61,152 research outputs found

    Introduction to the special issue on cross-language algorithms and applications

    Get PDF
    With the increasingly global nature of our everyday interactions, the need for multilingual technologies to support efficient and efective information access and communication cannot be overemphasized. Computational modeling of language has been the focus of Natural Language Processing, a subdiscipline of Artificial Intelligence. One of the current challenges for this discipline is to design methodologies and algorithms that are cross-language in order to create multilingual technologies rapidly. The goal of this JAIR special issue on Cross-Language Algorithms and Applications (CLAA) is to present leading research in this area, with emphasis on developing unifying themes that could lead to the development of the science of multi- and cross-lingualism. In this introduction, we provide the reader with the motivation for this special issue and summarize the contributions of the papers that have been included. The selected papers cover a broad range of cross-lingual technologies including machine translation, domain and language adaptation for sentiment analysis, cross-language lexical resources, dependency parsing, information retrieval and knowledge representation. We anticipate that this special issue will serve as an invaluable resource for researchers interested in topics of cross-lingual natural language processing.Postprint (published version

    Combination of Domain Knowledge and Deep Learning for Sentiment Analysis of Short and Informal Messages on Social Media

    Full text link
    Sentiment analysis has been emerging recently as one of the major natural language processing (NLP) tasks in many applications. Especially, as social media channels (e.g. social networks or forums) have become significant sources for brands to observe user opinions about their products, this task is thus increasingly crucial. However, when applied with real data obtained from social media, we notice that there is a high volume of short and informal messages posted by users on those channels. This kind of data makes the existing works suffer from many difficulties to handle, especially ones using deep learning approaches. In this paper, we propose an approach to handle this problem. This work is extended from our previous work, in which we proposed to combine the typical deep learning technique of Convolutional Neural Networks with domain knowledge. The combination is used for acquiring additional training data augmentation and a more reasonable loss function. In this work, we further improve our architecture by various substantial enhancements, including negation-based data augmentation, transfer learning for word embeddings, the combination of word-level embeddings and character-level embeddings, and using multitask learning technique for attaching domain knowledge rules in the learning process. Those enhancements, specifically aiming to handle short and informal messages, help us to enjoy significant improvement in performance once experimenting on real datasets.Comment: A Preprint of an article accepted for publication by Inderscience in IJCVR on September 201

    Automatically detecting open academic review praise and criticism

    Get PDF
    This is an accepted manuscript of an article published by Emerald in Online Information Review on 15 June 2020. The accepted version of the publication may differ from the final published version, accessible at https://doi.org/10.1108/OIR-11-2019-0347.Purpose: Peer reviewer evaluations of academic papers are known to be variable in content and overall judgements but are important academic publishing safeguards. This article introduces a sentiment analysis program, PeerJudge, to detect praise and criticism in peer evaluations. It is designed to support editorial management decisions and reviewers in the scholarly publishing process and for grant funding decision workflows. The initial version of PeerJudge is tailored for reviews from F1000Research’s open peer review publishing platform. Design/methodology/approach: PeerJudge uses a lexical sentiment analysis approach with a human-coded initial sentiment lexicon and machine learning adjustments and additions. It was built with an F1000Research development corpus and evaluated on a different F1000Research test corpus using reviewer ratings. Findings: PeerJudge can predict F1000Research judgements from negative evaluations in reviewers’ comments more accurately than baseline approaches, although not from positive reviewer comments, which seem to be largely unrelated to reviewer decisions. Within the F1000Research mode of post-publication peer review, the absence of any detected negative comments is a reliable indicator that an article will be ‘approved’, but the presence of moderately negative comments could lead to either an approved or approved with reservations decision. Originality/value: PeerJudge is the first transparent AI approach to peer review sentiment detection. It may be used to identify anomalous reviews with text potentially not matching judgements for individual checks or systematic bias assessments

    Learning and Interpreting Multi-Multi-Instance Learning Networks

    Get PDF
    We introduce an extension of the multi-instance learning problem where examples are organized as nested bags of instances (e.g., a document could be represented as a bag of sentences, which in turn are bags of words). This framework can be useful in various scenarios, such as text and image classification, but also supervised learning over graphs. As a further advantage, multi-multi instance learning enables a particular way of interpreting predictions and the decision function. Our approach is based on a special neural network layer, called bag-layer, whose units aggregate bags of inputs of arbitrary size. We prove theoretically that the associated class of functions contains all Boolean functions over sets of sets of instances and we provide empirical evidence that functions of this kind can be actually learned on semi-synthetic datasets. We finally present experiments on text classification, on citation graphs, and social graph data, which show that our model obtains competitive results with respect to accuracy when compared to other approaches such as convolutional networks on graphs, while at the same time it supports a general approach to interpret the learnt model, as well as explain individual predictions.Comment: JML

    General Purpose Textual Sentiment Analysis and Emotion Detection Tools

    Get PDF
    Textual sentiment analysis and emotion detection consists in retrieving the sentiment or emotion carried by a text or document. This task can be useful in many domains: opinion mining, prediction, feedbacks, etc. However, building a general purpose tool for doing sentiment analysis and emotion detection raises a number of issues, theoretical issues like the dependence to the domain or to the language but also pratical issues like the emotion representation for interoperability. In this paper we present our sentiment/emotion analysis tools, the way we propose to circumvent the di culties and the applications they are used for.Comment: Workshop on Emotion and Computing (2013

    Social Emotion Mining Techniques for Facebook Posts Reaction Prediction

    Full text link
    As of February 2016 Facebook allows users to express their experienced emotions about a post by using five so-called `reactions'. This research paper proposes and evaluates alternative methods for predicting these reactions to user posts on public pages of firms/companies (like supermarket chains). For this purpose, we collected posts (and their reactions) from Facebook pages of large supermarket chains and constructed a dataset which is available for other researches. In order to predict the distribution of reactions of a new post, neural network architectures (convolutional and recurrent neural networks) were tested using pretrained word embeddings. Results of the neural networks were improved by introducing a bootstrapping approach for sentiment and emotion mining on the comments for each post. The final model (a combination of neural network and a baseline emotion miner) is able to predict the reaction distribution on Facebook posts with a mean squared error (or misclassification rate) of 0.135.Comment: 10 pages, 13 figures and accepted at ICAART 2018. (Dataset: https://github.com/jerryspan/FacebookR
    • …
    corecore