13 research outputs found

    Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks

    Full text link
    In order to robustly execute a task under environmental uncertainty, a robot needs to be able to reactively adapt to changes arising in its environment. The environment changes are usually reflected in deviation from expected sensory traces. These deviations in sensory traces can be used to drive the motion adaptation, and for this purpose, a feedback model is required. The feedback model maps the deviations in sensory traces to the motion plan adaptation. In this paper, we develop a general data-driven framework for learning a feedback model from demonstrations. We utilize a variant of a radial basis function network structure --with movement phases as kernel centers-- which can generally be applied to represent any feedback models for movement primitives. To demonstrate the effectiveness of our framework, we test it on the task of scraping on a tilt board. In this task, we are learning a reactive policy in the form of orientation adaptation, based on deviations of tactile sensor traces. As a proof of concept of our method, we provide evaluations on an anthropomorphic robot. A video demonstrating our approach and its results can be seen in https://youtu.be/7Dx5imy1KcwComment: 8 pages, accepted to be published at the International Conference on Robotics and Automation (ICRA) 201

    Learning Feedback Terms for Reactive Planning and Control

    Full text link
    With the advancement of robotics, machine learning, and machine perception, increasingly more robots will enter human environments to assist with daily tasks. However, dynamically-changing human environments requires reactive motion plans. Reactivity can be accomplished through replanning, e.g. model-predictive control, or through a reactive feedback policy that modifies on-going behavior in response to sensory events. In this paper, we investigate how to use machine learning to add reactivity to a previously learned nominal skilled behavior. We approach this by learning a reactive modification term for movement plans represented by nonlinear differential equations. In particular, we use dynamic movement primitives (DMPs) to represent a skill and a neural network to learn a reactive policy from human demonstrations. We use the well explored domain of obstacle avoidance for robot manipulation as a test bed. Our approach demonstrates how a neural network can be combined with physical insights to ensure robust behavior across different obstacle settings and movement durations. Evaluations on an anthropomorphic robotic system demonstrate the effectiveness of our work.Comment: 8 pages, accepted to be published at ICRA 2017 conferenc

    Dexterous manipulation of unknown objects using virtual contact points

    Get PDF
    The manipulation of unknown objects is a problem of special interest in robotics since it is not always possible to have exact models of the objects with which the robot interacts. This paper presents a simple strategy to manipulate unknown objects using a robotic hand equipped with tactile sensors. The hand configurations that allow the rotation of an unknown object are computed using only tactile and kinematic information, obtained during the manipulation process and reasoning about the desired and real positions of the fingertips during the manipulation. This is done taking into account that the desired positions of the fingertips are not physically reachable since they are located in the interior of the manipulated object and therefore they are virtual positions with associated virtual contact points. The proposed approach was satisfactorily validated using three fingers of an anthropomorphic robotic hand (Allegro Hand), with the original fingertips replaced by tactile sensors (WTS-FT). In the experimental validation, several everyday objects with different shapes were successfully manipulated, rotating them without the need of knowing their shape or any other physical property.Peer ReviewedPostprint (author's final draft

    Tactile localization: dealing with uncertainty from the first touch

    Get PDF
    En aquesta tesi proposem un nou sistema per localitzar d'objectes amb sensors t脿ctils per a rob貌tica de manipulaci贸, que tracta, de forma expl铆cita, la incertesa inherent al sentit del tacte. Amb aquesta fi, estimem la completa distribuci贸 de probabilitat de la posici贸 de l'objecte. A m茅s a m茅s, donat el model 3D de l'objecte en q眉esti贸, el nostre sistema no requereix una exploraci贸 pr猫via de l'objecte amb el sensor, podent localizar-lo des del primer contacte. Donat un senyal provinent del sensor t脿ctil, dividim l'estimaci贸 de la distribuci贸 de probabilitat de la posici贸 de l'objecte en dos passos. Primer, abans de tocar l'objecte, definim un conjunt dens de posicions de l'objecte respecte al sensor, simulem el senyal que esperar铆em rebre del sensor si l'objecte fos tocat en aquestes posicions, i entrenem una funci贸 de semblan莽a entre aquests senyals. Segon, mentre l'objecte est脿 sent manipulat, comparem el senyal provinent del sensor amb els senyals simulats pr猫viament, i les semblances entre aquests donen la distribuci贸 de probabilitat discreta a l'espai de posicions de l'objecte respecte al sensor. Estenem aquesta feina analitzant l'escenari on m煤ltiples sensors t脿ctils toquen l'objecte a la vegada. Fusionem les distribucions de probabilitat provinents dels diferents sensors per obtenir una distribuci贸 millor. Presentem resultats quantitatius per quatre objectes. Tamb茅 mostrem una aplicaci贸 d'aquest sistema en un sistema m茅s gran i presentem recerca en la qual estem treballant actualment en percepci贸 activa.En esta tesis proponemos un nuevos sistema para localizar objetos con sensores t谩ctiles para rob贸tica de manipulaci贸n, que trata, de forma expl铆cita, la incertidumbre inherente al sentido del tacto. Con este fin, estimamos la completa distribuci贸n de probabilidad de la posici贸n del objeto. Adem谩s, dado el modelo 3D del objeto que cuesti贸n, nuestro sistema no requiere una exploraci贸n previa del objeto con el sensor, pudiendo localizarlo desde el primer contacto. Dada una se帽al proveniente del sensor t谩ctil, dividimos la estimaci贸n de la distribuci贸n de probabilidad de la posici贸n del objeto en dos pasos. Primero, antes de tocar el objeto, definimos un conjunto denso de posiciones del objeto respecto al sensor, simulamos la se帽al que esperar铆amos recibir del sensor si el objeto fuese tocado en estas posiciones, y entrenamos una funci贸n de semejanza entre estas se帽ales. Segundo, mientras el objeto est谩 siendo manipulado, comparamos la se帽al proveniente del sensor con las se帽ales simuladas previamente, y las semejanzas entre estas dan la distribuci贸n de probabilidad discreta en el espacio de posiciones del objeto respecto al sensor. Extendemos este trabajo analizando el escenario donde m煤ltiples sensores t谩ctiles tocan el objeto al mismo tiempo. Fusionamos las distribuciones de probabilidad que vienen de los diferentes sensores para obtener una distribuci贸n mejor. Presentamos resultados cuantitativos para cuatro objetos. Tambi茅n mostramos una aplicaci贸n de este sistema en un sistema m谩s grande y presentamos investigaci贸n en la que estamos trabajando actualmente en percepci贸n activa.In this thesis we present an approach to object tactile localization for robotic manipulation which explicitly deals with the uncertainty to overcome the locality of tactile sensing. To that purpose, we estimate full probability distributions of object pose. Moreover, given a 3D model of the object in question, our framework localizes from the first touch, meaning no physical exploration of the object is needed beforehand. Given a signal from the tactile sensor, we divide the estimation of a probability distribution of object pose in two main steps. First, before touching the object, we sample a dense set of poses of the object with respect to the sensor, we simulate the signal the sensor would get when touching the object at these poses, and we train a similarity function between these signals. In the second part, while manipulating the object, we compare the signal coming from the sensor to the set of previously simulated ones, and the similarities between these give the discretized probability distribution over the possible poses of the object with respect to the sensor. We extend this work by analyzing the scenario where multiple tactile sensors are touching the object at the same time, by fusing the probability distributions coming from the individual sensors to get a better distribution. We present quantitative results for four objects. We also present the application of this approach in a larger system and an ongoing research direction towards tactile active perception.Outgoin

    Supervised Learning and Reinforcement Learning of Feedback Models for Reactive Behaviors: Tactile Feedback Testbed

    Full text link
    Robots need to be able to adapt to unexpected changes in the environment such that they can autonomously succeed in their tasks. However, hand-designing feedback models for adaptation is tedious, if at all possible, making data-driven methods a promising alternative. In this paper we introduce a full framework for learning feedback models for reactive motion planning. Our pipeline starts by segmenting demonstrations of a complete task into motion primitives via a semi-automated segmentation algorithm. Then, given additional demonstrations of successful adaptation behaviors, we learn initial feedback models through learning from demonstrations. In the final phase, a sample-efficient reinforcement learning algorithm fine-tunes these feedback models for novel task settings through few real system interactions. We evaluate our approach on a real anthropomorphic robot in learning a tactile feedback task.Comment: Submitted to the International Journal of Robotics Research. Paper length is 21 pages (including references) with 12 figures. A video overview of the reinforcement learning experiment on the real robot can be seen at https://www.youtube.com/watch?v=WDq1rcupVM0. arXiv admin note: text overlap with arXiv:1710.0855
    corecore