9 research outputs found

    Invariant Synthesis for Incomplete Verification Engines

    Full text link
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs

    Invariant Synthesis for Incomplete Verification Engines

    Get PDF
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs

    A Learning-Based Approach to Synthesizing Invariants for Incomplete Verification Engines

    Get PDF

    Learning Program Specifications from Sample Runs

    Get PDF
    With science fiction of yore being reality recently with self-driving cars, wearable computers and autonomous robots, software reliability is growing increasingly important. A critical pre-requisite to ensure the software that controls such systems is correct is the availability of precise specifications that describe a program\u27s intended behaviors. Generating these specifications manually is a challenging, often unsuccessful, exercise; unfortunately, existing static analysis techniques often produce poor quality specifications that are ineffective in aiding program verification tasks. In this dissertation, we present a recent line of work on automated synthesis of specifications that overcome many of the deficiencies that plague existing specification inference methods. Our main contribution is a formulation of the problem as a sample driven one, in which specifications, represented as terms in a decidable refinement type representation, are discovered from observing a program\u27s sample runs in terms of either program execution paths or input-output values, and automatically verified through the use of expressive refinement type systems. Our approach is realized as a series of inductive synthesis frameworks, which use various logic-based or classification-based learning algorithms to provide sound and precise machine-checked specifications. Experimental results indicate that the learning algorithms are both efficient and effective, capable of automatically producing sophisticated specifications in nontrivial hypothesis domains over a range of complex real-world programs, going well beyond the capabilities of existing solutions

    Towards A Practical High-Assurance Systems Programming Language

    Full text link
    Writing correct and performant low-level systems code is a notoriously demanding job, even for experienced developers. To make the matter worse, formally reasoning about their correctness properties introduces yet another level of complexity to the task. It requires considerable expertise in both systems programming and formal verification. The development can be extremely costly due to the sheer complexity of the systems and the nuances in them, if not assisted with appropriate tools that provide abstraction and automation. Cogent is designed to alleviate the burden on developers when writing and verifying systems code. It is a high-level functional language with a certifying compiler, which automatically proves the correctness of the compiled code and also provides a purely functional abstraction of the low-level program to the developer. Equational reasoning techniques can then be used to prove functional correctness properties of the program on top of this abstract semantics, which is notably less laborious than directly verifying the C code. To make Cogent a more approachable and effective tool for developing real-world systems, we further strengthen the framework by extending the core language and its ecosystem. Specifically, we enrich the language to allow users to control the memory representation of algebraic data types, while retaining the automatic proof with a data layout refinement calculus. We repurpose existing tools in a novel way and develop an intuitive foreign function interface, which provides users a seamless experience when using Cogent in conjunction with native C. We augment the Cogent ecosystem with a property-based testing framework, which helps developers better understand the impact formal verification has on their programs and enables a progressive approach to producing high-assurance systems. Finally we explore refinement type systems, which we plan to incorporate into Cogent for more expressiveness and better integration of systems programmers with the verification process

    Learning refinement types

    No full text
    corecore