centric
environment. It has a compact a lightweight body. To better accommodate a wide
variety of households. It has a cylindrical telescopic body of 430mm in diameter, with a
minimum height of 1005mm and weight of 37kg. Despite its compact footprint, the HSR
can cover a relatively large workspace (Figure 3.3) [26].

The HSR has a differential drive type mobile base that consists of two drive wheels and
three casters (Figure 3.4). The omni-wheels of the casters, located on the front and rear
of the drive wheels, facilitate smooth changes in direction. Its articulated arm has seven
degrees of freedom. The hand is a two-fingered gripper driven by a single motor and it
is adopted for the end effector. The fingertips and the base of the fingers are designed
to be compliant and the fingertip surface is covered by elastic material. This design
enables the fingertips to conform to the shape of the objects while grasping, and prevent
excessive force acting in the case of contact with environment and/or people. The rated
fingertip force is 20N and the maximum grasping width is 140mm. The fingertip includes
a vacuum pad to lift thin items such as cards or paper. The moving base is equipped
with a laser range sensor used to measure the distance of obstacles when moving, a
bumper sensor, used to detect contact with an obstacle, and a magnetic sensor able to
detect magnetic tape and the like on the floor. The body trunk is equipped with an IMU
(inertial measurement unit), which measures linear acceleration and rotational rate. The
hand is equipped with a 6−axis force sensor to detect forces on the wrist, and a camera.
And, finally, the head has a RGB-D sensor, a stereo camera and a wide-angle camera [26].

The software consists of two layers, namely the real-time control layer and the intelli-
gence layer. The real-time control layer executes time-critical processing such as motor
control, while the intelligence layer processes computationally expensive logic or large
data such as RGB images and point clouds. For the intelligence layer, Linux (Ubuntu)
is used as the OS, and ROS (Robot Operating System) as the middleware [26].

The Human Support Robot (HSR) is the Toyota answer to the ever-increasing demand
for long-term elderly care. Toyota is teaming up with a number of research institutes
to found the HSR Developers’ Community. This institute will put forth a cooperative
effort to hasten the development and early practical adoption of the HSR. This robot
represents the Toyota first step towards a society where robots exist in harmony with
people, assisting their activities and mobility.
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Figure 3.1: Toyota Partner Robots familiy

Figure 3.2: HSR provides assistance and life support
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Figure 3.3: HSR telescopic body covers a large workspace

Figure 3.4: Configuration of the HSR
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4 Perception

One of the major obstacles for reliable robotic autonomy is the problem of the extraction
of useful information about the external environment from sensory readings or, in other
words, robotic perception. Sensors can give robots the ability to see, touch and hear.
Vision is used as a mean to act for the robot and interact with the world. Robotics
systems rely on 3D perception in order to enable the holistic perception of their sur-
roundings. The technology of 3D cameras has quickly evolved in recent years. Within
robotics, these cameras open up the possibility of real-time robot interaction in human
environments [2]. These cameras are also known as RGB-D cameras, because they are
composed by a classical RGB camera and a depth sensor.

The Toyota Human Support Robot (HSR) incorporates an RGB-D camera in its head,
in particular a Xtion PRO LIVE (Figure 4.1). This system performs triangulation be-
tween a light projector that throws a pattern with known structure into the scene, and
a camera that views the scene and detects the pattern. By matching or correlating
the pattern elements between the projector and the camera, and using the known re-
lationship between them, it is possible to recover depth using standard methods. The
camera/projector pair for depth recovery typically operate in the infrared to avoid the
pattern being visible to the human eye [15].

In order to assist humans in performing ordinary tasks, a key issue is the interaction
with objects. Object recognition and manipulation is something that seems very easy
for a human and is hard for a robot. It is common to talk about a robot moving towards
an object, but in reality the robot is only moving towards a pose at which it expects the
object to be. This is a subtle but deep distinction. Thus, within a manipulating robot
context, object recognition can be seen as a 6D-pose estimation problem.

To adress the problem of opening a door, the robot should be able to reach the handle
and grasp it correctly. Exploiting the RGB-D data is essential to perceive the fundamen-
tal 3D structure necessary for its manipulation. In this chapter, an approach to estimate
the key 3D geometric features of doors and handles combining computer vision object
detection and 3D image processing algorithms is proposed. In section 4.1, a multiple
object detection CNN that identifies different door clases and their corresponding handle
is presented. Then, in section 4.2 an algorithm that estimates robustly the 3D geometric
features of doors and handles in real time through the RGB-D sensor data is presented.

4.1 Handle and Door Detection Model

Humans recognize a multitude of objects in images with little effort, despite the fact
that the image may vary somewhat depending on the point the view, the size and the
scale or the position. This task is still a challenge for robotic systems. In order to

10



Figure 4.1: HSR RGB-D camera

be able to open doors, the robot must be endowed with the ability to recognize them
and its corresponding handle. Since the robot may have to function in a wide variety
of environments where doors and handles present a broad spectrum of colors, shapes,
lighting conditions..., a robust detection is essential.

Object detection is one of the areas of computer vision that is maturing very rapidly
thanks to Deep Learning and Convolutional Neural Networks (CNNs). Their capacity
to from a set of examples, produce robust and reliable results makes them an excellent
approach to adress the proposed problem.

4.1.1 Deep Learning and Convolutional Neural Networks

Until recently, most machine learning and signal processing techniques had exploited
shallow-structured architectures. These architectures typically contain at most one or
two layers of nonlinear feature transformations. Examples of the shallow architectures are
Gaussian mixture models (GMMs), support vector machines (SVMs), logistic regression,
kernel regression, and multilayer perceptrons (MLPs) with a single hidden layer including
extreme learning machines (ELMs) [18]. Shallow architectures have been effective in
solving many well-constrained problems, but their limited modeling and representational
power can cause difficulties when dealing with more complicated real-world applications
involving natural signals such as images [19].

Deep learning allows computational models that are composed of multiple processing
layers to learn representations of data with multiple levels of abstraction. These methods
have dramatically improved the state-of-the-art in object detection. This algorithm learns
the objects features rather than being programmed with them. With multiple non-
linear layers, i.e., a depth of 10 to 50 layers, a system can implement extremely intricate
functions of its inputs that are simultaneously sensitive to minute details and insensitive
to large irrelevant variations such as the background, pose, lighting and surrounding
objects. Along with this advantage of such data-oriented classifiers, the drawnback is
that an large amount of data is needed to achieve their performance [41].
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The most common form of learning, deep or not, is supervised learning. It consists
of learning a function that maps an input to an output based on example input-output
pairs. The first step is, then, to collect a large data set of images. Later, the training
process can start. During training, using the images collected, an objective function that
measures the error (or distance) between the output scores and the desired pattern of
scores is computed. Thise error is reduced iteratively adjusting certain parameters, often
called weights, that define the input-output function. In a typical deep-learning system,
there may be hundreds of millions of these adjustable weights. To adjust the weigth
vector in each iteration, the gradient-descent method is the standard technique. When
the error is small enough the model is trained, thus, it will be able to infere the desired
output from new data.

Figure 4.2: Architecture of a typical CNN [41]

Among the deep learning methods, the most representative model is Convolutional
Neural Networks (CNNs). This group of methods is today the most capable, and they
are able to handle many classes of object simultaneously and accurately classify them.
There are four key ideas behind CNNs that take advantage of the properties of natural
signals: local connections, shared weights, pooling and the use of many layers [41]. The
architecture of a typical CNN is structured as a series of stages (Figure 4.2). The first
few stages are composed of two types of layers: convolutional layers and pooling layers.
Units in a convolutional layer are organized in feature maps, within which each unit is
connected to local patches in the feature maps of the previous layer through a set of
weights called a filter bank. The result of this local weighted sum is then passed through
a non-linear function such as a ReLU. All units in a feature map share the same filter
bank. The reason for this architecture is twofold. First, in array data such as images,
local groups of values are often highly correlated, forming distinctive local motifs that are
easily detected. Second, if a motif can appear in one part of the image, it could appear
anywhere, hence the idea of units at different locations sharing the same weights and
detecting the same pattern in different parts of the array. Mathematically, the filtering
operation is a discrete convolution, hence the name.
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Figure 4.3: Longhorn bounding box

Although the role of the convolutional layer is to detect local conjunctions of features
from the previous layer, the role of the pooling layer is to merge semantically similar
features into one. Because the relative positions of the features forming a motif can vary
somewhat, reliably detecting the motif can be done by coarse-graining the position of
each feature. A typical pooling unit computes the maximum of a local patch of units
in one feature map. Two or three stages of convolution, non-linearity and pooling are
stacked, followed by more convolutional and fully-connected layers. The final stage is
composed of fully connected layers which outputs an N dimensional vector where N is
the number of classes that the network has to choose from by looking at the output of
the previous determining which features most correlate to a particular class. Deep neural
networks exploit the property that many natural signals are compositional hierarchies,
in which higher-level features are obtained by composing lower-level ones. In images,
local combinations of edges form motifs, motifs assemble into parts, and parts form
objects. CNNs have been applied with great success to the detection, segmentation and
recognition of objects and regions in images.

Object detection is the task of simultaneously classifying (what) and localizing (where)
multiple object instances in an image. Given an image, a detector will output the coor-
dinates of the location of an object with respect to the image. In computer vision, the
usual way to localize an object in an image is to represent its location with bounding
boxes, as shown in Figure 4.3. They can be defined either by the coordinates of two
opposite corners, or the center or the widht and height.

The CNNs for generic object detection methods can be divided into two categories [86]:

• Region proposal: They follow a traditional object detection pipeline, generating
region proposals at first and then classifying each proposal into different object
categories. They are composed of several correlated stages, including region pro-
posal generation, feature extraction with CNN, classification and bounding box
regression, which are usually trained separately. As a result, the time spent in
handling different components becomes the bottleneck in real-time applications.
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Figure 4.4: YOLO model detection as a regression problem [61]

• One-step: They regard object detection as a regression or classification problem,
adopting a unified framework to achieve final results directly. They are based on
global regression/classification, mapping straightly from image pixels to bounding
box coordinates and class probabilities, reducing time expense. In short, regression
based models can usually be processed in real-time at the cost of a drop in accuracy
compared with region proposal based models.

The capacity of the regression based methods to process images in real time makes them
very suitable for their integration into the vision systems used in robotics. In this work,
You Only Look Once (YOLO), an open source and a state-of-the-art object recognition
CNN for robot vision systems [61], will be used.

4.1.2 Object Detection: You Only Look Once (YOLO)

Redmon et al. [61] proposed a novel open source framework called YOLO, which unifies
the separate components of object detection into a single neural network. This network
uses features from the entire image to predict each bounding box. It also predicts all
bounding boxes across all classes for an image simultaneously. This means this network
reasons globally about the full image and all the objects in the image. The YOLO
design enables end-to-end training and real-time speeds while maintaining high average
precision. YOLO divides the input image into an S × S grid and each grid cell is
responsible for predicting the object centered in that grid cell. Each grid cell predicts
B bounding boxes and their corresponding confidence scores. These confidence scores
reflect how likely the box contains and object, and how accurate is the boundary box
(Figure 4.4).
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Figure 4.5: Intersection over Union (IOU) evaluation metric to measure the accuracy of
an object detector

Formally, confidence scores are defined Pr(Object)×IOU truth

pred
, where Pr (Object) ≥ 0

corresponds to the likelihood that there exists an object, and IOU truth

pred
are the confidence

of the bounding box prediction. IOU denotes the Intersection over Union metric, that
is, the ratio of overlap and union areas. It is an evaluation metric used to measure the
accuracy of an object detector on a particular dataset (Figure 4.5).

At test time, class-specific confidence scores for each box are achieved by multiply-
ing the individual box confidence predictions with the conditional class probabilities as
follows:

Pr (Object)× IOU truth

pred × Pr (Classi | Object) = Pr (Classi)× IOU truth

pred

where the existing probability of class-specific objects in the box and the fitness between
the predictor box and the object are both taken into consideration.

At training, the following loss function is optimized:
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Figure 4.6: Feature Pyramid Network

where, in a certain cell i: (xi, yi) denote the center of the box relative to the bounds of
the grid cell; (ωi, hi) are the normalized width and height relative to the image size; Ci

represents confidence scores; �obj

i
denotes if the object appears in the cell; �obj

ij
denotes

that the jth bounding box predictor in the cell is “responsible” for that prediction; �noobj

i

denotes if the object does not appear in the cell; �noobj

ij
denotes that the jth bounding box

predictor in the cell is “responsible” for that prediction; λcoord is a parameter to increase
the loss from bounding box coordinate predictions; and λnoobj is a parameter to decrease
the loss from confidence predictions for boxes that do not contain objects. YOLO predicts
multiple bounding boxes per grid cell. At training time only one bounding box predictor
is responsible for each object. Thus, we assign one predictor to be “responsible” for
predicting an object based on which prediction has the highest current IOU with the
ground truth. This leads to specialization between the bounding box predictors.

Since the first version came out, Redmon et al. [62] have developed improved versions
of this family of algorithms for object recognition. The last version is YOLOv3 [63].
YOLOv3 has a fully convolutional architecture. No fully-connected layer is used. This
structure makes it possible to deal with images with any sizes. Also, no pooling layers
are used. Instead, a convolutional layer with stride 2 is used to downsample the feature
map, passing size-invariant feature forwardly. This helps to prevent loss of low-level
features often attributed to pooling. Additionally, YOLO v3 makes predictions at three
scales. They are designed for detecting objects with various sizes. Then features are
extracted from each scale by using a method similar to that of feature pyramid networks
(FPN) (Figure 4.6). In these type of networks, the prediction is done on feature maps
at different depths, but further features are utilized by upsampling the feature map and
merging it with current feature map.

FPN composes of a bottom-up and a top-down pathway. The bottom-up pathway
is the usual convolutional network for feature extraction while the top-down pathway
constructs higher resolution layers from a semantic rich layer. With this technique, the
network is more capable to capture the object information, both low-level and high-level.
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Figure 4.7: Examples of object detection with YOLOv3

All these features have made YOLO the most popular object detection CNN, since it
is able to achieve processing rates of 30 fps in a Pascal Titan X GPU with great accuracy.
Some examples are shown in Figure 4.7.

4.1.3 Detected Classes

The most simple classification could be “door” and “handle”. Where “door” refers to a
general definition that includes room doors, drawers, lockers. . . and “handle” refers to the
actuation mechanism that operates the door. However, to make the proposed approach as
versatile and extendable to other applications as possible, the class “door” was splitted in
three classes. In this way, the object detection model will provide additional information.
Thus, the detected classes of the proposed model are (some representative examples of
what objects includes each class are shown in Figure 4.8): (a) Door, (b) Cabinet door,
(c) Refrigerator door, and (d) Handle.

Figure 4.8: Detected classes
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4.1.4 Training Data

Deep-learning based model require labelled data to adjust their parameters and provide
the desired output. In the context of object detection these data refers to a set of images
with their corresponding bounding boxes.

There is not a general rule to determine the minimum number of images to achieve a
satisfactory performance in object detection. However, there is a general consensus that
usually “the more, the better”. It should be highlighted that the quality of the pictures
is important, not just the quantity (Figure 4.9).

Figure 4.9: Gilbert shows that the quality of the data is very important

It is very important that the training images are as close as possible to the inputs that
the model will see when it is deployed. Gathering the correct training data is key for
our CNN performance. However, well-annotated data can be both expensive and time
consuming to acquire. Preparing large training sets for object recognition has already
become one of the main bottlenecks for such emerging applications as mobile robotics
and object recognition on the web. The two possible procedures to collect the data are:

• Download it from a fully-labeled image dataset: Well-annotated data can be both
expensive and time consuming to acquire. There are several open-source datasets
that can be used for bechmarking object detection CNNs. The most popular ones
are: ImageNet, Pascal VOC and MS COCO.

• Make your own training data from scratch: This should be done when the class
that is desired to be identified by the model is not available in the already-existing
image datasets.

The classes presented in the previous section are not identified among the existing data
sets, they are usually split in many other different categories. Furthermore, the usual
definition of handle only includes the door handles, and for the project a more extended
definition is needed. For these reasons, in order to identify the desired classes, the data
set had to be made from scratch.
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Figure 4.10: Object particular classes in Open Images Dataset V4

Figure 4.11: Examples of labeled images, available at [4] GitHub repository

The first step is to gather the images that will be used for further annotation. Instead
of downloading images one by one with a common search engine, a simpler process is to
download certain classes from an image dataset without the annotations and label them
manually. In this project the Open Images Dataset [55] was used. Some examples of the
images used for the training data are shown in Figure 4.10. Open Images is a dataset
of ∼ 9M images that have been annotated with image-level labels and object bounding
boxes. The training set of V4 contains 14.6M bounding boxes for 600 object classes on
1.74M images, making it the largest existing dataset with object location annotations.
The images are very diverse and often contain complex scenes with several objects. The
dataset is a product of a collaboration between Google, CMU and Cornell universities.
Once the images have been gathered and selected, the next step is to label the data.
Manual image annotation is the process of manually defining regions in an image and
creating a textual description of those regions. There exists different tools for this task
such as LabelMe (CSAIL, MIT), Labelbox, or RectLabel. Given a target class, a perfect
box is the smallest possible box that contains all visible parts of the object [36]. Taking
this premise into account a total of approximately 1200 images were manually labelled for
the training dataset (Figure 4.11). This dataset is fully available at [4] GitHub repository.
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Figure 4.12: Data augmentation applied to the training data

Separating data into training and testing sets is an important part of evaluating the
model. After the model has been processed by using the training set, the model is
tested by making predictions against the test set. Thus, the labelled data was splitted
randomly in 200 images for testing and 1000 images for training. Finally, to improve
the training process, Imgaug library was used to apply data augmentation techniques to
the training data. That is, generating synthetic training examples by altering some of
the original images from the data set, while using the original class label label (Figure
4.12). Performing data augmentation for learning deep neural networks is known to be
important for training visual recognition systems by improving generalization [77]. Once
the data is gathered, the training process can start.

4.1.5 Training the Model

A supervised learning algorithm analyzes the training data and produces an inferred
function, which can be used for mapping new examples. An optimal scenario will allow
the algorithm to correctly determine the class labels for unseen instances. Deep learning
needs considerable hardware to run efficiently. The computationally intensive part of
neural network is made up of multiple matrix multiplications in the training process. It
can be made faster by computing all the operations at the same time. Thus, a GPU
(graphical processing unit) is highly recommendable for training a CNN. Their highly
parallel structure makes them more efficient than general-purpose CPUs for algorithms
that process large blocks of data in parallel. An intuitive example to understand the
difference between a CPU and a GPU could be the following: To transfer goods from
one place to another a Ferrari or a freight truck could be either used. The Ferrari would
be extremely fast but the amount of goods that can be carried is small, and usage of
fuel would be very high. A freight truck would be slow and would take a lot of time
to transfer goods. But the amount of goods it can carry is larger in comparison to the
Ferrari. Also, it is more fuel efficient. The Ferrari is the CPU and the freight truck is
the GPU.

To train the model proposed in this project an NVIDIA Geforce GTX 1080 was used.
For starting the training process, pre-trained weights on large datasets were used, in
particular DarkNet53 trained on ImageNet. By using these weights this previous learning
is applied to the proposed problem statement. This is known as transfer learning.
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Figure 4.13: Learning curve

In this way, the time to train the dense layer of the network is comparatively neglibible
and is done with greater accuracy. A total of approximattely 150000 iterations were done
during the training process (Figure 4.13). It was stopped when the average loss stabilized
around 0.5, taking the process one week.

4.1.6 Testing the Model

The performance of the proposed CNN will be judged using the mAP (mean average
precision) criterium defined in the PASCAL VOC 2012 competition. mAP is the metric
to measure the accuracy of object detectors. It is a number from 0 to 100, and higher
values are typically better. Briefly, the mAP computation is done in the following way:

• Each bounding box will have a score associated (likelihood of the box containing
an object).

• Based on the predictions, a precision-recall curve (PR curve) is computed for each
class by varying the score threshold. The average precision (AP ) is the area under
the PR curve.

• First the AP is computed for each class, and then averaged over the different
classes.

Being the end result the mAP .
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The first step is, then, to make the PR curve, for which precision and recall should be
defined:

• Precision (in statistics also known as positive predictive value or PPV ) measures
how accurate are the predictions, i.e., the proportion of positive predictions that
are correct.

• Recall (in statistics also known as sensitivity) measures the proportion of actual
positives that are correctly identified as such.

Mathematically, they are defined as follows:

Precision =
TP

TP + FP
; Recall =

TP

TP + FN

where: TP=True Positive, TN=True Negative, FP=False Positive, and FN=False Negative.

In the terminology true/false and positive/negative, true or false refers to the assigned
classification being correct or incorrect, while positive or negative refers to assignment
to the positive or the negative category, thus positive corresponds an object has been
detected and negative the opposite. For the PASCAL VOC challenge, a prediction is true
if IOU > 0.5, false otherwise. To compute the precision-recall curve (PR) for each class
the test images that were splitted from the training data are used. The ground-truth
will correspond therefore to the manually set bounding-boxes.

Figure 4.14: IOU evaluation

The CNN predicted objects for the whole set are sorted by decreasing confidence and
are assigned to ground-truth objects (Figure 4.14). Then, from most confident to less,
the IOU is computed. From each new detection, the accumulated TP , FP , TN and
FN are updated. Thus, a new point of the PR curve is obtained. A linear interpolation
is used to create the curve.
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Figure 4.15: PR curve per classes

The AP is calculated for each class as the area under the curve shown in light blue
(Figure 4.15), which is an approximate precision/recall curve with precision monotoni-
cally decreasing, by setting the precision for recall r to the maximum precision obtained
for any recall r�

> r, by numerical integration. No approximation is involved since the
curve is piecewise constant. Finally, the mAP is directly calculated as the average AP .
The resulting mAP is 45% (Figure 4.16). The proposed model has a slightly inferior
value for mAP compared to the other examples. This could be explained by the inferior
size of the data set. However, in terms of performance, very satisfactory results are ob-
tained. Finally, the proposed object detector is tested in real experiments. The network
runs at a speed of 20 fps using an NVIDIA GeForce GTX 1080.

To give an idea of what does this value mean in terms of performance we have compared
it with different YOLO versions in standard datasets (Table 4.1).

The results are shown in Figure 4.17. As it can be observed the detections are very
accurate. Thus, it is concluded that the approach is really efficient for detecting handles
and different classes of doors in real-time.
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Figure 4.16: AP results per classes

mAP

YOLOv3 on COCO dataset 55%
YOLOv2 on COCO dataset 48%

YOLOv1 on VOC 2012 dataset 58%

Proposed model 45%

Table 4.1: Results comparison

At this point, a robust detection is achieved. However, as it was explained in the
previous sections, in order to grasp the handle and operate the door, the robot needs an
estimation of the 3D position and orientation of the object. To adress this problem, the
depth information must be exploited.

4.2 Computation of the 3D Geometric Features of Doors
and Handles

There has been a lot of activity in the development of both hardware and software in 3D
imaging systems which is having a huge impact in the capabilities of robotics. The world
is 3D and robots need this perception to interact with the enviroment. Using an RGB-D
sensor, the data is in form of sets of 3-dimensional points which are often referred to as
a point cloud (Figure 4.18). However, a lot of information is contained and extracting
the valuable features for manipulating doors requires a deep understanding of its nature
and the application of complex algorithms.
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Figure 4.17: Results obtained with the proposed handle and door detection model
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Figure 4.18: HSR perceives the world as a point cloud

The Point Cloud Library (PCL) is a large scale, open project for point cloud process-
ing [67]. The PCL framework contains numerous state-of-the-art algorithms including
filtering, feature estimation, surface reconstruction, registration, model fitting and seg-
mentation. These algorithms can be used, for example, to filter outliers from noisy data,
stitch 3D point clouds together, segment relevant parts of a scene, extract keypoints and
compute descriptors to recognize objects in the world of their geometric appearance. It
can also create surfaces from point clouds and visualize them. In this regard, the work
of R.B. Rusu [66] has been used as the main reference to address the problems raised in
this project.

4.2.1 Point Cloud Filters

Filtering is an area of intensive research and the crucial step of the processing pipeline for
a wide range of applications. Raw point clouds captured by 3D sensors contain a large
amount of point samples, but only a small fraction of them are of interest. Furthermore,
they are unavoidably contaminated with noise.

For these reasons, in order to manage point cloud data for real-time applications and
to extract the desired geometric features precisely, it needs to be filtered adequately. The
following filters of the PCL can be useful to adress this problems:

• ExtractIndices filter: Point Cloud data can be seen as an array. The extract indices
filter performs a simple filtering along a specified set of indexes. It iterates through
the entire point cloud once, performing two operations. First, it removes non-finite
points. Second, it removes any points that are not contained in the input set of
indices.
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• StatisticalOutlierRemoval filter: Laser scans typically generate point cloud datasets
of varying point densities. Additionally, measurement errors lead to sparse outliers
which corrupt the results even more. This complicates the estimation of local
point cloud characteristics such as surface normals or curvature changes, leading to
erroneous values, which in turn might cause point cloud registration failures. Some
of these irregularities can be solved performing a statistical analysis on each point
neighborhood, and trimming those which do not meet a certain criteria.
Statistical analysis is carried out on the discrete points, calculating average distance
from every point to all its neighboring points and filtering the outliers outside the
reference ranges of average distance from the data set. By assuming that the
resulted distribution is Gaussian with a mean and a standard deviation, all points
whose mean distances are outside an interval defined by the global distances mean
and standard deviation can be considered outliers and trimmed from the dataset.
The algorithm is [28,66]:

– Set k, an integer representing the number of closest point around point pi.
– For every point pi in the entire 3D point cloud P : (a) The location of their k

nearest neighbors is found; and (b) the average distance d̄i from point pi to
its k nearest neighbors is computed.

– The mean µd of the average distances d̄i is computed:

µd =
1

n

n�

i=1

d̄i

– The standard deviation σd of the average distances d̄i is computed:

σ2
d =

1

n− 1

n�

i=1

(d̄i − µd)
2

– Assuming the distribution is Gaussian, a threshold T is computed:

T = µd + α · σd

(where α is a standard deviation multiplier, set by the user as density restric-
tiveness factor).

– Those points for which its average distance, d̄i, to its k neighbors is d̄i > T
are trimmed for the point cloud.

– The remaining point cloud P∗ is simply estimated as follows [66]:

P∗
=

�
pj ∈ P | (µd − α · σd) ≤ d̄j ≤ (µd + α · σd)

�

The implementation therefore requires two steps over the whole set of points in the
cloud:
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– First step to compute the mean and standard deviation of the average dis-
tances from each points in the cloud to their k−neighbors.

– Second step to eliminate all the points in the cloud whose average distance
(computed in the first step) is greater than the threshold.

It is convenient to point out that: (a) while the algorithm will remove points whose
average distance to its k nearest neighbors follows any statistical distribution, its
parameters µ and σ are only meaningful for a normal (Gaussian) distribution; and
(b) the algorithm assumes the capability to obtain the k nearest neighbors of any
given point in the point cloud.

• VoxelGrid filter: The voxel grid filter allows to “prune” extra points from the cloud,
down-sampling the pointcloud considerably, and reducing the number of points in
a cloud using a voxelized grid approach. Unlike others sub-sampling filters, that
only return a sub-set of points from the original point cloud, the voxel grid filter
returns a point cloud with a smaller number of points but also maintains the shape
characteristics of point cloud which best represent the input point cloud as a whole.
This filter creates a 3D voxel grid (Figure 4.19) (think about a voxel grid as a set
of tiny 3D boxes in space) over the input point cloud data. In each voxel, all the
points present will be approximated (i.e., downsampled) with their centroid. Then,
for each voxel A, the centroid is obtained as:

x̄ =
1

s

�

(x,y,z)∈A

x ; ȳ =
1

s

�

(x,y,z)∈A

y ; z̄ =
1

s

�

(x,y,z)∈A

z

where s is the total number of discrete points in voxel A. This approach is a
slightly than approximating them with the center of the voxel, but it represents
the underlying surface more accurately.

Figure 4.19: 3D Voxel Grid [81]
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Figure 4.20: The model space M as a green surface (the locus for which fM(d,θ) = 0).
The yellow surfaces represent the boundaries for a datum to be considered
an inlier. The inliers (blue dots) lie in between the two yellow “crusts” [87]

4.2.2 RANdom SAmple Consensus (RANSAC)

The RANdom Sample Consensus (RANSAC) algorithm is an iterative method to esti-
mate parameters of a mathematical model from a set of observed data that contains
outliers, where the outliers do not influence the values of the estimates. The estimation
of the model parameters and the construction of the consensus samples (i.e. elements
of the entire dataset are consistent with the model instantiated by the estimated model
parameters) will develop as described bellow [87]:

The input dataset, of N elements, is D = {d1, ...,dN}. Let θ ({(d1, ...,dh)}) be the
parameter vector estimated using the set of data {d1, ...,dh}, where h ≥ k, and k is
the cardinality of the minimal sample set (MSS). The model space M is defined as (see
Figure 4.20):

M(θ) = {d ∈ R: fM(d;θ) = 0}

where θ is a parameter vector and fM is a smooth function whose zero level set contains
all the points that fit the model M instantiated with the parameter vector θ.

The error associated with the datum d with respect to the model space as the distance
from d to M(θ) is:

eM(d,θ) = min
d�∈M(θ)

dist(d,d�
)

where dist(., .) is an appropiate distance function.

Using this error metric, the Consensus Set (CS) is:

S(θ) = {d ∈ D : eM (d,θ) ≤ δ}

where δ is a threshold that can either be inferred from the nature of the problem or,
under certain hypotesis, estimated automatically.
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RANSAC is a non-deterministic algorithm since it finishes when the probability of
finding a better CS drops below a certain threshold. If � is the probability of picking a
sample that produces an outlier, then (1 − �) is the probability of picking at least one
inlier. This means that the probability of picking a number s of inliers becomes (1− �)s.
For a number k of iterations, the probability of failure becomes [1− (1− �s)]k. Then, if
p is the desired probability of success, the number of iterations should be:

1− p = [1− (1− �)s]k ⇒ k =
log (1− p)

log [1− (1− �)s]
(4.2)

In the original formulation of RANSAC, the ranking r of a consensus set was nothing
but it cardinality:

r(CS) =| CS |

Thus, RANSAC can be seen as an optimization algorithm that minimizes the cost
function defined as:

CM(D;θ) =
N�

i=1

ρ [di,M(θ)]

where:

ρ [d,M(θ)] =

�
0 if | eM (d,θ) |≤ δ

t if otherwise

and where δ is a user give threshold for considering inliers.

Figure 4.21: Loss functions for Least Squares and RANSAC methods. While Least
Squares method (green) highly penalizes gross errors, the “top-hat” cost
function of RANSAC (blue) only counts the number of inliers [14]
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Figure 4.22: Planar segmentation of a scene using RANSAC [54]

The thresholding to divide inliers and outliers can be seen as applying a “top-hat” cost
function, according to wich under the threshold (the inliers) have zero cost and above
the thershold (the outliers) have constant cost. The RANSAC estimates the model
parameters by maximing the number of inliers, in contrast with other methods such as
the Least Squares Method. In the presence of outliers, it is a very robust method (Figure
4.21). Thus, this algorithm allows to extract shapes by randomly drawing minimal sets
from the point data and constructing the corresponding shape primitives. A minimal set
is formed by the smallest number of points required to uniquely define a given type of
geometric primitive. The resulting candidate shapes are tested against all points in the
data to determine how many of the points are well approximated by the primitive (called
the score of the shape). After a given number of trials, the shape which approximates
with more points is extracted and the algorithm continues using the remaining data [70].

An example of application of this algorithm could be the identification of the planes
in a point cloud scene. In the case of fitting planes to point clouds using RANSAC,
many sets of three points are selected at random iteratively, and the one with the largest
consensus set is accepted. The points in that consensus set are assigned to the first plane
in the scene. Then the points that are contained in it can be removed and then look for
the next largest plane. It is possible to find all of the planes in a scene applying this
iteratively (Figure 4.22).

RANSAC uses the following steps [66]:

1. Randomly select three non-collinear unique points {di, dj , dk} from the entire
point cloud M;

2. Compute the model coefficientes from the three points (ax+ by + cz + d = 0);

3. Compute the distances from all d ∈ M to the plane model (a, b, c, d);

4. Count the number of points d∗ ∈ M whose distance ρ to the plane falls between
0 ≤ ρ ≤ δt, where δt represente a user specified threshold.
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Every set of points d∗ is stored, and the above steps are repeated for k iterations, where
k is estimated using Equation 4.2. After the algorithm is terminated, the set with the
largest number of points (inliers) is selected as the support for each best planar model
found. From all d∗ ∈ M, each planar model coefficients are estimated in a least-squares
formulation, and a bounding 2D polygon can be estimated as the best approximation
given the input data of each plane.

4.2.3 Proposed Algorithm

In this chapter, an approach to robustly compute the 3D geometric features of doors is
presented. It combines the explained point cloud processing algorithms and the proposed
object detection CNN method. Only a small fraction of the points captured by the
RGB-D camera are of interest. In order to efficiently process the point cloud this subset
of points i.e. the Region of Interest (ROI) is identified. These regions correspond to
those points associated to the 3D representation of doors and handles. To adress this
problem, the bounding-boxes provided by the previously presented CNN are extremely
useful. Taking into account the nature of the RGB-D sensor the point cloud data could
be defined as an RGB image that contains depth information, a direct correspondence
between the bounding-boxes and a point cloud region can be stablished. To find this
relationship, it is key that the cloud is organized i.e. that it resembles an organized image
(or matrix) structure, where the data is split into rows and columns indexed according
to its spatial disposition, which is the case (Figure 4.23). For the particular case of the
proposed CNN, the boxes are bounded by the pixel coordinates of two opposite corners.
The problem is then reduced to determining the relation between the pixel reference
system and the point cloud matrix indexes, which is:

index = y · width + x

where (x, y) are the pixel coordinates and width is the total number of points along the
horizontal axis of the image.

Then, each ROI can be defined as follows:

PROI =
�
pj ∈ P | (j = width · y + x)

�
[(xmin ≤ x ≤ xmax) ∧ (ymin ≤ y ≤ ymax)]

where: j is the point cloud index; width is the number of pixels contained in the horizontal
axis of the image; and (xmin, ymin) and (xmax, ymax) represents the coordinates of the
upper-left corner and the lower-right corner of the bounding box respectively.

Once the indexes are computed, using the Extract Indices Filter explained in the
previous section, each ROI can be segmented, i.e., grouping the point cloud into multiple
homogeneous regions (Figure 4.24). Second, in order to avoid further calculation errors,
the noisy measurements are filtered for each ROI using the Statistical Outlier Removal
filter (Figure 4.25). The number of neighbors to analyze for each point is set to 50, and
the standard deviation multiplier to 1, i.e., all points who have a distance larger than 1

standard deviation of the mean distance to the query point will be marked as outliers
and removed.
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Figure 4.23: From pixel coordinates to point cloud index

Figure 4.24: ROI extraction
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Figure 4.25: Noise Filtering

Figure 4.26: Downsampling
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Figure 4.27: Determination of handle orientation

Third, since the objective is to reach the fastest possible processing, the amount of
data to be processed should be decreased. However, the geometric features cannot be
lost. For this reason, the point cloud is downsampled using the Voxel Grid Filter (Figure
4.26). The size of the voxels used corresponds to a cube of 15mm per side.

At this point the relevant data has been extracted, the measurement errors have been
removed and it has been adequately downsampled. Therefore, the geometric features
can be computed fast and precisely. To manipulate a door, three of them are key, and
for the proposed approach sufficient: the normal direction of the plane defined by the
door, the 3D position of the corresponding handle and wether it is orientated vertically or
horizontally. For the two first features the RANSAC algorithm can be used since it can
work as a classifier to split the data between inliers and outliers and also as an estimator
of the parameters of an underlying plane.

• Orientation of the handle: For determining the orientation of the handle, 3D pro-
cessing techniques could be used. However, if there is no need to compute any
precise dimension, only whether it is orientated vertically or horizontally, the di-
mension of the bounding boxes provided by the CNN are enough. If the width is
greater that the height, the handle is in horizontal and vice-versa (Figure 4.27).

• Computation of normal direction to the door plane: when a plane model is fitted
using RANSAC, the four components of the plane equation in its Hessian normal
form are calculated. Then, it follows: ax+ by + cz = d → n = (a, b, c). Applying
the RANSAC algorithm to the ROIs associated to each one of the different classes
of detected doors, the normal direction is obtained directly (Figure 4.28).

• Computation of the handle position: The bounding box that contains the handle
usually may include some points from the door plane. Also using RANSAC algo-
rithm, these points can be separated, and taking the outliers the resultant cloud
only includes those points that correspond to the handle. Assuming the handle
position can be represented by the centroid, it is directly calculated from the cloud
(Figure 4.29).
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Figure 4.28: Normal vector of different doors

Figure 4.29: Handle point cloud extraction with RANSAC

36



The proposed algorithm is able to robustly compute the essential 3D geometric features at
a speed of 6 fps. This leads to the conclusion that the performance objective of real-time
processing has been achieved.

At this point, all the necessary information provided by the perception system for the
manipulation of the door has been exploited. However, the robot is still far from being
able to reach the handle and grasp it. The perception has to be translated into robot
motion that allows the door operation. Robustly manipulating a door involves different
robot control algorithms. A description of these methods and how they can adress the
proposed problem, will be presented in the next chapter.
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5 Manipulation

Moravec’s paradox is the discovery by artificial intelligence and robotics researchers that,
contrary to traditional assumptions, high-level reasoning requires very little computation,
but low-level sensorimotor skills require enormous computational resources. This concept
can be easily illustrated with a simple chess game. Chess was one of the great challenge
problems of AI. AI researchers eventually developed world-champion-level chess players,
except that the computers still need human beings to do the actual moving of the chess
pieces. Yes, robots can move chess pieces, but not nearly as well as humans. Cham-
pionship chess, attained by only the most gifted minds, is actually easier than moving
the pieces, which almost every one can easily do [47]. People should not be surprised
by the difficulty of manipulation. The creation of autonomous robotic manipulation is
surely one of the most challenging engineering problems. It encompasses many difficult
problems, involving perception, the robot mechanisms, planning and uncertainty.

Commercially available robotic toys and vacuum cleaners inhabit our living spaces,
and robotic vehicles have raced across the desert. These successes appear to foreshadow
an explosion of robotic applications in the people daily lives, but without advances in
robot manipulation, many promising robotic applications will not be possible. Whether
in a domestic setting or at the workplace, the robot needs to physically alter the world
through contact. Research on manipulation in human environments may someday lead
to robots that work alongside us, extending the time an elderly person can live at home,
providing physical assistance to a worker on an assembly line, or helping with household
chores [33] (Figure 5.1).

Figure 5.1: Robotic manipulation in domestic environments
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To adress the door manipulation problem with robotics systems, different approaches
have been proposed [22, 31]. However, no matter the approach or the type of door, it is
clear that its operation should involve the following robot manipulation tasks:

1. Grasp the handle.

2. Unlatch the handle.

3. Open the door.

The proposed approach is based on combining motion planning algorithms with pre-
diction and learning capabilities during the execution of the task. The latter will be
explained in the following chapter. In this chapter, control algorithms to perform these
tasks, as well as how to overcome the manipulation challenges that they represent, will
be presented. In section 5.1, how the robot is able to grasp the handle, by combining
inverse kynematics and visual perception information, will be explained. In section 5.2,
key concepts such as compliance and impedance control as well as a versatile approach
to unlatch different types of handles will be presented. And finally, in section 5.3, how
the Task Space Region motion planning algorithm can be formulated to solve the highly
constrained motion of opening a door will be seen.

5.1 Grasping the Handle

A grasp is commonly defined as a set of contacts on the surface of the object, whose
purpose is to constrain the potential movements of the object in the event of external
disturbances [43]. The interaction with the enviroment is done by what is known as
the robot end-effector, which is usually a device at the end of an arm designed for this
purpose. In a wider sense, an end effector can be seen as the part of a robot that
interacts with the work environment. In the particular case of the HSR, the end-effector
consists of a gripper (Figure 5.2). It is designed to guarantee a stable grasping between
a gripper and the object to be grasped, in the project context, the door handle. In
order to perform the grasping of the handles and the manipulation of the doors in the
unstructured environments of the real world, a robot must be able to perform grasps for
the almost unlimited number of different handles it might encounter. Before explaining
how these grasps can be achieved, it should be presented how is the end-effector state
defined [49].

5.1.1 Pose

A rigid object has six degrees of freedom in a three dimensional space, and its knowledge
(i.e. its pose) is required in many robotic applications. Three degrees describe its po-
sition and the remaining three describe its orientation. These dimensions behave quite
differently. If the value of one of the position dimensions is increased the object will move
continuously in a straight line, but if the value of one of the orientation dimensions is
increased the object will rotate in some way and soon get back to its original orientation.
These two groups of three degrees of freedom must be treated differently [16].
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Figure 5.2: HSR end-effector

Figure 5.3: The point P can be described by coordinate vectors relative to either frame
{A} or {B}. The pose of {B} relative to {A} is AξB [16]

A pose can be seen as a cartesian reference frame, thus, it can be defined in terms of
other reference system. The pose of the coordinate frame is denoted by the symbol ξ.
Figure 5.3 shows two frames {A} and {B}, and the relative pose AξB which describes
{B} with respect to {A}. The leading superscript denotes the reference coordinate frame
and the subscript denotes the frame being described. We could also think about AξB as
describing some motion, i.e. picking up {A} and applying a displacement and a rotation
so that it is transformed to {B}. The point P in Figure 5.3 can be described with
respect to either coordinate frame by the vectors Ap or Bp respectively. Formally they
are related by Ap =A ξB ∗Bp, where the right-hand side represents the motion from {A}
to {B} and then to P. The operator ∗ transforms the vector, resulting in a new vector
that describes the same point but with respect to a different coordinate frame.

There are mainly two different spaces used in kinematics modelling of manipulators
called cartesian space and quaternion space. The first one is used to describe translations
while the latter is used to describe rotations.
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The quaternions are powerful and computational straight-forward and they are widely
used in robotics, computer vision and aerospace navigation systems. The quaternion is
an extension of the complex number (a hypercomplex number) and it is written as a
scalar plus a vector:

q = s+ v = s+ v1i+ v2j + v3k

where s ∈ R, v ∈ R3 and the orthogonal complex numbers i, j and k are defined as:

i2 = j2 = k2 = ijk = −1

and it is denoted as:

q = s < v1, v2, v3 >

To represent rotations, we are used unit-quaternions denoted by q̊. These are quater-
nions of magnitude one, that is, those for which � q �= s + v21 + v22 + v23 = 1. They
can be considered as a rotation of θ about the unit vector v̂ and they are related to the
quaternion components by:

q̊ = cos
θ

2
< v̂ sin

θ

2
>

Homogeneous transformations based on 4×4 real matrices have often been used within
the robotics community. Essentially, all homogeneous transforms that will be used in this
work will structured according to the following template [32]:

TB
A =





RotationMatrix | Posicion V ector
RB

A | PB
A

−−−−−−−−−− | −−−−−−−−−−
Perspective | Scale

0T | 1





where RB
A is the relative orientation and PB

A is the relative position of frame {A} relative
to frame {B}. The scale factor will almost always be 1, and the perspective part will be
zeros except when modelling cameras.

Under these conditions, it is easy to show, by multiplying the inverse by the original
matrix, that the inverse is:

T−1
=





|
RT | −RT · P

−−−−−−−−−− | −−−−−−−−−−
|

0T | 1




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Figure 5.4: Robot end-effector coordinate system defines the pose in terms of an approach
vector â and an orientation vector ô, from which the vector n̂ can be com-
puted. n̂, ô and â vectors correspond to the x, y and z axes respectively of
the end-effector coordinate frame [16]

This is very useful to transform a matrix that converts coordinates in one direction
(from {A} to {B}) to one that converts coordinates in the opposite direction (from {B}
to {A}). The homogeneous transform TB

A
that moves frame {A} into coincidence with

frame {B} (operator) also converts the coordinates (transform) of points in the opposite
direction (from frame {B} to frame {A}): Ap = TB

A
·B p . Moving a point “forward” in a

coordinate system is completely equivalent to moving the coordinate system “backward”.
This result is usually referred to as operator/transform duality.

For arm-type robots, it is useful to consider a coordinate frame E attached to the end-
effector as shown in Figure 5.4. By convention, the axis of the tool is associated with
the z−axis and is called the approach vector and denoted a = (ax, ay, az). However
specifying the direction of the z−axis is insufficient to describe the coordinate frame,
and the direction of the x- and y−axes needs also to be specified. An orthogonal vector
to a, that provides orientation, is called the orientation vector, o = (ox, oy, oz). These
two unit vectors are sufficient to completely define the rotation matrix:

R =




nx ox ax
ny oy ay
nz oz az





since the remaining first column, the normal vector n, can be computed as: n = o× a.
Any two nonparallel vectors are sufficient to define a coordinate frame. Even if the

two vectors a and o are not orthogonal they still define a plane and the computed n is
normal to that plane. In this case we need to compute a new value for o� = a×n, which
lies in the plane but is orthogonal to each of a and n.

Defining the transform of a virtual reference frame attached to the end-effector, its
state is completely determined. Thus, in order to compute the end-effector grasping pose
it is neccessary a translation, an approach vector and an orientation vector.
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Figure 5.5: The red axis corresponds to the x−axis, the green axis to the y−axis, and
the blue axis to the z−axis

Figure 5.6: Handle reference frame. The color code is the same as in Figure 5.5

5.1.2 Estimating the End-Effector Grasping Pose

In order to grasp the handle, the end-effector goal position can be defined as a few
centimeter before reaching the handle and the goal orientation can vary depending on
whether the handle is horizontal or vertical. Under these premises, taking into account
the definition of the end-effector reference frame for the Toyota HSR, the grasping pose
is shown in Figure 5.5. Using the notation of the previous section the z−axis coincides
with the approaching vector, and the orientation vector can be defined as the x−axis.

Determining the end-effector transform could be simplified if it is formulated in terms
of a virtual reference frame, that can be defined as the handle reference frame. However,
these cartesian reference system cannot be arbitrarily orientated and positioned. A closer
look at the goal state in Figure 5.5 shows that the position can be defined as a point
in the line determined by the handle centroid and the door normal direction, while the
orientation can be defined as a rotation of 0 deg or 90 deg in the z−axis direction respect
the end-effector reference frame. Therefore, in order to make the goal state transform
formulation as easy as possible, the handle reference frame position will be defined as
the handle centroid, the z−axis as a vector parallel to the door normal pointing inwards
its surface and the x−axis as a vector perpendicular to the floor plane (it can be either
the x− or the y−axis, Figure 5.6).

The actual definition of the handle reference frame requires a simplified model of the
3D structure of the door and the handle, and that is where the proposed approach for
computing the 3D geometric features, exploiting the robot perception, comes to the scene.

43



Figure 5.7: The normal vector is forced to point outwards the door from the robot
perspective

The information obtained is sufficient to adress this problem. The handle centroid, the
door normal direction and the handle orientation are determined. The position of the
cartesian reference system can be defined as the centroid. However, for determining the
orientation a few more calculations are needed. First, the z− direction can be directly
related with the normal vector computed using the RANSAC algorithm. However, it
should be remarked that the definition of the normal to a plane does not define the
direction where it is pointing univocally. Taking into account that the point cloud is
defined in the robot RGB-D reference frame, if it points inwards the door it is sufficient
to force the z−component to be possitive. If it is not, it would mean that the normal
vector is pointing in the wrong direction and therefore, it must be flipped, i.e. multiplied
by −1 (Figure 5.7). The other two vectors that define the base must be contained in
the door plane. Having a look at the end-effector reference frame goal orientation and
assumming that all doors are vertical respect to the plane where the base moves, it is
also convenient that one of the vectors of the base is parallel to this direction. It can
be either the x- or the y- axis, in the proposed approach it is decided to be the x- axis.
In this way, there would not be neccessary to add any rotation to the transformation in
case the handle orientation is vertical too. In order to define the vertical direction, the
transformation should be defined in terms of the odometry reference frame, that in the
case of the HSR, it is always defined with the z- axis perpendicular to the floor plane.
Therefore, transforming the centroid and the normal to the odometry reference system,
the handle reference frame can be finally defined. Once it is transformed, the z−axis
is projected into the odometry x− y plane to overcome errors in the normal estimation
(Figure 5.8).

The rotation is defined as follows:



0 ay ax
0 −ax ay
1 0 az





odometry

The transform that defines the end-effector goal pose relative to the handle reference
frame is simply composed as a translation of z = −7cm and a roll of 90 deg if the handle
is horizontal.
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Figure 5.8: Reference frames used to estimate the grasping pose

The overall proposed algorithm for estimating the grasping pose is summarized in
Algorithm 5.2:

Algorithm 5.2 End-Effector Grasping Pose Estimation
Input: RGB image I and point cloud P =

�
pj

�Npoints

0

Output: Grasping poses G = {gk}Nhandles
1 with gk ∈ SE(3)

Bounding boxes B = {bl}
Nobjects

1 ← Detect_Objects(I)
for all bl ∈ B do

PROI

l
← ROI_Segmentation(P)

Pdenoised

l
← Remove_Statistical_Outliers(PROI

l
)

Pfiltered

l
← Downsample(Pdenoised

l
)

if bl(class) = ”handle” then

orientationl ← Bounding_Box_Dimensions(bl)
Phandle

l
← RANSAC_Plane_Outliers(PROI

l
)

Ol ← Centroid(Phandle

l
)

else

Normal al; Pdoor

l
← RANSAC_Plane(Pfiltered

l
)

Ol ← Centroid(Pdoor

l
)

end if

end for

k = 1

for all bl ∈ B that bl(class) = ”handle” do

al ← Assign_Door(Ol)

hk ∈ SE(3) ← Handle_Transform(al ; Ol)

gk ← Goal_Pose(hk ; orientationl)

k ← k + 1

end forreturn G
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The approach was tested with the Toyota HSR platform at Anna Hiss Gymnasium
in UT at Austin, where a prototype of a home-like arena has been installed to test the
performance of service robots in domestic environments. There, a variety of different
doors such as drawers, refrigerator, cabinet doors, and room doors are available. There,
the robot was able to compute the end-effector grasping pose accurately for multiple
handles simultaneously (Figure 5.9), at a processing speed of 6 fps. Thus, it can be
concluded that the robot is able to compute the end-effector pose can be estimated in
real-time with the proposed approach.

Now, the end-effector goal state is determined, but how can the robot motion be
controlled in order to achieve this state? The answer is inverse kynematics.

5.1.3 Inverse Kynematics (IK)

Robot kinematics refers to the analytical study of the motion of a robot manipulator
analysing the relationship between the dimensions and connectivity of kinematic chains
and the pose (position and orientation) for each link of the manipulator. A mobile ma-
nipulator can be schematically represented from a mechanical viewpoint as a kinematic
chain of rigid bodies (links) connected by means of joints. One end of the chain is
constrained to a base, while an end-effector is mounted to the other end. The resulting
motion of the structure is obtained by composition of the elementary motions of each link
with respect to the previous one [16]. One systematic way of describing the geometry of
a serial chain of links and joints is Denavit-Hartenberg notation. In Denavit-Hartenberg,
notation a link defines the spatial relationship between two neighboring joint axes as
shown in Figure 5.10. A link is specified by four parameters. The relationship between
two link coordinate frames would ordinarily entail six parameters, three each for transla-
tion and rotation. For Denavit-Hartenberg notation there are only four parameters but
there are also two constraints: axis xj intersects zj−1, and axis xj is perpendicular to
zj−1. One consequence of these constraints is that sometimes the link coordinate frames
are not actually located on the physical links of the robot. Another consequence is that
the robot must be placed into a particular configuration (the zero-angle configuration).

An emerging alternative to Denavit-Hartenberg notation is Unified Robot Description
Format (URDF), currently the standard ROS XML representation of the robot model.
The URDF is an XML specification to describe a robot. The robot model covers the
kinematic and dynamic description of the robot, its visual representation and its collision
model. Robots in URDF are described by using only two different types of elements: links
and joints. A kinematic model is built with a hierarchic structure with a parent-child
relationship. This means that, if a joint is rotated around an arbitrary axis, all its children
will also rotate around the same axis because they derive all of its parent transformations
(Figure 5.11).

In robotics, inverse kinematics (IK) and forward kinematics are two sides of the same
coin. On one hand, forward kinematics refers to the use of the kinematic equations of
a robot to compute the position of the end-effector from specified values for the joint
parameters. On the other hand, IK makes use of the kinematic equations to determine
the joint parameters that provide a desired position of the robot end-effector [58].
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Figure 5.9: Real-time end-effector grasping pose estimation of multiple handles simulta-
neously, for differente doors
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Figure 5.10: Definition of standard Denavit and Hartenberg link parameters. The colors
red and blue denote all things associated with links j − 1 and j respec-
tively. The numbers in circles represent the order in which the elementary
transforms are applied. xj is parallel to (zj−1 × zj) and, if those two axes
are parallel, then the parameter dj can be arbitrarily chosen. The table
at the top summarizes the Denavit-Hartenberg parameters, their physical
meaning, and their formal definition [16]
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Figure 5.11: URDF hierarchic structure of a set of link elements

Figure 5.12: Forward and inverse kinematics [69]

49



Specification of the movement of a robot so that its end-effectors achieve the desired
tasks is known as motion planning. Inverse kinematics transforms the motion plan into
joint actuator trajectories for the robot (Figure 5.12). Given the equation P = f(θ) for
forward kinematics, where P is the current end-effector pose, and θ is the column vector
which representes the joint angles, the inverse kinematics formulation can be derived as
the following, where f is a highly non-linear operator which it is difficult to invert:

θ = f−1
(P )

There can be multiple solutions for the IK problem, and it causes that the system
has to be able to choose one. The criteria vary but a reasonable choice would be the
closest solution from the initial starting point minimizing the amount of energy to move
each joint. However, the presence of an obstacle would determine another admissible
solution which could not be the closest one. Furthermore, the existence of mechanical
joint limits may eventually reduce the number of admissible multiple solutions for the
real structure. When there is no analytical solution or it is difficult to find, it might
be appropriate to use numerical solutions based on iterative techniques. The iterative
methods use the Jacobian matrix which is a linear approximation of kinematics. The
Jacobian constitutes one of the most important tools for manipulator characterization.
It is useful for finding singularities, analyzing redundancy, solving the inverse kinematic
problem, etc. The analytical Jacobian matrix J is a function of the values θ and is
defined as:

J(θ) =
∂f

∂θ

Each column of J describes an approximated change of the end-effectors position
when changing the corresponding joint positions. Then, the forward kinematics problem
is formulated as follows:

P = f(θ) → �P = J(θ)�θ

Now, the forward kinematics equation �P is a linear approximation and easier to
resolve. By inverting J(θ), the inverse kinematics equation can be written as:

�θ = J−1
(θ)�P

where �P = e = T − P ; e is the desirable change of the end effector; T is the target
pose; and P is the current end-effector pose [11].

Given a manipulator and an end-effector pose P , a Jacobian matrix can be created
and inverted to solve the inverse kinematic problem. However, the solutions are linear
approximations of θ and the equation needs to be done repeatedly until is sufficiently
close to a solution. Then the forward kinematics is computed to obtain the new current
pose of the end-effector with the new, and check if e is converging to zero. However,
in most cases, the Jacobian matrix J may not be square or invertible, and even if it is
invertible, J may work poorly as it may be nearly singular.
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Several approaches have been proposed to overcome these problems (try to chose �θ
to converge to a solution) and to solve inverse kinematics problems numerically. These
methods include Pseudoinverse, Jacobian transpose, the Levenberg-Marquardt Damped
Least Squares, quasi-Newton and Conjugate Gradient, Neural Networks and other Ar-
tificial Intelligence methods. These clearly have the advantage of being applicable to
any kinematic structure, but in general they do not allow computation of all admissible
solutions. In practice, to compute IK standard libraries are used. An Inverse Kinematics
library is able to solve many robot topologies from tree-like structures to simple chain
manipulators with proper performance. The input for this algorithms is commonly the
URDF file with the robot structure description and a vector containing the end-effector
goal pose.

For this project the Toyota Research Institute (TRI) software has been used to compute
the inverse kynematics for the HSR. Since the end-effector grasping pose has already
been calculated, applying directly the IK solver the robot is able to reach it (Figure
5.13). Then, it is grasped by simply closing the gripper.

During the tests, the robot was able to grasp correctly the handle of all the three classes
of different doors detected. It showed an accurate and robust behavior succeeding on all
the experiments. Furthermore, the objective of real-time computation of the previous
stages translated on an almost negligible time to estimate the end-effector grasping pose.
Thus, it is concluded that the proposed approach for grasping the handle is reliable and
efficient.

At this point the robot has been able to exploit the visual information in order to
perform a robust grasping of the door handle. However, to be able to open the door, the
problem of unlatching the handle must be adressed first.

5.2 Unlocking the Handle

Opening the door requires an adequate manipulation of the handle. There exists a high
variety of mechanisms to open a door. Some of them do not require any specific actuation
while others generally require a rotation to be applied. The resolution of the HSR vision
system does not allow the perception of detailed features needed to infere the particular
kynemathic model of the handle such as the attaching points to the door or the axis of
rotation.

Defining a general strategy to open a handle should rely in some sensing capability
which allows to differentiate between the different mechanisms. The HSR has a six axis
force sensor in the wrist (Figure 5.14) that can be useful for this purpose.

When a robot manipulator makes contact with the environment, control of both force
and motion is required. The unification of these two objectives is known as “compliance”
or “impedance control”. These concepts will be key for unlocking the door handle but
also for the next chapter proposed approach.
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Figure 5.13: HSR grasping the handles of different doors after solving the inverse kine-
matics for the estimated goal pose
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Figure 5.14: HSR six axis hand force sensor

5.2.1 Impedance Control

Simple tasks may need only trajectory control where the robot end-effector is moved
merely along a prescribed time trajectory. However, a number of complex tasks, including
manipulation of some objects, entail the control of physical interactions and mechanical
contacts with the environment. Achieving a task goal often requires the robot to comply
with the environment, react to the force acting on the end-effector, or adapt its motion
to uncertainties of the environment.

A very common control structure is the nested control loop. The outer loop is respon-
sible for maintaining position and determines the velocity of the joint that will minimize
position error. The inner loop is responsible for maintaining the velocity of the joint as
demanded by the outer loop. Consider the motor which actuates the jth revolute joint of
a serial-link manipulator. From Figure 5.10 we recall that joint j connects link j − 1 to
link j. The motor exerts a torque that causes the outward link, j, to rotationally accel-
erate but it also exerts a reaction torque on the inward link j − 1. Gravity acting on the
outward links j to N exert a weight force, and rotating links also exert gyroscopic forces
on each other. The inertia that the motor experiences is a function of the configuration
of the outward links. The situation at the individual link is quite complex but for the
series of links the result can be written concisely as a set of coupled differential equations
in matrix form:

Q = M(q)q̈ +C(q, q̇) + F (q̇) +G(q) + J(q)TW (5.1)

where q, q̇ and q̈ are respectively the vector of generalized joint coordinates, velocities
and accelerations, M is the joint-space inertia matrix, C is the Coriolis and centripetal
coupling matrix, F is the friction force, G is the gravity loading, and Q is the vector
of generalized actuator forces associated with the generalized coordinates q. The last
term gives the joint forces due to a wrench W applied at the end-effector and J is the
manipulator Jacobian.
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This equation describes the manipulator rigid-body dynamics and is known as the
inverse dynamics: given the pose, velocity and acceleration it computes the required
joint forces or torques [16].

Force and compliance controls are fundamental strategies for performing tasks entailing
the accommodation of mechanical interactions in the face of environmental uncertainties.
To define what compliance is, the definition of non-compliance is useful. A non-compliant
(stiff) robot end effector is a device which is designed to have predetermined positions
or trajectories. No matter what kind of external force is exerted the robotic end effector
will follow the exact same path each and every time. On the other hand, a compliant
end effector can reach several positions and exert different forces on a given object.
Compliance aims towards either human safety (passive) or process improvement (active).

Impedance control is a unified control scheme suitable for dealing with the mechanical
interaction tasks incorporating contact processes. The impedance refers to the dynamic
relationship between the motion variables of manipulator and the contact force. The
goal is to control this relationship as desired to fulfill the requirements of a specified
manipulation task, such as keeping the position of robot end-effector and the contact force
under preset safe ranges simultaneously [72]. The main merit of impedance control is that
it provides an effective way to control the motion and contact force at the same time by
adjusting a relationship between position and force in the task space. Rather than totally
separating the task space into subspaces of either position or force control, compliance
control reacts to the endpoint force such that a given functional relationship, typically
a linear map, is held between the force and the displacement. Namely, a functional
relationship to generate is given by:

�P = CF

where C is an m×m compliance matrix, and �P and F are endpoint displacement and
force represented in an m−dimensional task coordinate system. Note that the inverse
to the compliance matrix is a stiffness matrix: K = C−1, if the inverse exists [5]. The
components of the compliance matrix, or the stiffness matrix, are design parameters to
be determined in such a way that they meet task objectives and constraints.

Opening a door, for example, can be performed with the compliance illustrated in
Figure 5.15. The trajectory of the door knob is geometrically constrained to the circle
of radius R centered at the door hing. The robot hand motion must comply to the
constrained doorknob trajectory, although the trajectory is not exactly known. This
task requirement can be met by assigining a small stiffness, i.e. a high compliance,
to the radial direction perpendicular to the trajectory. As illustrated in Figure 5.15,
such a small spring constant generates only a small restoring force in response to the
discrepancy between the actual handle trajectory and the reference trajectory of the
robot hand. Along the direction tangent to the doorknob trajectory, on the other hand,
a large stiffness, or a small compliance, is assigned. This is to force the handle to move
along the trajectory despite friction and other resistive forces. The stiffness matrix is
therefore given by:
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Figure 5.15: Door opening with compliance control [5]

K =

�
kx 0

o ky

�
; kx � 1, ky � 1

with reference to the task coordinate system O − xy.

There are multiple ways of synthesizing a compliance control system. Compliance
synthesis is trivial for single joint control systems. For general n degree-of- freedom
robots, however, multiple feedback loops must be coordinated. We now consider how
to generate a desired m×m compliance or stiffness matrix specified at the endpoint by
tuning joint feedback gains. Let J be the Jacobian relating endpoint velocity, Ṗ ∈ Rm×1,
to joint velocities, q̇ ∈ Rn×1, and τ ∈ Rn×1, be joint torques associated with joint
coordinates q. Let KP be a desired endpoint stiffness matrix defined as:

F = KP�P . (5.2)

Using the Jacobian and the duality principle as well as Eq. 5.2: τ = JTF = JTKP�P =

JTKPJ ·�q, which can be expressed as follows: Kq = JTKPJ ⇒ τ = Kq�q. This
implies that the necessary condition for joint feedback gain Kq to generate the endpoint
K is given by: Kq = JTKPJ or, in other words, that Kq is the joint feedback gain
matrix [5].

From this developement it can be seen that the complexity of the problem when dealing
with n degrees of freedom increases considerably respect to the case of one degree of
freedom. For these reason, usually only certain joints incorporate this kind of control.
All in all, compliance control can be seen as a movement control that allows a certain
error tolerance in the desired trajectory when interaction forces appear. These principles
can be applied to adress the problem of unlocking the door handle.
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Figure 5.16: HSR joints with impedance control

5.2.2 Versatile Approach to Operate Different Kinds of Handles

The HSR can follow the force applied to the hand by utilizing the 6 axis force sensors
mounted on the wrist. The Toyota Research Institute has incorporated a few different
modes on impedance control in the degrees of freedom i.e. joints, shown in 5.16. Since
there is not prior knowledge about the handle mechanism, the manipulation strategy
could be to deduce it using the lectures from the force sensor. It should be noted that
these readings correspond to reaction forces, thus, it means that an actuation will be
needed in order to infere how the handle is unlocked. Since there is uncertainty in the
manipulation, this problem can be adressed implementing a simple impedance control
on the wrist.

The HSR motion is controlled with position commands. Therefore, a simple impedance
control algorithm could be to move or stop moving when the forces detected by the force-
sensor are below or above a certain threshold. In this way, the force applied is controled
with position commands. The strategy can be summarized as “if it moves, it works”.
The proposed approach consists then, in the following procedure: a position command is
used to turn the wrist joint anti-clockwise, if the lecture of the torque in the z direction
is higher than a certain threshold, the position command is canceled. Then, this is
repeated turning the wrist in the other direction. If the wrist can turn the input angle
without applying a torque above of the threshold it succeeds. After the last step of after
it succeeds, the robot pulls to start the opening process (Figure 5.17). In this project
only doors that open by pulling them have been considered. However, with the proposed
approach, in the same way that is determined whether the handle mechanism requires a
rotation and in that case, in which direction, using the lecture of the force in the z−axis
it could be determined if the door is opened by pulling or pushing.
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Figure 5.17: Verstatile approach to operate handles
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Figure 5.18: HSR unlocking different types of handles

The proposed approach was tested obtaining satisfactory results (Figure 5.18). The
robot was able to unlock the different handles available in the laboratory with different
mechanisms using the same algorithm.

At this point, the only remaining step is to open the door following the corresponding
trajectory. Impedance control for multiple degrees of freedom is very complex and for a
robot such as the Toyota HSR Robot almost beyond the scope of this project. Futher-
more, it would require a sensing capability that these platform does not have since only
a force sensor mounted on the wrist might not provide the neccesary force feedback to
achieve a good compliance control. The available compliance can be very useful but not
sufficient. For these reasons, additional algorithms should be contemplated for this last
step.

5.3 Door Opening Motion

Computing a motion that enables a mobile manipulator to open a door is challenging
because it requires tight coordination between the motions of the arm and the base.
This makes the problem high-dimensional and thus hard to plan for since it is highly
constrained. On the other hand, hard-coding motion plans “a priori” is even harder due
to high variability in the conditions under which the doors may need to be opened [13].
To adress this problem, an efficient motion planning under constraints is needed. But
before presenting the proposed approach, it is neccesary a glimpse into the field of motion
planning in robotics.
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Figure 5.19: Basic motion planning problem [40]

5.3.1 Motion Planning

Motion planning involves such diverse aspects as computing collision-free paths among
possibly moving obstacles, planning sliding and pushing motions to achieve precise rela-
tions among objects, reasoning about uncertainty to build reliable sensory-based motion
strategies, dealing with models of physical properties such as mass, gravity and friction,
and planning stable grasps of objects. Therefore, motion planning requires the robot to
consider geometrical constraints, as well as physical and temporal constraints. In addi-
tion, uncertainty may require that it plans not only motion commands, but also their
interaction with sensing [38]. Given the emphasis on autonomous mobile manipulation
in the context of this project, the focus will be on motions in service of manipulation, i.e.,
collision-free motion for end-effector placement. The problem of generating such motion
is a specific instance of the motion planning problem.

5.3.1.1 Basic Motion Planning Problem

In the basic motion planning problem definition, the fundamental assumptions are that
the robot is the only moving object in the workspace and the dynamic properties of the
robot are ignored, thus avoiding temporal issues. The motions are also restricted to non-
contact motions, so that the issues related to the mechanical interaction between two
physical objects in contact can be ignored. These assumptions essentially transform the
“physical” motion planning problem into a purely geometrical path planning problem.
Geometrical issues are simplified by assuming that the robot is a single rigid object.
Thus, motions of this object are only constrained by the obstacles [38].

Let W denote the world that contains the robot and obstacles (Figure 5.19). For a
two-dimensional (2-D) world, W = R2 and O ⊂ W is the obstacle region, which has a
piecewise-linear (polygonal) boundary (the complement W/O is assumed to be a bounded
open set). The robot is a rigid polygon that can move through the world but must avoid
touching the obstacle region. For a three-dimensional (3-D) world, the only differences
are that W = R3, and O and the robot are defined with polyhedra instead of polygons.
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Figure 5.20: Basic motion planning problem in the configuration space [39]

In terms of algorithms inputs and outputs, the input of a motion plannning algorithm
would be an initial placement of the robot, a desired goal placement, and a geometric
description of the robot and obstacle region. The output would be a precise description
of how to move the robot gradually from its initial placement to the goal placement while
never touching the obstacle region [40]. The geometric path is normally defined in the
operating space (or workspace) of the robot, because the task to be performed, as well
as the obstacles to avoid, are described in the operating space more naturally than in
the joint space (or configuration space). Planning the trajectory in the operating space
is usually done when the motion follows a path with specific geometric characteristics
defined in the operating space. However, in most cases the trajectory is planned in the
joint space of the robot because, since the control action on the manipulator is made on
the joints, planning in the operating space requires a kinematic inversion to transform
the end-effector position and orientation values into the joint values.

5.3.1.2 Configuration Space

The configuration space is the set of all possible transformations of the robot. The num-
ber of degrees of freedom of a robot system is the dimension of the set of transformations,
or the minimum number of parameters needed to specify a configuration. Physical con-
cepts, such as force and friction, can also be represented in this space as additional
geometrical constructs. The introduction of the configuration space reduced the search
for an obstacle-free path to computing a continuous path for a point from start to goal
that avoids the forbidden regions representing the physical static obstacles.

Configuration space is essentially a representational tool for formulating motion plan-
ning problems precisely. It is an important abstraction that allows to use the same motion
planning algorithm to a problem that differs in geometry and kinematics. Thus, path
planning becomes a search on a space of transformations. The basic motion planning
can be expressed in the configuration space of the robot in the following way (Figure
5.20) [39]:
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• Given robot A and obstacle B models, configuration space (C-space, C), and points
qI , qG ∈ Cfree ⇒ Automatically compute a path τ : [0, 1] → Cfree so that
τ (0) = qI and τ (1) = qG.

• Thas is, a motion planning algorithm must find a path in the Cfree space (free
region) from an initial configuration to a goal configuration.

The work in the configuration space requires preliminary computation of Cobs (obstacle
region) and Cfree, defined in the following terms (C = Cobs + Cfree):






Cobs : closed set

Cobs = {q ∈ C | A(q) ∩B �= Ø}
Cobs = set of disallowed configurations






Cfree : open set

Cfree = C \ Cobs
Cfree = set of allowed (feasible) configurations

The computation of Cobs can be exact (algebraic model needed) or approximate (grid
decomposition or sampling scheme).

5.3.1.3 Constraints on Configuration

Constraints involving the pose of a robot end-effector are some of the most common
constraints in manipulation planning. Although ubiquitous, these constraints present
significant challenges for planning algorithms. Many types of constraints can limit a robot
motion. This analysis focuses on scleronomic (time-invariant) holonomic constraints,
which are time-invariant constraints evaluated at a given configuration of the robot [7].
Let the configuration space of the robot be C. A path in that space is defined by τ :

[0, 1 → C]. Thus, a path is a curve in the configuration space represented either by
mathematical expression, or a sequence of points. It is interesting to note, at this point,
that a trajectory is nothing more than a path on which a timing law is specified, that is,
a path with an allocation of time at each point along the path. Constraints evaluated
as a function of a configuration q ∈ C in τ are considered. The location of q in τ
determines which constraints are active at that configuration. Thus, a constraint is
defined as the pair {Q(q), s }, where Q(q) ∈ R ≥ 0 is the constraint-evaluation function.
Q(q) determines whether the constraint is met at that q, and s ⊆ [0, 1] is the domain of
this constraint, that is, where the constraint is active in the path τ . Then, to say that a
given constraint is satisfied we require that Q(q) = 0 ∀q ∈ τ(s). Each constraint defined
in this way implicitly defines a manifold in C where τ(s) is allowed to exist. Thus, given a
constraint, the manifold of configurations that meet this constraint, MQ ⊆ C, is defined
as:

MQ = {q ∈ C : Q(q) = 0}

61



In order for τ to satisfy a constraint, all the elements of τ(s) must lie within MQ.
Conversely, if ∃ q /∈ MQ for q ∈ τ(s), then τ is said to violate the constraint. In general,
we can define any number of constraints for a given task, each with their own domain.
Let a set of n constraint-evaluation functions be Q, and the set of domains corresponding
to those functions be S. Then we define the constrained path planning problem as:

find τ : q ∈ MQi

�
∀q ∈ τ(Si)

∀i ∈ {1, ..., n}

Note that the domains of two or more constraints may overlap, in which case an element
of τ may need to lie within two or more constraint manifolds.

The main issue that makes solving the constrained path planning problem difficult
is that constraint manifolds are difficult to represent. There is no known analytical
representation for many types of constraint manifolds (including pose constraints) and
the high-dimensional C-spaces of most practical robots make representing the manifold
through exhaustive sampling prohibitively expensive. To adress the problem proposed
in this project, where a highly constrained motion planning is required, the Task Space
Region (TSR) framework is adopted.

5.3.2 Task Space Region (TSR): Pose Constrained Manipulation

Some of the most successful methods in control theory for manipulation have come from
controllers that seek to minimize a given function in the neighborhood of the robot
current configuration through gradient-descent. These controllers can succeed or fail
depending on the prioritization of constraints and it is unclear which of the multiple
simultaneous constraints should be prioritized ahead of others. Sampling-based planners
are mos useful to provide a practical solution to the problem of global planning for ma-
nipulation tasks, especially for high-DOF manipulators. Sampling-based manipulation
planners are designed to explore the space of solutions efficiently, without the exhaustive
computation required for dynamic programming and without being trapped by local min-
ima like gradient-descent controllers. The main idea of sampling-based planning is avoid
constructing explicity the Cobs space, through a sampling scheme. With this approach,
planning algorithms are independent of the particular geometric models [39].

Task Space Region (TSR) is a constrained manipulation framework, designed to be
used with sampling-based planners, with a specific constraint representation that has
been developed for planning paths for manipulators with end-effector pose constraints [7].
TSRs describe end-effector constraint sets as subsets of SE(3) (Special Euclidean Group).
These subsets are particularly useful for specifying manipulation tasks ranging from
reaching to grasp an object and placing it on a surface or in a volume, to manipulating
objects with constraints on their pose such as transporting a glass of water. TSRs are
not intended to capture every conceivable constraint on pose. Instead they are meant to
be simple descriptions of common manipulation tasks that are useful for planning.
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Figure 5.21: Transforms and coordinate frames involved in computing the distance to
TSRs. The robot is in a sample configuration which has end-effector trans-
form s, and the hand near the soda can at transform e represents the Tω

e

defined by the TSR [8]

5.3.2.1 TSR Definition

To define the TSR, transformation matrices, that were explained previously in this chap-
ter, are used. Recalling, a transform Ta

b
specifies the pose of b in the coordinates of frame

a. Ta

b
written in homogeneous coordinates consists of a 3× 3 rotation matrix Ra

b
and a

3× 1 translation vector ta
b
:

Ta

b =

�
Ra

b
ta
b

0 1

�

A TSR consists of three parts [8]:

• To
ω : transform from the origin (task-space) to the TSR frame ω.

• Tω
e : end-effector offset transform in the coordinates of ω.

• Bω : 6× 2 matrix of bounds in the coordinates of ω:
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Bω
=





xmin xmax

ymin ymax

zmin zmax

ψmin ψmax

θmin θmax

φmin φmax





The first three rows of Bω bound the allowable translation along the x−, y−, and
z−axes (in meters) and the last three bounds the allowable rotation around those axes
(in radians), all in the ω frame. Note that this assumes the Roll-Pitch-Yaw (RPY) Euler
angle convention, which is used because it allows bounds on rotation to be intuitively
specified. Also, note that the end-effector frame (ω coordinates) is a robot-specific frame.

In practice, the ω frame is usually centered at the origin of an object held by the hand
or at a location on an object that is useful for grasping. An end-effector offset transform
Tω

e is used because it is not assumed that ω directly encodes the pose of the end-effector.
This transform Tω

e allows the user to specify an offset from ω to the origin of the end-
effector e, which is extremely useful when we wish to specify a TSR for an object held
by the hand or a grasping location which is offset from e (see Figure 5.21) [8].

5.3.2.2 Distance to TSR

Sampling-based planning algorithms as TSR require a function that measures the dis-
tance between two points in C, that is used to determine the adjacency of the configura-
tions. Thus, it will be necessary to define the distance from a given configuration qs to
a TSR (Figure 5.21). Because there is not an analytical representation of the constraint
manifold corresponding to a TSR, it is defined the distance in the task-space and, then, it
is calculated in the frame end-effector reference frame (ω coordinates). Given a qs, they
are used forward kinematics to get the position of the end-effector at this configuration
To

s. Then, it is applied the inverse of the offset Tω
e to get To

s� , which is the pose of the
grasp location or the pose of the object held by the hand in task-space coordinates [7]:

To

s� = To
s(T

ω
e )

−1

Then, this pose is converted from task-space coordinates to the coordinates of ω:

Tω

s� = (To
ω)

−1To

s�

Now, it is converted the transform Tω

s� into a 6× 1 displacement vector from the origin
of the ω frame. This displacement represents rotation in the RPY convention so it is
consistent with the definition of Bω:

dω =





tω
s�

arctan 2

�
Rω

s�32
, Rω

s�33

�

− arcsin

�
Rω

s�31

�

arctan 2

�
Rω

s�21
, Rω

s�11

�




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Taking into account the bounds of Bω, we get the 6× 1 displacement vector to the TSR,
�x:

�xi =






dω
i
−Bω

i,1 if dω
i
< Bω

i,1

dω
i
−Bω

i,2 if dω
i
> Bω

i,2

0 otherwise

where i indexes through the six rows of Bω and six elements of �x and dω.

5.3.2.3 Planning with TSRs

TSRs can be used to sample goal end-effector placements of a manipulator, as it would
be necessary in a grasping or object-placement task. The constraint for using TSRs in
this way is:

{Q (q) = DistanceToTSR (q) , s = [1]} (5.3)

where s refers to the domain of the constraint.
To generate valid configurations in the MQ manifold corresponding to this constraint,

we can use direct sampling of TSRs and pass the sampled pose to an IK solver to generate
a valid configuration. TSRs can also be used for planning with constraints on end-effector
pose for the entire path. The constraint definition for such a use of TSRs differs from
Eq. 5.3 in the domain of the constraint:

{Q (q) = DistanceToTSR (q) , s = [0, 1]} (5.4)

Since the domain of this constraint spans the entire path, the planning algorithm must
ensure that each configuration it deems valid lies within the constraint manifold [7].

The sampling-based planning requires an algorithm that searches globally while satis-
fying constraints locally. The sampling-based TSR planner is based on rapidly exploring
random trees (RRT). The efficiency of these planners stems from the incomplete coverage
of the free space and from terminating the search when the goal is first reached. The
solution found is feasible but not optimal in any way [39]. These planners can also oper-
ate in the state space of the robot to produce trajectories, but they are far more efficient
and successful when operating in the configuration-space to produce configuration-space
paths. These paths can then be converted to trajectories and executed by an appropriate
controller [8]. The implementation of TSR for the particular case of the HSR robot has
already been done by the Toyota Research Institute (TRI).

Within the context of the TSR framework, the constraints can be easily represented
and the planning of the end-effector achieved in the opening door task. When considering
the set of objects relevant for a service robot, one quickly realizes that the joints in many
articulated objects belong to a few generic classes. In particular, regarding the target
objects of this project, the links could be divided as prismatic (drawer) or revolute
(hinged door). Thus, in order to adress the motion planning problem, both cases should
be written in the TSR formulation.
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5.3.2.4 Opening a Drawer with TSR

For opening a drawer, the end-effector trajectory should be constrained in such a way
that, once grasped, the handle follows a straight line in the direction perpendicular to
the door plane. Thus, to specify the constraint in this problem only one TSR is defined,
with T o

ω to be coincident with the robot odometry. Tω
e is the transform between the

end-effector and the initial pose of the handle as defined in the previous chapter (Figure
5.22). In the same way, another TSR is defined for the goal:

(Bω
constraint)

T
=

�
0 0 −d 0 0 0

0 0 0 0 0 0

�

(Bω

goal)
T
=

�
0 0 −d 0 0 0

0 0 −d 0 0 0

�

where d is the desired opening distance.

Figure 5.22: TSR planning to open a drawer
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Figure 5.23: TSR planning to open a hinged door

5.3.2.5 Opening a Hinged Door with TSR

In this problem the task is to open a hinged door a certain angle ϕ. The planner is
only allowed to move the door handle describing a circumference whose center has the
position of the hinge and it is contained in a plane parallel to the floor. To specify
the pose constraint in this problem, one pose constraint is defined with T o

ω at the door
hinge, with no rotation relative to the initial handle orientation (as it was defined in the
previous chapter). The constraints and the goal in this particular case will depend on
Tω
e , since the sense of the rotation will be the opposite if its y- translation component is

positive or negative, i.e., if the door handle is to the right or to the left from the axis of
rotation.
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Thus, the goal and constraint are (Figure 5.23):

(Bω
constraint

)T =

�
0 0 0 0 0 0

0 0 0 ϕ 0 0

�

(Bω

goal
)T =

�
0 0 0 ϕ 0 0

0 0 0 ϕ 0 0

�






Tω
e |y< 0

(Bω
constraint

)T =

�
0 0 0 −ϕ 0 0

0 0 0 0 0 0

�

(Bω

goal
)T =

�
0 0 0 −ϕ 0 0

0 0 0 −ϕ 0 0

�






Tω
e |y >0
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6 Learning

Enabling robots to act autonomously in the real-world is difficult.Why are autonomous
robots not out in the world among people? Robots are particularly susceptible to Mur-
phy’s law: everything that can go wrong, will go wrong. Robots struggle in unknown
scenarios, and it is very difficult for them to deal with uncertainty. However, either do
humans. Where is the difference then? That humans can come out of these situations,
because they use their own experience to overcome uncertainty, but also, because they
learn. If the human being the only animal that trips twice over the same stone, robots
will trip a dozen times. Two important concepts have arised so far in this discussion:
uncertainty and learning. Uncertainty is a situation which involves imperfect or unknown
information. It applies to predictions of future events, to physical measurements that
are already made, or to the unknown. Learning is the activity of gaining knowledge or
skill by studying, practising, being taught, or experiencing something. In order to make
reliable robotic systems operating in human enviroments both have to be adressed.

Regarding uncertainty, the following question could be made: What if a robot has
access to sensors that allow it to observe the world state, but no previous informative
knowledge on it at the time of decision? Bayes in 1763 and Laplace later in 1812 already
answered this question. If there is no prior knowledge but observations are available,
the best decision will be the one that has the highest chances of being correct given the
observations [23]. Regarding the learning process, in particular learning from experience,
the previous question can be reformulated: What if a robot has access to sensors that
allow it to observe the world state, and also previous informative knowledge on it at
the time of decision? Bayes and Laplace already solved this question too! The correct
decision will be the one that has the highest probability of being correct balancing the
given observations and the prior knowledge (Figure 6.1).

This is Bayesian inference, a method of statistical inference in which Bayes theorem is
used to update the probability for a hypothesis as more evidence or information becomes
available. Bayesian inference derives the posterior probability as a consequence of two
antecedents: a prior probability and a “likelihood function” derived from a statistical
model for the observed data. The challenge for human assistive robots is that these
robots, that operate in unstructured environments, have to cope with less prior knowledge
about their surroundings. Therefore, they need to be able to autonomously learn suitable
probabilistic models from their own sensor data to robustly fulfill their tasks.
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Figure 6.1: Prior knowledge is the basis of the learning, even though Calvin and Hobbes
disagree to some extent

In this chapter, a probabilistic framework to learn the doors kinematic model, take
advantage of previous experiences to improve the performance, proposed by Sturm et
al. [64, 74–76], will be devoloped and extended. In section 6.1, some statistical insights
of the proposed approach will be presented. Then, in section 6.2, a Bayesian framework
to learn the kinematic model of doors will be developed. In section 6.3, the candidate
models for parametrizing the door motion will be described. Next, in section 6.4, an
approach to fit the observations into the previous models will be presented. In section
6.5, it will be described the procedure to select the most probable model. Then, in section
6.6, it will be proposed an approach to integrate the probabilistic framework in a robot
control scheme to achieve the correct operation of unknwn doors. In section 6.7, it will
be described how can the prior knowledge from previous experience be exploited to boost
the robot performance. Next, in section 6.8, an approach that allows the robot to learn
from human demonstrations will be proposed. And, finally, in section 6.9, an extension
of the framework for building a semantic map will be described.

6.1 Model Based Learning

Machine learning offers to robotics a framework and set of tools for the design of sophis-
ticated and hard-to-engineer behaviors; conversely, the challenges of robotic problems
provide both inspiration, impact, and validation for developments in robot learning. In
recent years, methods to learn models from data have become increasingly interesting
tools for robotics.

A robot is learning if it improves its performance on future tasks after making obser-
vations about the world. For this, the robot has to consider two major issues. First,
it needs to deduce the behavior of the system from some observed quantities. Second,
having inferred this information, it needs to determine how to manipulate the system.
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The first question is a pure modeling problem. Given some observed quantities, we
need to predict the missing information to complete our knowledge about the action and
system reaction. Depending on what kind of quantities are observed, the agent builds
some kind of model to act on the system. The second question is related to the learning
control architectures which can be employed in combination with these models. This
is known as a model learning approach [17]. In general, model learning is a supervised
learning approach. In supervised learning, the agent observes some example input–output
pairs and learns a function that maps from input to output. Thus, approximating this
underlying function is the goal of supervised learning methods. Given known input data,
the learned model should be able to provide precise predictions of the output values [52].
The dependency between the observed data and the model is defined by the conditional
probability distribution [75]:

p (y | x,M)

which refers to the probability distribution of the random (or target) variable y given
the value of the input variable x and a model M.

If a deterministic relationship between input and target space exists, the model can be
specified using a regression function that defines the functional mapping fM from input
to target space, i.e.,

y = fM(x)

The goal of regression is to estimate fM(x) from a set of n observations D = {(xi, yi)}ni=1.
A straightforward way to define the model M is by using a parametric structure. The
parametric approach to regression is to express the unknown regression function with a
function fM,θ that is parametrized by a vector. The aim is, then, to select the parameter
vector θ that best fits the data, or equivalently, that maximizes the posterior probability
after having observed the dataset D, i.e.,

θ̂ = argmax
θ

p (θ | D,M)

Applying Bayes rule this is equivalent to:

θ̂ = argmax
θ

p (D | θ,M) p (θ | M)

p (D)
= argmax

θ
p (D | θ,M) p (θ | M)

where p (D | θ,M) is called the data likelihood and p (θ | M) is the prior over the pa-
rameter space. The prior probability of the observed data p(D) is neglected as it is
independent of the choice of the parameter vector θ.

The model M is selected from a hypothesis space, H. A fundamental problem is
how a decision can be made from among the multiple consistent hypothesis. In general,
there is a tradeoff between complex hypotheses that fit the training data well and sim-
pler hypotheses that may generalize better. Selecting the most-likey model requires the
evaluation and comparison of the posterior probabilities p (M | D) of all models, i.e., [65].

M̂ = argmax
M∈H

p (M | D)
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By Bayes rule this is equivalent to:

M̂ = argmax
M∈H

p (D | M) · p (M)

p(D)
= argmax

M∈H

p (D | M) · p (M)

where p(M) is the prior over the models, i.e., the probability of a hypothesis model M
to be the true function before having any data; and p(D | M) is the data likelihood. The
prior probability of the observed data p(D) is neglected as it is independent of the choice
of the model M.

6.2 Learning the Kinematic Models of Doors

Doors are articulated objects that consist of two rigid parts with a mechanical link. This
link constrain the motion between the parts: for example, the rails of a drawer constrain
it to move on a line and the hinge of a door constrains the door to move on an arc. The
problems that have to be addressed at this point to enable the robot to open the door are:
the inference of the kinematic model and its corresponding parametrization. In this way,
a motion planning to finally open the door could be achieved using the TSR framework
presented in the previous chapter. By means of the probabilistic approach presented in
the previous section, these unknowns can be solved under some assumptions.

The robot observes a sequence of N relative transformations D = (d1, ...,dN ) between
two adjacent rigid parts of this object. Our observational model assumes that all the
measurements are affected by Gaussian noise. Furthermore, a small fraction of this
observations are outliers that cannot be explained by the Gaussian noise assumption
alone. These outliers may be the result of poor perception, bad data association, or
other sensor failures that are hard to be modeled explicitly. The kinematic link model
is denoted as M and its associated parameter vector as θ = Rk (where k corresponds
to the number of the parameters describing the model). The model that best represents
the data, and its corresponding parameters, can be computed as follows:

(M̂, θ̂) = argmax
M,θ

p(M,θ | D)

Solving this equation is a two-step process [46]:

• At the first level of inference, a particular model is assumed true and its parameters
are estimated from the observations.

θ̂ = argmax
θ

p(θ | D,M)

By applying Bayes rule, this can be rewritten into:

θ̂ = argmax
θ

p(D | θ,M)p (θ | M)

p (D | M)
= argmax

θ
p(D | θ,M)p (θ | M)
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where the term p(θ | M) defines the model-dependent prior over the parameter
space. If the prior is assummed to be uniform, it follows:

θ̂ = argmax
θ

p(D | θ,M) (6.1)

which means that a fitting of a link model to the observations corresponds to the
problem of maximizing data likelihood.

• At the second level of inference, the probability of different models is compared,
and the model with the highest posterior probability is selected:

M̂ = argmax
M

p (M | D) = argmax
M

ˆ
p (M,θ | D) dθ (6.2)

Therefore, from observations of the door motion, the robot could be able:

1. Fit the parameters of all candidate kinematic models that describe the different
mechanical links.

2. Select the kinematic model that best explains the observed motion, i.e., the kine-
matic structure that maximizes the posterior probability.

6.3 Candidate Models

Kinematic models describe the motion of systems of articulated objects such as doors.
When considering the set of doors that can be potentially operated by a service robot,
the joints belong to a few generic classes, in particular, prismatic (drawers) and revolute
joints (hinged doors). Thus, the candidate set of models H includes a prismatic model
Mprism and a revolute model Mrev.

These models have a latent variable q ∈ Rd that describes the configuration of the
mechanism, where d represents the number of the DOFs of the mechanical link. For both
prismatic and revolute models, d = 1, so the parameter q ∈ R is a scalar.

Prismatic model Prismatic joints move along a single axis, and thus have a one-
dimensional configuration space (Figure 6.2). The prismatic model describes a translation
along a vector of unit length e ∈ R3 relative to some fixed origin, a ∈ R3. This results
in a parameter vector θ = (a; e) with k = 6 dimensions. Thus, only the coordinates of
two points are needed to define it.

Revolute model Revolute joints rotate around an axis that impose a one-dimensional
motion along a circular arc (Figure 6.2). This model is parametrized by the center of
rotation c ∈ R3, a radius r ∈ R, and the normal vector n = R3 to the plane where
the motion is contained. This results in a parameter vector θ = (c;n; r) with k = 7

dimensions. Thus, the statistical adjustment of the model only requires 7 parameters.
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Figure 6.2: Prismatic and revolute models for articulated links

6.4 Model Fitting

For estimating the parameters of any of the above-mentioned models, the parameter
vector θ̂ ∈ Rk that maximizes the data likelihood given the model:

θ̂ = argmax
θ

p (D | M,θ)

In the presence of noise and outliers, finding the right parameter vector θ that maxi-
mizes the data likelihood is not trivial, as least squares estimation is sensitive to outliers
and thus not sufficient given our observation model. RANSAC algorithm, explained in
section 4.2.2, has proven to be very successful for robust estimation. An improvement
can be obtained modifying RANSAC in order to maximize the likelihood of the model.
This is the approach implemented by MLESAC (Maximum Likelihood Estimation SAm-
ple and Consensus), a variation of RANSAC that evaluates the quality of the consensus
set (i.e., the data that fit a model and a certain set of parameters) calculating its likeli-
hood (whereas in RANSAC formulation the rank was the cardinality of such set). The
main idea of MLESAC is to evaluate the likelihood of the hypothesis by representing
the error distribution as a mixture model of a Gaussian (inliers) and a uniform (outliers)
distributions (Figure 6.3). The MLESAC algorithm adjusts the vector parameter θ of a
model M works as follows:

• First, a guess for the parameter vector θ̂ is generated from a minimal set of samples
from the whole observation sequence D (like in the RANSAC algorithm).

• For this guess, the data likelihood of the observation sequence (N observations:
d1, ...,dN ) can be expressed as [78,87]:
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Figure 6.3: RANSAC, LSE, and MLESAC loss functions [14]

p(D | M, θ̂) =
N�

i=1

p
�
di | M, θ̂

�
=

N�

i=1

�
γ · p

�
e(di,M, θ̂) | the ith element is an inlier

�
+

(1− γ·) p
�
e(di,M, θ̂) | the ith element is an outlier

��
(6.3)

where γ is the outlier ratio or the mixture coefficient.

• The error distribution for the inliers is modeled with a Gaussian distribution:

pi = p
�
e(di,M,θ) | the ith element is an inlier

�
=

1

Z
exp

�−e(di,M,θ)2

2Σ2
d

�
(6.4)

where Z is the appropiate normalization constant, and Σd indicates the noise stan-
dard deviation.

• The error statistics for the outliers is described by a uniform distribution:

po = p
�
e(di,M,θ) | the ith element is an outlier

�
=

�
1

2emax
| e(di,M,θ) |≤ emax

0 otherwise
(6.5)

where emax represents the largest possible error which can be induced by the pres-
ence of outliers.

• Note that two parameters need to be estimated, the vector parameter θ̂ that max-
imizes the likelihood of data observations, and the mixture coefficient:

75



– The γ estimation can be done iterativily using Expectation Maximization
(EM), for which a set of indicator variables needs to be introduced: ηi (i =
1, ...n), where ηi = 1 if the i−th datum is an inlier, and ηi = 0 if the i−th
datum is an outlier. The algorithm EM proceeds as follows, treating the ηi as
missing data:

1. Generate a guess for γ (usually the initial estimate of γ is 1
2);

2. Estimate the expectation of the ηi from the current estimate of γ. Here,
p(ηi = 1 | γ) = zi and, given an value of γ, this can be estimated as:

zi = p(ηi = 1 | γ) = pi
pi + po

then, p(ηi = 0 | γ) = 1 − zi , where, pi is the likelihood of a datum is
an inlier (Eq. 6.4), and po is the likelihood of a datum is an outlier (Eq.
6.5).

3. Make a new estimate of γ from the current estimate of ηi and go to step
(2):

γ =
1

n

�

i

zi

4. Repeat this procedure until convergence (typically it requires two or three
iterations).

– For estimating the vector parameter θ̂, the log-likelihood of the mixture model
is maximized:

L̂
�
e(D | M, θ̂)

�
=

N�

i=1

log

�
γ · p

�
e(d

i
,M, θ̂) | the ith element is an inlier

�
+

(1− γ·) p
�
e(d

i
,M, θ̂) | the ith element is an outlier

��

These steps are repeated for a fixed number of iterations and finally the parameter vector
maximizing Equation 6.3 are selected. In this way, the parameters and the data likelihood
are computed. This algoritm is applied for each one of the candidate models proposed
in the previous section.

Then, the question of how to decide which of the two models is more likely to represent
the data according to Equation 6.2 arises. This will be adressed in the next section.

76



6.5 Model Selection

After having fitted all model candidates to an observation sequence D, we need to select
the model that explains the data best has to be selected. For Bayesian model selection,
this means that the posterior probability of the models (given the data) needs to be
compared:

p(M | D) =

ˆ
p (D | M,θ) p (θ | M) p (M)

p (D)
dθ

Let Mm (m = 1, ...,M) be the set of candidate models, and their corresponding model
parameters θm. Let p (θm | Mm) be the prior distribution for the parameters of each
model Mm. Thus, the posterior probability of a given model is [27]:

p (Mm | D) =
p(Mm) · p (D | Mm)

p(D)
=

p (Mm)

p(D)
·
ˆ

p (D | θm,Mm) p (θm | Mm) dθm (6.6)

where D represents the training data {xi, yi}N1 , (and N is the number of training samples).

In general, the evaluation of the model posterior probability is difficult, but the com-
parison between two models Mm and Mm� can be solved by the posterior probability
ratio:

p (Mm | D)

p (Mm� | D)
=

p (Mm)

p (Mm�)
· p (D | Mm)

p (D | Mm�)

The quantity:

BF (D) =
p (D | Mm)

p (D | Mm�)

is called the Bayes factor, and represents the contribution of the data toward the posterior
probability ratio. If the prior over models is assumed uniform, so that p(Mm)/p(Mm� ) = 1,
the best model should be Mm while BF (D) > 1. Then, in order to compare the models,
it is necessary to approximate in some way p (D | Mm). From Eq. 6.6:

p (D | M) =

ˆ
p (D | θm,Mm) p (θm | Mm) dθm

Using the Laplace approximation to the integral, followed by some other simplifica-
tions, it follows:

log p (D | Mm) = log p
�
D | θ̂m,Mm

�
− km

2
· logN + c (6.7)

where θ̂m is a maximum likelihood estimate, km is the number of free parameters in
model Mm, and c is a constant.
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Equation 6.7 is very similar to the Bayesian Information Criteria (BIC) used in statis-
tics. The BIC arises in a Bayesian approach to model selection, and it is defined as [10]:

BIC = −2 log(L̂) + k · logN = −2 log

�
L
�
D | M, θ̂

��
+ k · logN (6.8)

where L̂ is the maximum value of the likelihood function for the model; D is the obser-
vation sequence; θ̂ is the maximum likelihood parameter vector of the model (Eq. 6.2);
k is the number of parameters of the current model under consideration, M; and N is
the number of observations in the sequence D. The BIC incorporates two terms (Eq.
6.8): the first of them improves the quality of the adjustment (higher likelihood) and the
second penalizes the complexity of the model [1].

Then, model selection is reduced to select the model that has the lowest BIC, i.e.:

M̂ = argmin
M

BIC(M)

The individual BIC values are not interpretable, as they contain arbitrary constants
and are much affected by sample size. Here, it is convenient to rescale BIC values to
�BICi = BICi−BICmin, where BICmin is the minimum of the different BIC values of
the considered models. This transformation forces the best model to have �BIC = 0,
while the rest of the models have positive values. These �BIC values allow meaningfull
interpretation without the unknow scaling constants and sample size issues that enter
into BIC values [10]. If the BIC is computed for a set of models {Mi}M1 , the posterior
probability of each model Mi as [27]:

pi = p(Mi | D) =
exp

�
−1

2�BICi

�
�

M

i=1

�
−1

2�BICi

�

The above posterior model probabilities are based on assuming that prior model prob-
abilities are all the same, that is 1/M. Thus, we can estimate not only the best model,
but also can be estimated the relative merits of the considered models. In the follow-
ing section it will be presented an approach to exploit this framework in order to open
unknown doors with the Toyota HSR.

6.6 Opening Unknown Doors

The only remaining piece in the proposed approach is how can the robot collect obser-
vations and use the probablilistic framework to robustly operate unknown doors. When
the robot establishes firm contact with the handle of the door, the position of its end
effector directly corresponds to the position of the door handle. As a result, the robot
can both sense the position of the handle as well as control it by moving the manipulator.
Then, the robot observes the position of its end effector in Cartesian space, denoted by
d ∈ R3. While operating the object, the robot records the trajectory di(t) over time as
a sequence of positions. To drive the robot actuation, the estimated model parameters
are used within the TSR framework as it was presented in section 5.3.2 (Figure 6.4).

78



Figure 6.4: Door opening motion: each step corresponds to one loop in the diagram

The door opening motion is divided in steps. After each step, the kinematic model
of the door and its parameters are re-estimated adding the new observations, since the
larger the set the more accurate will be the estimation. For driving the robot motion
in accordance with the model, the Task Space Region (TSR) framework is used. For
starting the manipulation process, where no observations are acquired, a prismatic model
is supposed, since small portions of revolute trajectories can be approximated by straight
lines. Compliance plays a key role. Impedance control is used in order to make the robot
arm compliant with the door. In this way, the robot is able to open the door correctly
even if the model selection is wrong at the beginning, since the end-effector trajectory is
also controlled by the forces exerted from the door. This allows an error margin in the
estimated kynematic model which is fundamental. Once there are enough observations,
the estimation is more accurate and this error margin is no longer needed.

6.6.1 Results

The performance of the proposed approach was tested ten times with three different
types of doors. These were a drawer, a hinged door and a refrigerator door. The task
of the robot was to grasp the handle, unlock it and open the door while it learned its
kinematic model. The robot succesfully opened the doors 26 times out of the 30 trials
(87%). All four failures were due to the robot gripper slipping from the door knob, most
likely because of the design of the gripper is not very suitable to operate these kind of
objects. No errors were observed during the model learning. Figure 6.5 shows the HSR
opening the three types of doors. In a second series of experiments, the convergence
behavior of the estimators with respect number of training samples was evaluated. Both
a door with a prismatic model (drawer) and another with a revolute model (refrigerator
door) were opened succesfully ten times each one. During the task, the evolution of the
candidate model posterior was tested against the number of observations as well as, in
the case of the revolute model, the error in the radius estimation. As it can be observed
in Figure 6.6 and Figure 6.7, the posterior probability of both models converges towards
the true model as the number of observations increases.
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Figure 6.5: HSR opening, from top bottom: a drawer, a refrigerator door, and a room
door
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When few observations are acquired the probability oscillates around 0.5, which is
consistent with the hypothesis of considering equal priors for both candidate models.
However, they soon diverge from this value, showing an efficient behavior regarding
the decision criteria. A more convergent behavior is appreciated in the case of the
opening of a revolute door. This is the case because of the difference in complexity
between both models. When fitting a revolute model into a prismatic trajectory, the
like-lihood is still meaningful since a circumference with a big radius can approximate the
mentioned trajectory. However, when fitting a prismatic model into a revolute trajectory
this is not the case. On the other hand, a convergent behavior in the radius estimation
when opening a revolute door, rapidly decreasing to aceptable values to gurarantee a
satisfactory operation of the robot can also be observed.

These results show that, with the proposed approach, the robot can learn the kinematic
models of unknown doors with a robust behavior. Also, the probabilistic framework is
applicable to a wide range of doors, allowing the robot to operate them reliably.

6.7 Learning from Experience: Exploiting Prior Knowledge

So far, with the presented framework, a robot always learns the model from scratch when
it opens a door. However, doors in indoor enviroments present very similar kynematic
models. Thus, a robot operating in such environments over extended periods of time can
significantly boost its performance by learning priors over the space of possible articulated
object models. Then, the proposed framework can be extended to allow the robot learn
priors for doors and exploit them as early as possible while manipulating unknown doors.
Thus, the objective is to transfer the information contained in already learned models to
newly seen doors. The key idea here is to identify a small set of representative models
for the articulated objects and to utilize this as prior information to improve the model
selection and parameter estimation [75].

Let’s suppose that the robot has previously encountered two doors. Their observed
motion is given by two observation sequences D1 and D2, with n1 and n2 sample respec-
tively. The question now is whether both trajectories should be described by two distinct
models M1 and M2 or by a joint model M1+2. In the first case, the posterior can be
split as the two models are mutually independent, i.e. [76]:

p (M1,M2 | D1,D2) = p (M1 | D1) · p (M2 | D2) (6.9)

In the latter case, both trajectories are explained by a single, joint model M1+2 with a
parameter vector θ1+2, that is estimated from the joint data D1∪D2. The corresponding
posterior probability of this joint model is denoted as:

p (M1+2 | D1,D2) (6.10)

To determine whether a joint model is better than two separate models by comparing
the posterior probabilities from Eq. 6.9 and Eq. 6.10, i.e., by evaluating:

81



Figure 6.6: The upper graphic shows the evolution of the mean of the posterior probabil-
ity of each model vs the number of observations when opening a door with a
revolute model. The shadowed area, in light color, corresponds to a margin of
two standard deviations. The middle image shows the evolution of the error.
The bottom graphic shows the spatial evolution of the true model posterior
during the opening motion of a revolute door
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Figure 6.7: The upper graphic shows the evolution of the mean of the posterior probabil-
ity of each model vs the number of observations when opening a door with a
prismatic model. The shadowed area, in light color, corresponds to a margin
of two standard deviations. The bottom graphic shows the spatial evolution
of the true model posterior during the opening motion of a drawer
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p (M1+2 | D1,D2) > p (M1 | D1) · p (M2 | D2)

This expression can be efficiently evaluated by using the BIC. Thus, it has to be
checked:

BIC (M1+2 | D1,D2) < BIC (M1 | D1) +BIC (M2 | D2)

Or equivalently:

−2 logL+ k log n < −2 log(L1L2) + k1 logn1 + k2 logn2 (6.11)

with L = p (D1 ∪D2 | M1+2), L1 = p (D1 | M1), L2 = p (D2 | M2), and n = n1 + n2 .
Intuitively, merging two models into one is beneficial if the joint model can explain

the data equally well (i.e., L ≈ L1L2), while requiring only a single set of parameters.
It is checked whether merging the new trajectory with one of the existing models leads
to a higher posterior compared to adding a new model for that trajectory to the set of
previously encountered models. If more than two trajectories are considered, they have
to be evaluated for the observation with all the recorded trajectories. This can become
a process with very high computational cost. For this reason, in order to improve the
performance, the recorded trajectories are classified according to the door classes provided
by the presented perception approach. In this way, when opening a refrigerator door,
the observations are only going to be compared with previous refrigerator door openings.
Thus, the observed data is more likely to match the recorded data, and trajectories that
are not likely to match, for instance a drawer, are not considered.

The procedure is summarized in Algorithm 6.2:

Algorithm 6.2 Model Selection Using Prior Knowledge
Input: New observed trajectory Dnew =

�
d
new
j

�N

1
;

door class c ∈ {door, cabinet door, refrigerator door};
previously observed trajectories Dc = {Ds}S1

Output: Best model Mbestand prior-knowledge updated Dc

Mnew ← Kinematic_Model (Dnew)

Mbest ←{M new} , Dc ← Dc ∪{D new}, pbest ← 0

for all Ds ∈ D do

Ms ← Kinematic_Model (Ds)

Mnew+s ← Kinematic_Model (Dnew ∪Ds)

if p (Mnew+s | Dnew,Ds) > p (Mnew | Dnew) p (Ms | Ds) & p (Mnew+s | Dnew,Ds) >

pbest then
Mbest ←{M new, Ms}
Dc ←{D 1, . . . ,Dnew ∪Ds . . . ,DS}
pbest ← p (Mnew+s | Dnew,Ds)

end if

end forreturn Mbest and Dc
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After a set of models is identified as prior information, this knowledge can be exploited
to improve the inference. If the newly observed data is merged with an existing model,
the parameter vector is estimated from a much larger dataset Dj ∪ Dnew, instead of
Dnew, which leads to a better estimation. However, since this process is carried out
repeatedly as new observations are acquired, if the currently manipulated door ceases
to be explained by the known models, the method instantaneously creates a new model.
After door opening, the algorithm is repeated and the new data serves as additional prior
information for the future merged with a previous trajectory or as a new trajectory.

6.7.1 Bias-Variance Trade-Off

Prior knowledge is expected to help guide the learning process when the robot is opening
a door. However, it might also be a double-edged sword if the guidance is too rigid.
Supposing the robot has previously opened a cabinet door with a revolute model, it
should not think the next cabinet door it will operate will necessarily have a revolute
model since it might also be prismatic. The guidance should neither be too soft since it
is expected to boost its performance if the next cabinet door is revolute. In statistics it is
known as the bias-variance trade-off (reference). In statistics and machine learning, the
bias–variance tradeoff is the property of a set of predictive models whereby models with a
lower bias have a higher variance and vice versa. Ideally, one wants to choose a model that
both accurately captures the regularities in its training data, but also generalizes well to
unseen data. Unfortunately, it is typically impossible to do both simultaneously. High-
variance learning methods may be able to represent their training set well but are sensitive
to noise. In contrast, algorithms with low variance typically produce simpler models that
may underfit their training data, failing to capture important regularities [27].

Let’s suppose a training set of points X , and the true set of values associated to each
training sample Y . Let f̂ (X ) be the function that best approximates the true function
f(X ) by means of a learned probabilistic model. A measure of the optimatility of the
first function can be obtained by the mean square error method. This is equivalent to:

E

��
Y − f̂ (X )

�2
�
=

��
Bias

�
f̂ (X )

��2
+Variance

�
f̂ (X )

�
+ σ2

�

where σ2 is the irreducible error due to uncertainty in measurement, and:

Bias
�
f̂ (X )

�
= E

�
f̂ (X )

�
− f (X ) ; Variance

�
f̂ (X )

�
= E

�
f̂ (X )

2
�
− E

�
f̂ (X )

�2

Intuitively, the variance measures how much does f̂ (X ) move around its mean, while
the square of the bias can be thought as the distance between the predictions and the true
values. Therefore, a zero-bias model will perfectly fit the data but this usually involves a
lot of movement around the mean, while a zero-variance model might not always exactly
fit the points. That is the reason why there is a trade-off. The optimal balance is the
one that minimizes the overall error. A graphical description of this trade-off is shown
in Figure 6.8.
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Figure 6.8: Bias-Variance Trade-Off

The bias-variance dilemma has been examined in the context of human cognition, most
notably by Gigerenzer et al. [25] in the context of learned heuristics. They have argued
that the human brain resolves the dilemma in the case of the typically sparse, poorly-
characterised training-sets provided by experience by adopting high-bias/low variance
heuristics. This reflects the fact that a zero-bias approach has poor generalisability to
new situations, and also unreasonably presumes precise knowledge of the true state of
the world. The resulting heuristics are relatively simple, but produce better inferences
in a wider variety of situations.

Ideally the proposed probabilistic model for exploiting prior knowledge should both
capture the recorded trajectories, but also be able to generalize well when a less-likely
kinematic model appears. In the Bayesian formulation that is to have an adequate
balance between the prior and the new observations when computing the posterior.

6.7.2 Results

For testing the robustness and performance of the learning framework, a series of ex-
periments were conducted. The robot had to open two different doors with different
kinematic models: a drawer and a revolute refrigerator door. Ten trials were done for
each door in three different situations: when the prior knowledge is predominantly rev-
olute, when it is predominantly prismatic and when both are balanced. For both doors,
the convergence behavior of the model posterior, and for the revolute model door also
the radius error was evaluated.

Results are shown in Figures 6.9, 6.10, 6.11, 6.12, 6.13, and 6.14.
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Figure 6.9: Evolution of the posterior and the error in the radius estimation when opening
a revolute door with a prior predominantly revolute. In solid lines it is shown
the mean for all the realizations. The shadowed area represents a margin of
two standard deviations

Figure 6.10: Evolution of the posterior when opening a prismatic model with a prior
predominantly revolute. In solid lines it is shown the mean for all the real-
izations. The shadowed area represents a margin of two standard deviations
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Figure 6.11: Evolution of the posterior and the error in the radius estimation when open-
ing a revolute door with an equilibrated prior. In solid lines it is shown the
mean for all the realizations. The shadowed area represents a margin of two
satandard deviations

Figure 6.12: Evolution of the posterior when opening a prismatic door with an equili-
brated prior. In solid lines it is shown the mean for all the realizations. The
shadowed area represents a margin of two standard deviations

88



Figure 6.13: Evolution of the posterior and the error in the radius estimation when open-
ing a revolute door with a prior predominantly prismatic. In solid lines it
is shown the mean for all the realizations. The shadowed area represents a
margin of two standard deviations

Figure 6.14: Evolution of the posterior when opening a prismatic door with a prior pre-
dominantly prismatic. In solid lines it is shown the mean for all the realiza-
tions. The shadowed area represents a margin of two standard deviations
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Regarding the evaluation of the model posterior against the number of observations, it
can be observed that the behavior depends on the predominant prior. When it matches
the true model (Figure 6.9 and Figure 6.14), the posterior converges rapidly and remains
at a high value for almost all the realizations. When it comes to the results obtained with
a balanced prior (Figure 6.11 and Figure 6.12), the behavior depends on the true model.
When few new observations are available they tend to merge with a previously recorded
prismatic model. This is reasonable, since the trajectory is very similar for both models
at this point but the complexity is penalized favoring the prismatic model. However at a
relatively low number of observations, the posterior rapidly converges to the true model.
Finally, in the case the prior does not match the true model, the behavior is symetric
for both doors (Figure 6.10 and Figure 6.13). At the beginning, the observations merge
with the previous recorded trajectories. However, when the number of observations is
sufficiently large, it rapidly converges towards the true model.

Regarding the convergence behavior of the error in the radius estimation, it is clear
that the prior knowledge improves it. As soon as the observations merge with a previous
experience, the error decreases significantly.

It can be concluded from these results that the proposed learning approach allows
the exploiting of prior knowledge to improve the model and the parameter estimation.
Furthermore, it has been proved robust in the presence of biased priors. Also, it boosted
the performance significatively when the predominant prior corresponded to the true
model.

6.8 Learning from Human Demostrations

Humans have a great deal of intuition about how to accomplish many tasks that we
would like robots to perform, but these intuitions do not necessarily translate naturally
to code. Robot learning from demostration is a research paradigm that can play an
important role in addressing the isue of scaling up robot learning [42]. Providing robots
with the ability to learn the kinematic models of doors requires object detection, pose
estimation and model learning. It is desirable for robots to learn these models from
demonstrations provided by ordinary users. Therefore, the main requirement is a robust
tracking of the door motion with the vision system. These demonstrations could then
be exploited as prior knowledge. With the presented probabilistic framework, the only
neccessary input is a set of observations of the handle position. In the previous section,
this has been achieved exploiting the fact that the robot end-effector and the handle
follow the same trajectory when the door is manipulated. However, using the proposed
perception approach, this observations can be provided by the robot vision system.

To achieve a reliable handle tracking, the main issue that has to be adressed is, in case
there are multiple handle detections, for which of the handles the kinematic model has to
be estimated, i.e., which handle is moving. In order to solve the handle tracking problem,
it is useful to represent the trajectory as a set of 3D points, i.e., as a point cloud. With
the combination of a Voxel Grid Filter (section 4.2.1) and an Euclidean Clusterizer, a
robust and efficient tracking can be achieved (Figure 6.15).
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Figure 6.15: Point cloud clusterization using a Euclidean Clusterizer [21]

Figure 6.16: Learning kinematic models from human demonstrations
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Clusterizing, in the context of a point cloud, means to group the points according to
some criteria. Thus, an Euclidean Clusterizer groups points according to its euclidean
distance. Formally, the clusters will be defined as follows:

Let P be the point cloud of observations and Oi = pi ∈ P be a distinct point
cluster from Oj = pj ∈ P if min | pi−pj |2≥ dth, where dth is a maximum
imposed Euclidean distance threshold.

The above equation states that if the minimum distance between a set of points pi ∈ P
and another set pj ∈ P is larger than a given distance value, then the points in pi are
set to belong to a point cluster Oi and the ones in pj to another distinct point cluster
Oj . Then, since the handle trajectories are more than a certain distance threshold apart,
each one is going to be in a different cluster.

Using a Voxel Grid filter the point density of the point cloud is constant over the
space. Thus, the more a handle moves, its point cloud is going to be more spanned and
then, more points will be associated to a moving handle cluster than a static handle
cluster. Then, by getting the biggest cluster, the meaningful observations to estimate
the kinematic model are acquired and an efficient handle tracking achieved.

The proposed approach was tested in a serie of experiments shown in Figure 6.16. The
perception system was used successfully for the acquisition of the necessary data to infer
the kinematic model of the door. The meaningful observations were extracted correctly
from the set with all of them and the kinematic model was estimated accurately.

Thus, it is concluded that, with the proposed framework, the prior knowledge gathering
process is simplifed as it can be provided from human demonstrations, improving in this
way the learning capabilities of the robot.

6.9 Framework Extension: Building a Semantic Map

The evolution of contemporary mobile robotics has given thrust to a series of additional
conjunct technologies, such as the semantic mapping, that provides an abstraction of the
space [35]. Knowledge about the structure and the current state of the world is usually
encoded in form of a map. Until know, these representations have focused mostly on
the spatial structure of the environment. This kind of maps are needed for navigation
but they do not contain the more qualitative type of information needed to perform
task planning. This tendency is now changing, and the field of autonomous robotics is
witnessing an increasing interest in the so-called semantic maps, which integrate semantic
domain knowledge into traditional robot maps. These maps can provide a mobile robot
with deduction abilities to infer information from its world [24].

In this project, when the robot does not know the kinematic model of the different
types of doors it has to infere it from observations. But with the proposed learning
framework, if the robot associates its prior knowledge to an spatial representation, i.e.,
build a semantic map, it could perform the door opening task more reliably and efficiently
when operating in the same enviroment [57].

92



Figure 6.17: Semantic Map with different doors and their kinematic models

Then, the semantic map could be built while the robot operates different doors with
the following procedure (Figure 6.17):

1. The user starts by specifying a coarse coordinate for a new cabinet to be opened
and the robot retrieves the stored handle pose, navigates towards it and starts a
detection to verify the stored handle pose. In case multiple handles are found, the
one closest to the stored handle pose is selected.

2. Then, the robot grasps the handle and opens the door.

3. Finally, the generated trajectory is stored as semantic map spatial knowledge.

With the proposed framework extension, using the knowledge the robot has acquired
operating the doors of a certain enviroment, any robot could be able to generate an
open-loop trajectory and successfully open the door or drawer when required to execute
the same operation.

93



7 Conclusions

This work started with a simple objective: enable service robots to open a general type of
door. I couldn’t imagine how many different fields of robotics research the exploration of
that apparent simple question would involve. Every little advance came up after looking
at the problem with a new perspective, proving that robotics lies in the intersection of
computing, engineering, science, and mathematics.

Identifying the handle lied in the field of computer vision, and led to the exploration of
hot topics such as deep learning. As a result, a state-of-the-art real-time CNN-based ob-
ject detection method was built. It was able to robustly detect three door classes and their
corresponding handles under variable conditions. However, manipulation not only needs
the recognition capabilities, it requires the computation of relevant three-dimensional
geometric features. Exploiting the nature of the data provided by the robot perception
system, the CNN detections were combined with a novel point cloud processing algorithm
that allowed the computation of the end-effector grasping pose in real-time.

The door manipulation problem led to a wide review of standards as well as state-
of-the-art robot control and motion planning algorithms. From inverse kinematics, to
impedance control, and finally the TSR framework. Combining these methods, an effi-
cient door manipulation strategy was achieved.

Finally, the problem of dealing with the “a priori” uncertainty of the door kinematic
model led to a probabilistic framework to learn them from the robot observations. Ex-
ploiting the Bayesian perspective, current robotics problems such as learning from expe-
rience and from human demonstrations were addressed. Also, a semantic map that
enables a more efficient task reasoning can be built. As a result, by means of the
Toyota HSR platform, the aim of the project was finally achieved: a unified framework
to robustly operate all possible kinds of doors with a service robot.

Some of the most cutting-edge technologies available today are coming together in
a way that gives service robots more capabilities than ever before. With expanding
capabilities, service robots will become an increasingly common presence in working and
home spaces around the world.

The exploration of a simple question reveals the magic of robotics research: there is
always room for improvement and the limits of what is possible are always being long
lifted. It is still a developing field that it is undoubtley advancing rapidly. Allowing room
for a combination of extremely creative thinking and seeing your creation spring to life,
makes robotics, undoubtely, a fascinating field.
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