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ABSTRACT

Zhu, He PhD, Purdue University, August 2016. Learning Program Specifications
from Sample Runs. Major Professor: Suresh Jagannathan.

With science fiction of yore being reality recently with self-driving cars, wearable

computers and autonomous robots, software reliability is growing increasingly im-

portant. A critical pre-requisite to ensure the software that controls such systems is

correct is the availability of precise specifications that describe a program’s intended

behaviors. Generating these specifications manually is a challenging, often unsuc-

cessful, exercise; unfortunately, existing static analysis techniques often produce poor

quality specifications that are ineffective in aiding program verification tasks.

In this dissertation, we present a recent line of work on automated synthesis of

specifications that overcome many of the deficiencies that plague existing specification

inference methods. Our main contribution is a formulation of the problem as a sample

driven one, in which specifications, represented as terms in a decidable refinement

type representation, are discovered from observing a program’s sample runs in terms

of either program execution paths or input-output values, and automatically verified

through the use of expressive refinement type systems.

Our approach is realized as a series of inductive synthesis frameworks, which use

various logic-based or classification-based learning algorithms to provide sound and

precise machine-checked specifications. Experimental results indicate that the learn-

ing algorithms are both efficient and effective, capable of automatically producing

sophisticated specifications in nontrivial hypothesis domains over a range of complex

real-world programs, going well beyond the capabilities of existing solutions.
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1 INTRODUCTION

1.1 The Problem

One of the great things about type systems is that they allow one to enforce a

variety of invariants at compile time, thereby nipping in the bud a large swathe of

run-time errors. However, well-typed programs do go wrong in a variety of ways: a

function that computes the average of a list can encounter a crash if the programmer

fails to deal with the corner case that the list is empty; on web services built using a

high-performance string processing Haskell library text, a cunning adversary can use

well-crafted inputs to read extra bytes beyond the boundary of a legal text.

To avoid such calamities at run-time, refinement type systems [1–3] enrich sim-

ple type systems with predicates that precisely describe the sets of valid inputs and

outputs of functions. Refinement type predicates can be thought as Boolean-valued

expressions that constrain the set of values described by the types and specify invari-

ants of the underlying values. The predicates are carefully chosen from expressive yet

decidable logics for which there exists fast decision procedures (e.g., SMT solvers).

For example, type Nat = {ν : int | ν ≥ 0} describes the set of int values that are

non-negative and is a refined type of int (the value variable ν denotes the set of valid

inhabitants of the refinement type). Consider the simple program shown in Fig. 1.1.

Intuitive program invariants for max and f can be expressed in terms of the following

refinement types:

max :: (x : int→y : int→z : int→

m : (m0 : int→m1 : int→{int| ν ≥ m0 ∧ ν ≥ m1})

→{int|ν ≥ x ∧ ν ≥ y ∧ ν ≥ z})

f :: (x : int→y : int→{int| ν ≥ x ∧ ν ≥ y})
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l et max x y z m = m (m x y) z

l et f x y =

i f x >= y then x else y

l et main x y z =

l et result = max x y z f in

assert (f x result = result)

Figure 1.1.: A simple higher-order program.

The types specify that both max and f produce an integer that is no less than

the value of their parameters. However, these types are not sufficient to prove the

assertion in main ; to do so, requires specifying more precise invariants.

The above example shows that refinement types offer a promising way to express

rich invariants that can go beyond the capabilities of traditional type systems [4]

or control-flow analyses [5], albeit at the price of automatic inference. Recently,

there has been substantial progress in reducing this annotation burden [6–14] using

techniques adopted from model-checking and verification of first-order imperative

programs [15,16]. These solutions, however, either (a) involve a complex reformulation

of the intuitions underlying invariant detection and verification from a first-order

context to a higher-order one [11, 13], making it difficult to directly reuse existing

tools and methodologies, (b) infer refinement types by solving a set of constraints

collected by a whole-program analysis [6, 7], additionally seeded with programmer-

specified qualifiers, that can impact compositionality and usability, or (c) entail a

non-trivial translation to a first-order setting [9], making it more complicated to

relate the inferences deduced in the translated first-order representation back to the

original higher-order source when there is a failure.

1.2 My Thesis

This dissertation addressed the above problems. The first key component of our

solution is an efficient symbolic execution over higher-order functional programs. Re-

finement type systems prove the absence of errors but may give false alarms. We
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developed a symbolic execution tool for higher-order programs that aims to discover

concrete and real counterexamples to faulty programs. The tool can be viewed as

a complement to refinement type based verification. The goal is to synthesize test

inputs that lead to an assertion violation in higher-order programs. To this end, our

analysis pushes up the negation of assertions backwards. Our symbolic execution is

extended to deal with unknown functions which are functional arguments or returns

in a higher-order function. The key idea is to encode unknown functions into unin-

terpreted functions. As a result, we can generate constraints over the input/output

behaviors of unknown functions in higher-order functions. The symbolic analysis for

the actual function represented by the unknown function is deferred until it becomes

known at call-sites of higher-order functions. A query for satisfiable solution to the

result of this analysis via SMT solvers (with supports for background theories of the

logic used to encode assertions) returns desired inputs leading to errors.

The symbolic executer has tremendous uses and proves effective in our subsequent

research in proof-directed refinement type inference, which is capable of searching

specifications to prove user-provided program assertions. Specifically, we use logic-

based learning algorithms, e.g. weakest precondition generation, to glean important

and necessary information, e.g. path conditions, from symbolic execution paths,

filtering out spurious assertion violations.

In addition to logic-based learning algorithms, the second key component of our

solution focuses on sound and relatively complete specification synthesis procedures

that can automatically learn sophisticated program specifications, using classifica-

tion-based learning algorithms. The idea is based on the well-understood intuition

that useful, but difficult to infer, program properties can often be observed from

concrete program states generated by tests; these properties act as likely invariants,

which if used to refine simple types, can have their validity checked by an underlying

refinement type checker. We present efficient classification-based learning algorithms

to automatically discover and verify expressive function specifications from sample
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program runs, which are classified into different groups with respect to certain pro-

gram properties (e.g. program assertions).

An immediate question is can we ensure discovered specifications from sample

program runs not only hold in observed samples but also generalize well in unobserved

runs? To address this concern, the design of our learning algorithm follows the well-

known Occam’s razor principle. It flavors a simple program specification to a complex

one.

1.3 Contributions

In this section, we provide a brief overview of the contributions made by this

dissertation.

1.3.1 Compositional and Lightweight Refinement Type Inference

We consider the problem of inferring expressive safety properties of higher-order

functional programs using first-order decision procedures. Our approach encodes

higher-order features into first-order logic formula whose solution can be derived using

a lightweight counterexample guided refinement loop. To do so, we extract initial

verification conditions from refinement type checking rules derived by a syntactic

scan of the program. Subsequent type-checking and type-refinement phases infer and

propagate specifications of higher order functions, which are treated as uninterpreted

first-order constructs, via subtyping chains and counterexample paths over which our

symbolic execution procedure is invoked by a logic-based learning algorithm.

Our technique provides several benefits not found in existing systems: (1) it en-

ables compositional verification and inference of useful safety properties for functional

programs; (2) additionally provides counterexamples that serve as witnesses of un-

sound assertions: (3) does not entail a complex translation or encoding of the original

source program into a first-order representation; and, (4) most importantly, profitably

employs the large body of existing work on verification of first-order imperative pro-
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grams to enable efficient analysis of higher-order ones. We have implemented the

technique as part of the MLton SML compiler toolchain, where it has shown to be

effective in discovering useful invariants with low annotation burden.

1.3.2 Learning Based Refinement Type Inference

The above technique learns a program specification solely from a refinement type

system. Its expressivity and ability are inherited from that of static analyses. We

propose the integration of a random test generation system (capable of discovering

program bugs) and a refinement type system (capable of expressing and verifying

program invariants), for higher-order functional programs, using a novel lightweight

learning algorithm as an effective intermediary between the two.

Applying this intuition to yield an automatic verification strategy for higher-

order programs is challenging, however. To overcome the difficulty of translating

the output of test cases to a dependent type, we employ classification-based learning

algorithms that classify positive samples collected from test runs and negative samples

generated from our symbolic execution analysis. The key insight is that the result of

the symbolic analysis provides an assertion violation condition that must be respected

by any candidate program specification. The structure of these samples enables the

construction of a likely invariant.

Failure to type check the invariant results in the generation of new tests designed to

explore execution paths not previously encountered to strengthen inferred types, and

provide additional inputs for classification. Notably, this iterative testing-learning-

checking framework does not sacrifice precision, and is capable of inferring fine-grained

context-sensitive invariants.

We describe an implementation of our technique for a variety of benchmarks writ-

ten in ML, and demonstrate its effectiveness in inferring and proving useful invariants

for programs that express complex higher-order control and dataflow that confound

existing static verification and inference tools.
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1.3.3 Automatically Learning Shape Specifications

Understanding, discovering, and proving useful invariant-based specifications of

sophisticated data structure functions are central problems in program analysis and

verification. A particularly challenging exercise for shape analyses, and the focus of

this dissertation, involves reasoning about sophisticated ordering specifications that

relate the shape of a data structure (e.g., a binary tree data structure) with the values

contained therein (e.g., the in-order relation of the elements of a binary tree).

Given that interesting properties of inductive data structures are typically related

to the way in which constructors are composed, our approach extracts potential shape

predicates based on the definition of constructors of arbitrary user-defined inductive

data types, that state general ordering properties about the elements contained in

a data structure with respect to its shape, and combines these predicates within an

expressive first-order specification language using a lightweight data-driven learning

procedure.

For example, consider a tree data structure. Because a tree element u in a

binary tree t has two subtrees, we obtain a tree-parent-left-child atomic predicate

treeleft (t, u, v) relating u with another tree element v in the left subtree of u.

The synthesis procedure simultaneously outputs the inductive definition of this pred-

icate based on the inductive structure of t. Similarly, we can obtain tree-parent-

right-child atomic predicate treeright (t, u, v) and tree-left-child-right-child atomic

predicate treeleftright (t, u, v) which predicates that u comes from a left subtree

and v comes from a right subtree of tree element contained in t. An in-ordering

relation between two elements u and v of t, notated by inorder (t, u, v), is trivially

∀u, v . treeleft (t, v , u) ∨ treeright (t, u, v) ∨ treeleftright (t, u, v).

Suppose that a balanced binary search tree insert function takes a tree t as

input and outputs a tree t′. The specification, encoded as a refinement type,

insert :: (t : tree → {t′ : tree | ∀u, v . inorder (t)⇒ inorder (t′)})
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ensures that the output tree t′ preserves the in-order of the input tree t. We developed

a refinement type system to verify specifications of such kind, which unfolds the

inductive definitions of the synthesized atomic predicates when necessary. Our type

system is decidable because we can encode subtype checking in our system using

decidable effectively propositional logic (with first-order axiomatizations of transitive

closures [17, 18] to bound the shape of list or tree like data structures).

We present a novel automated procedure, called DOrder, for discovering expres-

sive shape specifications for sophisticated functional data structures. The heart of

DOrder is a relational learning algorithm that can effectively search propositional

relations over a hypothesis domain Ω of atomic predicates. The hypothesis domain

Ω defines the solution space for the learning algorithm to draw candidate specifica-

tions. For example, if Ω is chosen as the set of ordering atomic predicates synthesized

for data structure programs, the solution space contains ordering specifications for

data structure functions, composed of predicates from Ω. We gave a concrete in-

stantiation of DOrder, which is a sound, relatively complete and scalable learning

algorithm to synthesize input-output specifications for recursive functions. To the

best of our knowledge, this is the first learning algorithm to automatically synthesize

expressive function specifications from test data, that operates without assuming any

predefined templates, assertions or post-conditions in program sources, yet which is

nonetheless able to learn the strongest inductive invariant in the solution space from

which specifications are drawn.

Notably, this technique requires no programmer annotations, and is equipped with

a type based decision procedure to verify the correctness of discovered specifications.

If verification succeeds, we ensure that synthesized specifications correspond to the

strongest inductive invariant in the solution space; otherwise, we ensure that there

exists a test input to the function f which yields a concrete input-output sample

that invalidates the candidate specifications. In fact, we can reconstruct such a test

input from verification failures. In turn, running the learning algorithm again using

the new program samples from the new input, necessarily produces a more refined
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specification. This strategy, which is implemented via a CEGIS (counterexample

guided inductive synthesis) loop, ensures that we can construct a finite number of

test cases to guarantee convergence in the presumed solution space.

Experimental results indicate that our implementation is both efficient and effec-

tive, capable of automatically synthesizing sophisticated shape specifications over a

range of complex data types, going well beyond the scope of existing solutions. Con-

cretely, we were able to use DOrder to synthesize useful data structure specifications

for practical linked list programs, priority heap data structures (e.g., Skew and Bi-

nomial heaps) and balanced binary search tree data structures (e.g., AVL, Redblack

and Splay trees). From the programmer’s perspective, the approach is lightweight

and requires no custom annotation to get started. The prototype also has the ability

to direct test generations, capable of searching counterexamples. Our experiments

demonstrated that it is possible to construct a tool that can automatically guar-

antee correctness of programs and simultaneously ease the understanding of faulty

programs, speeding up the development of reliable software.

1.4 Road Map

The rest of the dissertation is organized as follows. Chapter 2 describes a basic

refinement type system with a powerful verification condition generation algorithm,

which serves as the verification vehicle for the upcoming three specification synthesis

techniques. Chapter 3 presents Popeye, a compositional and lightweight refinement

type inference engine for ML. Chapter 4 extends Popeye, providing a classification-

based algorithm for learning refinement types. Chapter 5 presents DOrder, a learn-

ing system that can synthesize the strongest specifications from a hypothesis domain

even for annotation-free programs. For exposition purposes, this chapter focuses on

inductive user-defined data structure programs; but the core technique can be gener-

alized to any program domains. Related work is presented at the end of each chapter.

Concluding remarks and future direction of this research are given in Chapter 6.
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2 TYPE BASED PROGRAM ANALYSIS AND VERIFICATION

This chapter illustrates an expressive refinement type system, which serves as a sound

verification vehicle for the whole dissertation. Our system combines Hindley-Milner

type inference with Predicate Abstraction to automatically infer and verify refinement

types to prove a variety of safety properties. The system allows programmers to

specify function specifications and uses static verification to validate them, thereby

eliminating expensive run-time checks.

2.1 Refinement Type Checking

Language.

For exposition purposes, we formalize our ideas in the context of an idealized

language: a call-by-value variant of the λ-calculus, shown in Fig. 2.1, with support

for refinement types.

Typically, x and y are bound to variables; f is bound to function symbol. By

convention, d represents a variable with an inductive data type. (We cover inductive

data structure program analysis and verification mainly in Sec. 4.5 and Chapter 6.)

We denote by ~x a sequence of program variables, and similarly for the syntactic

categories of values, type variables (TyVar) and data types (DType). The special

variable ν is used to denote the value of a term in its corresponding type refinement

predicate. Primitive operators are encoded with the metaoperator ⊕ (where unary

operators ignore the second argument).

We additionally provide the syntactic sugar form let rec defined in terms of fix

in the usual way: let rec f ~x = e in e′ is converted from let f = fix ( fun f →
λ~x.e) in e′. The length of ~x is called the arity of f .
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To simplify the technical development, we assume our language is A-normalized,

ensuring every abstraction and function argument is associated with a program vari-

able. For example, in function applications f ~y, we ensure every function and its

arguments are associated with a program variable. When the length of ~y is smaller

than the arity of f , f ~y is a partial application. For any expression of the form

let f = λ~x.e in e′, we say that the function f is known in the expression e′. Func-

tional arguments and return values of higher-order functions are unknown (e.g., in

let g = f v in e′ if the symbol g is used as a function in e′, it is an unknown function

in e′; in λx. e′ if x is used as a function in e′, x is an unknown function in e′).

An assert statement of the form “ assert v” evaluates expression v and returns

the special value fail if v is false . Program executions resulting in assertion

failures immediately terminate.

Finally, we allow polymorphic type abstraction and type instantiation.

The language supports a small set of base types (B), monotypes (τ). We allow

polymorphic types via type variables that are universally quantified. Refinement

types (P ) include refinement base (data) types and refinement function types.

In a refinement type system, a base type (data type) such as int (data structure)

is specified into a refinement base (data) type written {int|ψ} where ψ (a type re-

finement) is a Boolean-valued expression constraining the value of the term defined

by the type. For example, {int| ν > 0} defines the type of positive integers where the

special variable ν denotes the value of the term. Refinement types naturally generalize

to function types. A refinement function type, written {x : Px → P}, constrains the

argument x by the refinement type Px, and produces a result whose type is specified

by P . In this dissertation, ψ is chosen from a specification space parameterized by a

hypothesis domain Ω of atomic predates and closed by standard propositional logic

connectives. For example, Ω can be set to standard abstract interpretation domains

including octagon domain, polyhedra domains and so on and so forth.

To encode program specifications into refinement types, we present the general

specType function below. Assume a specification ψ is for a function f . The specType
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x, y, d, f, ν ∈ Var c ∈ Constant ’a ∈ TyVar

v ∈ Val ::= c | x | λ x e | fix ( fun f → λ x e)

e ∈ Exp ::= v | e0 ⊕ e1 | e v | C〈~x, ~d〉 | ∀’a · e | τ e

| if v then e0 else e1 | let x = e0 in e1

| match v with
∣∣
i
Ci〈~xi, ~di〉 → ei

| assert v

ψ ∈ Specification Space(Ω)

P ∈ RType ::= {ν : B | ψ}

| {ν : D | ψ}

| x : P → P

B ∈ Base ::= ’a | int | bool

D ∈ DType ::= µt Σi Ci〈 ~’a, ~Di〉

τ ::=B | D | x : τ → τ

Figure 2.1.: Core language syntax and types.

definition takes the f ’s unrefined type as input and constructs a refinement type for

f encoding ψ:

spec(B,$,ψ) = {ν : B | ψ}
spec(D,$,ψ) = {ν : D | ψ}
spec({x : τx → τ}, $, ψ) =

{x : spec(τx, $, [ν/x]ψ)→ τ} free(ψ) ⊆ $ ∪ {x}

{x : τx → spec(τ,$ ∪ {x}, ψ)} otherwise

In this function, free(ψ) represents the free (program) variables of the predicate

ψ. Essentially, specType pushes the refinement predicate ψ to the first refinement

place in the type where all the free variables of ψ are in scope. The second argument

to the function specType serves to record the variables in scope at each place, and

therefore the top level call from specType(Γf , f, ψ) to spec for a certain function f

is of the form:

specType(Γf , f, ψ) = spec(HM(Γf , f), dom(Γf ), ψ)
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E( eval.ctx. ) ::= [ ] | v E | let x = E in e

E[( fix ( fun f → λx. e)) v] ↪→

E[e[f 7→ ( fix ( fun f → λx. e))][x 7→ v]]

E[ op (v0, · · · , vn)] ↪→ E[J op K(v0, · · · , vn)]

E[ if true then et else ef ] ↪→ E[et]

E[ if v then et else ef ] ↪→ E[ef ](v 6= true)

E[ let x = v in e] ↪→ E[e[x 7→ v]]

E[ assert true ] ↪→ E[()]

E[assert v] ↪→ fail (v 6= true)

Figure 2.2.: Core language small-step semantics.

where we assume the existence a Hindley-Milner type checking oracle HM(Γf , f), which

returns the unrefined type of a function f , and Γf is the type environment for the

definition of f . The call dom(Γf ) returns all the in-scope variables embedded in Γf .

Semantics.

Fig. 2.2 defines a call-by-value semantics for our language in terms of a small-step

evaluation relation (↪→). The semantics is standard. Note that an assertion failure

results in program fail .

Fig. 2.3 defines salient refinement type inference rules for our core language; these

rules are essentially extended from [7]. Syntactically, Γ ` e : P states that expression e

has refinement type P under ordered type environment Γ that consists of a sequence of

refinement type bindings x : Px along with guard expressions drawn from conditional

expression predicates. The use of these guard expressions makes the type system

path-sensitive since the refinement types inferred for a term are computed using the
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guard expressions that encode the program path taken to reach this term. We define

the shape of a refinement type as its corresponding ML type; thus, for a refinement

type P , its shape ‖P‖ is obtained by replacing all refinements in P with true ,

effectively erasing the refinement to yield an unrefined type. For function types,

erasure is defined recursively:

‖{ν : B |ψ}‖ = B

‖{ν : D |ψ}‖ = D

‖x : P → P‖ = x : ‖P‖ → ‖P‖

We generalize its definition to type environments. Refinement erasure for type envi-

ronments performs erasure over all type bindings within the environment, in addition

to erasing all recorded branch conditions. For an empty environment, refinement

erasure is an identity.

‖Γ, x : P‖ = ‖Γ‖ , x : ‖P‖
‖Γ, P‖ = ‖Γ‖
‖∅‖ = ∅

Hence, ‖Γ‖ consists only of bindings that relate variables to ML types, with all

refinements replaced with true and guard expressions found in Γ removed.

Constants. The basic units of computation are the constants c built into our pro-

gramming language, each of which has a refinement type ty(c) that precisely captures

the semantics of the constants. These include basic constants, corresponding to in-

tegers and boolean values, and primitive functions, which encode various operations.

For example,

true :: {ν : bool | ν ⇐⇒ true }

false :: {ν : bool | ν ⇐⇒ false }

= :: x : ’a→ y : ’a→ {ν : bool | ν ⇐⇒ (x = y)}

> :: x : ’a→ y : ’a→ {ν : bool | ν ⇐⇒ (x > y)}

< :: x : ’a→ y : ’a→ {ν : bool | ν ⇐⇒ (x < y)}

+ :: x : int → y : int → {ν : int | ν = x+ y}

− :: x : int → y : int → {ν : int | ν = x− y}
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Well-formedness Judgement. These rules are of the form Γ ` P , and check

if refinement type P is well-defined under type environment Γ. The WF-Base rule

checks that the refinement ψ of a refinement base type does not refer to program

variables that escape from its type environment Γ, i.e., ψ is a well-defined predicate.

It is important to note that the WF-Base rule makes use of an unrefined typing

judgment (
) under a refinement erased Γ (denoted ‖Γ‖) for this purpose. Rules

for unrefined typing judgments are straightforward and can be obtained from the

Hindley-Milner type system. The WF-Fun rule defines well-formedness conditions

for functions.

Type Judgement. The typing rules state how an expression e can be typed. Our

typing rules are refinements of the ML typing rules. If Γ ` e : P then ‖Γ‖ ` e : ‖P‖.
Γ; x : P defines the type environment that extends the sequence Γ with a binding

for x to P . The rules for variables, constants, let-expressions and if-conditions are

standard. Rule T-Abs defines recursive functions in the obvious way. Rule T-App

establishes a subtyping relation between the actual and formal parameters in the

application. The subtype judgment in rule T-Assert enforces that the assertion

expression v hold. Polymorphic instantiation and generalization are defined in the

standard way.

Subtype Judgement. This important class of rules check, at each call-site,

that the actual arguments satisfy the precondition of the function called, and verify

at each definition site, that the return value establishes the desired postcondition.

The Subt-Base1 and Subt-Base2 rule checks whether a refinement type subtypes

another refinement type.

The premise check requires the conjunction of environment formula 〈Γ〉 and 〈ψ1〉
implies 〈ψ2〉. The encoding 〈ψ〉 translates a predicate ψ into a (decidable) logic

formula for satisfiability checking. Our encoding of 〈Γ〉 is adapted from [7]:

∧
{v | v ⇔ true ∈ Γ} ∧

∧
{¬v | v ⇔ false ∈ Γ} ∧∧{

〈[x/ν]ψ〉
∣∣ (x : {τ | ψ}) ∈ Γ ∧ τ ∈ B ∪D

}
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WF-Base1

‖Γ; ν : B‖ 
 ψ : bool

Γ ` {ν : B | ψ}

WF-Base2

‖Γ; ν : D‖ 
 ψ : bool

Γ ` {ν : D | ψ}

WF-Fun

Γ;x : Px ` P

Γ ` x : Px → P

T-Var

x is in the domain of Γ

Γ ` x : Γ(x)

T-Const

Γ ` c : ty(c)

T-Sub

Γ ` e : P ′ Γ ` P ′ <: P

Γ ` e : P

T-Abs

Γ; f : {x : Px → P};x : Px ` e : Pe Γ;x : Px ` Pe <: P

Γ ` fix ( fun f → λx. e) : {x : Px → P}

T-Abs-1

Γ;x : Px ` e : Pe Γ;x : Px ` Pe <: P

Γ ` λx. e : {x : Px → P}

T-Assert

Γ ` { bool | true } <: { bool | v}

Γ ` assert v : ()

T-App

Γ ` e : {x : Px → P} Γ ` v : Pv Γ ` Pv <: Px

Γ ` e v : [v/x]P

T-Let

Γ ` e1 : P ′ Γ;x : P ′ ` e2 : P Γ ` P

Γ ` let x = e1 in e2 : P

T-If

‖Γ‖ 
 v : bool Γ ` P Γ; v ⇔ true ` e2 : P Γ; v ⇔ false ` e3 : P

Γ ` if v then e1 else e2 : P

T-Gen

Γ ` e : P ’a /∈ Γ

Γ ` ∀’a · e : ∀’a.P

T-Inst

Γ ` τ Γ ` e : ∀’a.P

Γ ` τ e : P [τ/’a]

Subt-Base1

Valid(〈Γ〉 ∧ 〈ψ1〉 ⇒ 〈ψ2〉)

Γ ` {B|ψ1} <: {B|ψ2}

Subt-Base2

Valid(〈Γ〉 ∧ 〈ψ1〉 ⇒ 〈ψ2〉)

Γ ` {D | ψ1} <: {D | ψ2}

Subt-Arrow

Γ ` P ′x <: Px Γ;x : P ′x ` P <: P ′

Γ ` {x : Px → P} <: {x : P ′x → P ′}

Figure 2.3.: Core language refinement type system.
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We encode all the path-sensitive conditions and refinement types of base typed or

inductive data typed variables found from type environment into the choice of a

logic. This kind of embedding aims to strengthen the antecedent of the implication

and is conservative [7].

The Subt-Arrow rule refines the simple subtype rules for function subtyping.

We state that our refinement type system is sound: our core language enjoys the

usual progress and preservation properties; evaluation preserves types, and well-typed

programs do not get stuck. (An assertion violation causes the program to fail .)

Theorem 2.1.1 [Refinement Type Safety ]

1. (Preservation) If Γ ` e : P and e ↪→ e′ then Γ ` e′ : P

2. (Progress) If ∅ ` e : P and e is not a value then there exists an e′ such that

e ↪→ e′.

Since our type system is adapted from [7], we refer readers to [7] for the proof of

correctness of refinement type checking.

2.2 Refinement Type Based Verification Algorithm

After lifting presumed invariants into refinement types, we need to subsequently

validate those types through the type system introduced in Fig. 2.3. Following [7],

our refinement types are based on unrefined types, in which each unknown type re-

finement is represented by an unknown refinement variable κ. In our system, the type

refinements for functional types are automatically inferred from test data and are ini-

tially associated with unknown refinement variables for the corresponding functions,

by the specType procedure. Solving the well-formedness judgements is standard, as

described in e.g., [7].

However, other unknown refinement variables, associated with local expressions

inside a function’s definitions, are still undefined, which prohibits us from directly



17

reusing the type checking infrastructure in [7]. In this section, we describe an al-

gorithm that extracts path-sensitive verification conditions (VC) from refinement

subtyping relations. We generate the type refinements for the unknown refinement

variables for local expressions as part of VC generation.

First, type constraints cs over unknown refinement variables that capture the sub-

typing relations between the types of various subexpressions are generated by travers-

ing the program expression in a syntax-directed manner, applying the typing rules

in Fig. 2.3. We present the type constraint generation algorithm, adapted from [7],

in Fig. 2.4. Procedure InferExp takes typing environment Γ and an expression e as

inputs and generate subtyping relations between the types of various subexpressions

by traversing the syntax of e. The template function takes a HM (Hindley-Milner)

based unrefined type as input and outputs a refinement type in which each type re-

finement predicate is represented as an unknown refinement variable κ, which is then

instantiated by the specType procedure using some candidate specifications obtained

somehow.

There are three verification conditions generated from the type checking rules.

First, a subtyping constraint introduced by an assert expression:

Γ ` { bool | true } <: { bool | v}

entails a verification condition that checks the validity of v under the path constraints

and type bindings defined by Γ. Second, the subtyping constraint associated with

function abstraction:

Γ;x : Px ` Pe <: P

establishes a verification condition on the post-condition of this abstraction that re-

quires it be consistent with the invariants inferred for its body. Second, the subtyping

constraint associated with function application:

Γ ` Pv <: Px

entails a verification condition that checks that the specification of the function’s

pre-condition subsumes the invariants associated with the argument at the call. We
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let InferExp Γ e =

match e with

| x −→ (Γ(x), ∅)
| c −→ (ty(c), ∅)
| fix (fun f → λx. e) −→

let (x : Px → P ) = template (HM (‖Γ‖, fix (fun f → λx. e))) in

let (Pe, C) = InferExp (Γ; f : {x : Px → P};x : Px, e) in

((x : Px → P ), {Γ;x : Px ` Pe <: P} ∪ C)

| e v −→
let (x : Px → P,C1) = InferExp (Γ, e) in

let (Pv, C2) = InferExp (Γ, v) in

([v/x]P, {Γ ` Pv <: Px} ∪ C1 ∪ C2)

| if v then e2 else e3 −→
let P = template (HM (‖Γ‖ , e)) in

let (P2, C2) = InferExp (Γ; v ⇔ true, e2) in

let (P3, C3) = InferExp (Γ; v ⇔ false, e3) in

(P,C2 ∪ C3 ∪ {Γ; v ⇔ true ` P2 <: P} ∪ {Γ; v ⇔ false ` P3 <: P})
| let x = e1 in e2 −→

let (P1, C1) = InferExp (Γ, e1) in

let (P2, C2) = InferExp (Γ;x : P1, e2) in

((P2, C1 ∪ C2)

| assert v −→
let (P,C) = InferExp (Γ, v) in

(P , {Γ ` { bool | true } <: { bool | v}} ∪ C)

Figure 2.4.: Refinement typing constraint generation.

convert all the subtyping constraints over function types into base subtyping con-

straints by using the Subt-Arrow rule in Fig. 2.3.
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1: let Sol cs A κ =

2: if A[κ] is set then A[κ]

3: else

4:
∨ {(Sol cs A Γ) ∧ (Sol cs A r1) |

5: {Γ ` {τ |r1} <: {τ |κ}} ∈ cs ∧ τ ∈ B ∪D}
6:

7: and Sol cs A Γ =

8:
∧ {[x/ν](Sol cs A r) | {x:{τ |r}}∈Γ ∧ τ ∈ B ∪D }

9:

10: and Sol cs A r = match r with

11: | κ′ → Sol cs A κ′

12: | ψ → ψ

13:

14: let Verify cs A {Γ ` {τ |r1} <: {τ |r2}} =

15: smt query ((Sol cs A Γ)∧(Sol cs A r1)⇒(Sol cs A r2)

16:

17: let TyCheck cs A =

18: if (∃c ∈ cs. c = {Γ ` {τ |r1} <: {τ |κ2}} and

19: κ2 is with a type refinement in functional type and

20: Verify cs A c = false) then

21: TyCheck cs A[κ2 ← {ψ | ψ ∈ A[κ2] ∧ Verify cs A (Γ ` {τ |r1} <: {τ |ψ})}]
22: else

23:
∧ {Verify cs A c | c = {Γ ` {τ |r1} <: {τ |ψ2}} ∈ cs}

Figure 2.5.: Refinement type based verification algorithm.

Our specific type checking algorithm is summarized in Fig. 2.5. In TyCheck,

all the base or data type subtyping constraints, inherited from the result of calling

InferExp, are organized into a list cs, which are all in the form of Γ ` {τ |r1} <: {τ |r2}
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where τ ∈ B ∪ D and r1 or r2 may be either an unknown refinement variable or a

concrete predicate. A is a solution map from unknown refinement variable κ to

a set of likely type refinements. As mentioned before, type refinements are only

associated to unknown refinement variables for function types. We solve all VC

constraints over function abstraction and application by iteratively removing type

refinements that prevent a constraint from being satisfied using an SMT solver (line

21), querying the implication check in the Subt-Base1 and Subt-Base2 rules shown

in Fig. 2.3, which is already encoded into the Verify procedure (line 14). Sol is a

procedure that retrieves type refinements for an unknown refinement variable, which

is also capable of inferring refinement types for local expressions. If an unknown

refinement variable κ is hosted in A, κ is for function type and we directly return

(line 2). Otherwise, we repeatedly find the other constraints in cs which are in the

form of Γ ` {τ |r1} <: {τ |κ} and recursively encode them (line 4 and 5). Such

constraints constrain the solution for κ in the type derivation and are turned into a

disjunction with appropriate path constraints defined in their typing environments

(line 4). Thus, our VC encoding is a path-sensitive analysis. Sol terminates because

unknown refinement variables for function types are explicitly set in A. After solving

all refinement type variables that sit in refinement function types, by the end of

TyCheck, we check the validity of assert expressions (line 23).

We state that the VC generation algorithm, TyCheck, is sound. To ease our proof,

we use the notation Aκ to abbreviate the procedure Sol cs A κ in Fig. 2.5. We neglect

cs here since cs is finalized when we come to the TyCheck algorithm. Similarly we

use AΓ to abbreviate Sol cs A Γ. We also lift this definition from unknown type

variables to refinement types with unknown type variables and subtyping constraints

with unknown type variables in the obvious way.

Lemma 1 For any type environment Γ, expression e, and solution map A, if InferExp

(Γ, e) = (P,C) then InferExp (AΓ, e) = (AP , AC).

Proof Induction on the structure of e.
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Assume a refinement type P is with unknown type variables (κ), we use (A(P 7→
P ′)) to denote that all the unknown type variables in P are updated to the corre-

sponding type refinements in P ′. For example, A({x : κ1 → κ2} 7→ {x : {ν = 0} →
{ν = 1}}) indicates A[κ1] = {ν = 0} and A[κ2] = {ν = 1}. We also use A(P ) to

concretize a refinement type whose unknown type variables are instantiated by the

solution map A. For example, A({x : κ1 → κ2}) = {x : {ν = 0} → {ν = 1}}.

Lemma 2 For any solution map A, and refinement type P and P ′ such that ‖P‖ =

‖P ′‖,

1. (A(P 7→ P ′))(P ) = P ′,

2. For any P ′′ such that all unknown type variables in P ′′ are in Dom (A) then

(A(P 7→ P ′))(P ′′) = AP ′′.

Proof Induction on the structure of P .

The following theorem states the correctness of our VC generation. Recall that the

solution map A associates an unknown refinement type variable to a type refinement

predicate only if the unknown sits in a refinement function type template. Otherwise,

unknowns for local expressions are undefined in A.

Theorem 2.2.1 For every type environment Γ and expression e such that InferExp

(Γ, e) = (P , C), Γ ` e : P ′ iff there exists a solution A such that AP = P ′ when

e ≡ e1 y and e ≡ λx.e′ and, otherwise, Γ ` AP <: P ′ and AC is valid.

Proof First prove ⇒.

By induction on the structure of e.

1. case e ≡ c or e ≡ x:

Immediate hold since any A is correct.
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2. case e ≡ fix ( fun f → λx. e′):

P = x : Px → P1

C = C1 ∪ {Γ;x : Px ` Pe <: P1}

P ′ = x : P ′x → P ′1

x : Px → P1 = template(Shape(x : P ′x → P ′1))

(Pe, C1) = InferExp(Γ; f : {x : Px → P};x : Px, e
′)

Let A0 = ∅(P 7→ P ′)

(A0Pe,A0C1) = InferExp(Γ; f : {x : Px → P};x : A0Px, e
′)

= InferExp(Γ; f : {x : P ′x → P ′1};x : P ′x, e
′)

By inversion, there exists a refinement type S such that

Γ; f : {x : P ′x → P ′1};x : P ′x ` e′ : S (a)

Γ; f : {x : P ′x → P ′1};x : P ′x ` S <: P ′1 (b)

Thus, from (a), there exists A1 such that:

A1(A0Pe) = S (c)

A1(A0C1) is valid (d)

Let A = A1;A0 then:

AP = A1(A0P )

= A1(P ′)

= P ′

Also, from (1), obtain

AC = (A1;A0)C1

∪ {Γ; f : {x : (A1;A0)Px → (A1;A0)P};x : (A1;A0)Px

` (A1;A0)Pe <: (A1;A0)P1}

= (A1;A0)C1 ∪ {Γ; f : {x : P ′x → P ′1};x : P ′x ` S <: P ′1}
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which by (b),(c) and (d) is valids.

3. case e ≡ e1 v:

P = [v/x]P ′′

C = C1 ∪ C2 ∪ {Γ ` P ′2 <: P ′′2 }

(x : P ′′2 → P ′′, C1) = InferExp(Γ, e1)

(P ′2, C2) = InferExp(Γ, v)

By inversion, there exist T ′2, T2 and T :

Γ ` e1 : x : T2 → T (a)

Γ ` v : T ′2 (b)

Γ ` T ′2 <: T2 (c)

P ′ = [v/x]T (d)

By IH and (a), there exists A1:

A1P
′′
2 = T ′2 (e)

A1P
′′ = T (f)

A1C1 is valid (g)

By IH and (b), there exists A2:

A2P
′
2 = T2 (h)

A2C2 is valid (i)
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Let A = A1;A2

AP = (A1;A2)[v/x]P ′′

= [v/x](A1;A2)P ′′

= [v/x]A1P
′′

= [v/x]T

= P ′

Also,

AC = (A1;A2)C1 ∪ (A1;A2)C2

∪ {Γ ` (A1;A2)P ′2 <: (A1;A2)P ′′2 }

= A1C1 ∪ A2C2 ∪ {Γ ` A2P
′
2 <: A1P

′′
2 }

= A1C1 ∪ A2C2 ∪ {Γ ` T ′2 <: T2}

which by (c),(e),(f),(g),(h),(i) is valid.

4. case e ≡ if v then e2 else e3:

C = C2 ∪ C3 ∪ {Γ; v ⇔ true ` P2 <: P}

∪ {Γ; v ⇔ false ` P3 <: P}

(P2, C2) = InferExp(Γ; v ⇔ true, e2)

(P3, C3) = InferExp(Γ; v ⇔ false, e3)

By inversion and applying IH, there exists A2, A3, S2 and S3 such that Γ2; v ⇔
true ` e2 : S2 and Γ3; v ⇔ false ` e3S3

A2C2 is valid

A3C3 is valid

A2P2 = S2

A3P3 = S3

Γ; v ⇔ true ` S2 <: P ′

Γ; v ⇔ false ` S3 <: P ′
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By Fig. 2.5, AP = (v ⇔ true ∧ AP2) ∨ (v ⇔ false ∧ AP3).

Let A = (A2;A3).

Γ ` AP <: P ′

AC = A2C2 ∪ A3C3

∪ {Γ; v ⇔ true ` AP2 <: AP}

∪ {Γ; v ⇔ false ` AP3 <: AP}

which is valid immediately.

5. case e ≡ let x = e1 in e2:

C = C1 ∪ C2 (a)

(P1, C1) = InferExp(Γ, e1) (b)

(P,C2) = InferExp(Γ;x : P1, e2) (c)

By inversion, there exists S1 such that:

Γ ` e1 : S1 (d)

Γ;x : S1 ` e2 : P ′ (e)

By (d) and IH there exists A1 such that:

A1C1 is valid (f)

Γ ` A1P1 <: S1 (g)

By (c),

(A1P,A1C2) = InferExp(Γ;x : A1P1, e2)

= InferExp(Γ;x : S1, e2)

By (e) and IH there exists A2 such that:

A2(A1C2) is valid

Γ;x : S1 ` A2(A1P ) <: P ′
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Let A = (A2;A1). According to the well-formed constraints of Let ,

Γ ` AP <: P ′

AC = A1C1 ∪ (A2;A1)C2

is valid.

6. case e ≡ assert v:

C = {Γ ` { bool | true } <: { bool |v}}

By inversion,

Γ ` { bool | true } <: { bool |v}

Pick any A.

AC = A(Γ ` { bool | true } <: { bool |v})

is valid.

Then prove ⇐.

By induction on the structure of e.

1. case e ≡ c or e ≡ x: Immediate since C = ∅ and and since there is no template

for e Γ ` e : P holds.

2. case e ≡ fix ( fun f → λx. e′):

P = x : Px → P1

C = C1 ∪ {Γ; f : {x : Px → P1};x : Px ` Pe <: P1}

P ′ = x : P ′x → P ′1

x : Px → P1 = template(Shape(x : P ′x → P ′1))

(Pe, C1) = InferExp(Γ; f : {x : Px → P1};x : Px, e
′)
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As AC is valid,

AC1 is valid (a)

Γ; f : {x : APx → AP1};x : APx ` APe <: AP1 (b)

Obtain

(APe,AC1) = InferExp(Γ; f : {x : APx → AP1};x : APx, e′)

By (a) and IH,

Γ; f : {x : APx → AP1};x : APx ` e′ : APe (c)

From (b), (c),

Γ ` fix ( fun f → λx.e′) : x : APx → AP1

hence

Γ ` fix ( fun f → λx.e′) : A(x : Px → P1)

Finally, Γ ` fix ( fun f → λx.e′) : AP

3. case e ≡ e1 v:

P = [v/x]P ′′

C = C1 ∪ C2 ∪ {Γ ` P ′2 <: P ′′2 }

(x : P ′′2 → P ′′, C1) = InferExp(Γ, e1)

(P ′2, C2) = InferExp(Γ, v)

As AC is valid,

AC1 is valid

AC2 is valid

Γ ` AP ′2 <: AP ′′2 (a)



28

By IH,

Γ ` e : x : AP ′′2 → AP ′′ (b)

Γ ` v1 : AP ′2 (c)

From (b), (c),

Γ ` e1 v : [v/x]AP ′′

Γ ` e1 v : A[v/x]P ′′

Γ ` e1 v : AP

4. case e ≡ if v then e2 else e3:

C = C2 ∪ C3 ∪ {Γ; v ⇔ true ` P2 <: P}

∪ {Γ; v ⇔ false ` P3 <: P}

(P2, C2) = InferExp(Γ; v ⇔ true, e2)

(P3, C3) = InferExp(Γ; v ⇔ false, e3)

AS AC is valid,

AC1 is valid (a)

AC2 is valid (b)

By (a), (b), IH,

Γ; v ⇔ true ` e2 : AP2

Γ; v ⇔ false ` e3 : AP3

By Fig. 2.5, AP = (v ⇔ true ∧ AP2) ∨ (v ⇔ false ∧ AP3).

Immediate obtain

Γ; v ⇔ true ` AP2 <: AP (c)

Γ; v ⇔ false ` AP3 <: AP (d)

By (c), (d),

Γ ` if v then e2 else e3 : AP <: P ′
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5. case e ≡ let x = e1 in e2:

C = C1 ∪ C2

(P1, C1) = InferExp(Γ, e1)

(P,C2) = InferExp(Γ;x : P1, e2)

As AC is valid

AC1 is valid (a)

AC2 is valid (b)

By (a), (b), IH,

Γ ` e1 : AP1 (c)

Γ;x : AP1 ` e2 : AP (d)

By (c), (d),

Γ′ ` let x = e1 in e2 : AP <: P ′

6. case e ≡ assert v:

C = {Γ ` { bool | true } <: { bool |v}}

As AC is valid,

Γ ` { bool | true } <: { bool |v} is valid

Immediately,

Γ ` assert p : () <: ()

We show the soundness proof of the refinement type based verification algorithm.

Recall that in type checking phase (Sec. 2.2) for any program e, we infer its subtyping

constraints into a list cs. Let A denote the solution map for all unknown type
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variables in cs. For a constraint c = {Γ ` {B|r1} <: {B|r2}} ∈ cs, we claim Ac is

valid if Verify cs A c = true and A cs is valid if all of the constraints in cs are

valid.

Theorem 2.2.2 [Soundness ] For every program e annotated with some program as-

sertion ψ, assume cs is the list of subtyping constraints inferred for e and A is the

solution map for cs. If TyCheck return true , then e is a well-typed program and ψ

is a valid specification for e.

Proof TyCheck cs A returns true if A cs is valid. From Theorem 2.2.1, the gener-

ated subtyping constraints (in cs) are solvable if and only if a valid type derivation

(for e) exists. ψ is hence valid for e.

It is important to note that when TyCheck cs A returns false , we cannot claim

the program is buggy because our analysis is incomplete in general and A might not

be strong enough to complete a verification proof.
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3 COMPOSITIONAL AND LIGHTWEIGHT REFINEMENT TYPE

INFERENCE

In this chapter, we present Popeye, a compositional verification system that inte-

grates a first-order verification engine, unaware of higher-order control- and dataflow,

into a path- and context-sensitive refinement type inference framework for Standard

ML. Notably, our solution treats uses of unknown functions as uninterpreted terms.

In this way, we are able to directly exploit the scalability and efficiency characteris-

tics of first-order verification tools without having to either consider a sophisticated

translation or encoding of our functional source program into a first-order one [9], or

to re-engineer these tools for a higher-order setting [11]. Our verification strategy is

based on a counterexample-guided refinement loop that systematically strengthens a

function’s inferred refinement type based on new predicates discovered during exam-

ination of a derived counterexample path. Moreover, our strategy allows us not to

only verify the validity of complex assertions, but can also be used to directly provide

counterexample witnesses that disprove the validity of presumed invariants that are

incorrect.

Our technique is compositional because it lazily propagates refinements computed

at call-sites to procedures and vise versa, allowing procedure specifications to be

strengthened incrementally. It is lightweight because it directly operates on source

programs without the need to generate arbitrary program slices [19], translate the

source to a first-order program [9], or abstract the source to a Boolean program [13].

Popeye’s design consists of two distinct parts:

1. Refinement Type Checking . Initially, we infer coarse refinement types for

all local expressions within a procedure using refinement type rules that en-

code intraprocedural path information in terms of first-order logic formulae
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that range over linear arithmetic and uninterpreted functions, the latter used

to abstract a program’s higher-order control-flow. We build verification condi-

tions that exploit the refinement types and which are subsequently supplied into

a first-order decision procedure. Verification failure yields an intraprocedural

counterexample path.

2. Refinement Type Refinement . The counterexample path can be used by

existing predicate discovery algorithms to appropriately strengthen pre- and

post-conditions at function calls. Newly discovered refinement predicates are

propagated along subtyping chains that capture interprocedural dependencies

to strengthen the refinement type signatures of the procedures used at these

call-sites.

The remainder of the chapter is organized as follows. In the next section, we

present an informal overview of our approach. Sec. 3.2 defines a context-sensitive

refinement type system for our core language. We formalize our verification strategy

for this language in Sec. 3.3. Sec. 3.4 discusses the implementation and experimental

results. Related work is given in Sec. 3.5.

3.1 Overview and Preliminaries

Refinement types for context-sensitivity. We consider two kinds of refinement

type expressions:

1. a refinement base type written {ν : B| r}, where ν is a special value variable

undefined in the program whose scope is limited to r, B is a base type, such as

int or bool , and r is a boolean-valued expression (called a refinement). For

instance, {ν : int | ν > 0} defines a refinement type that represents the set of

positive integers.

2. a refinement function type written:

{x : P1x → P1} ⊕ {x : P2x → P2} ⊕ . . .⊕ {x : Pnx → Pn}
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abbreviated as ⊕i{x : Pix → Pio}, where each {x : Pix → Pi} defines a function

type whose argument x is constrained by refinement type Pix and whose result

type is specified by Pi. The different components of a refinement function type

distinguish different contexts in which the function may be used. For instance,

{x : {ν : int | ν > 0} → {ν : int | ν > x}}⊕

{x : {ν : int| ν < 0} → {ν : int| ν < x}}

specifies the function that, in one call-site, given a positive integer returns an

integer greater than x, while in another, given a negative integer returns an

integer less than x. Components in a refinement function type are indexed

by an implicit label, e.g., a finite call-string used in polyvariant control-flow

analyses [20, 21].

As shorthand, we sometimes write only the refinement predicate to represent the

refinement type, omitting its type constructor. Thus, in the following, we sometimes

write {r} as shorthand for {ν : B | r}. For example, {ν > 0} represents {ν : int | ν >
0}. We also write B as shorthand for {ν : B | true}. For perspicuity, we use syntactic

sugar to allow the ⊕ operator to be “pushed into” refinements:

{ν : B | r1} ⊕ {ν : B | r2} = {ν : B | r1 ⊕ r2}

{x : P1 → Pr1} ⊕ {x : P2 → Pr2} = {x : P1 ⊕ P2 → Pr1 ⊕ Pr2}

As a result, context-sensitive refinement types reuse the shape of ML types (Sec. 2.1).

Additionally, we define P.i to return the refinement type indexed by label i. When a

function is used in a single context, we simply write {x : Px → P}.
Procedure specifications. A procedure specification is given in terms of a pre- and

post-condition of a procedure; we express these conditions in terms of a refinement

function type where the type of the function’s domain can be thought of as the

function’s pre-condition, and where the type of the function’s range defines its post-

condition.
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fun f g x =

i f x>=0 then

let r = g x in r

else

let p = f g

q = compute x

s = f p q

in s

fun main h n =

l et r = f h n

in assert (r >= 0)

Figure 3.1.: Higher-order functions challenge compositional refinement type inference.

3.1.1 Example

Consider the program shown in Fig. 3.1. This program exhibits complex dataflow

(e.g., it can create an arbitrary number of closures via the partial application of f )

and makes heavy use of higher-order procedures (e.g., the formal parameter g in

function f ). We wish to infer a useful specification for f without having to (a)

supply candidate qualifiers used in the refinement types that define the specification,

(b) know the possible concrete arguments that can be supplied to g , or (c) require

details about compute ’s definition. In spite of these constraints, our technique

nonetheless associates the following non-trivial type to f :

f : {g : {garg : {ν ≥ 0}} → {ν ≥ 0}} → x : { true } → {ν ≥ 0}}

This type ascribes an invariant to g that asserts that g must take a non-negative

number as an argument (as a consequence of the path constraint (x >= 0) within

which it is applied) and returns a non-negative number as a result (as a consequence

of the assertion made in main ).

The utility of context-sensitive refinement types arises when a function is called in

different (potentially inconsistent) contexts. Consider the program shown in Fig. 3.2.

Here, function f (which is supplied the argument neg in main ) is called in two

different contexts in the procedure twice . The first argument to f is a higher-
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fun g x y = x

fun twice f x y =

l et p = f x

in f p y

fun neg x y = -(x ())

fun main n =

i f n >= 0 then

assert(twice neg (g n) () >= 0)

else ()

Figure 3.2.: A function’s specification can be refined based on its context.

T-Fun

∀ i. Γi;x : Pix ` e : Pie Γi;x : Pix ` Pie <: Pi

⊕iΓi ` λx.e : ⊕i {x : Pix → Pi}

T-Pick

Γ ` f : ⊕i {x : Pix → Pi}

Γ ` fj : {x : Pjx → Pj}

T-Conc

∀ i. Γi ` fi : {x : Pix → Pi}

⊕iΓi ` f : ⊕i {x : Pix → Pi}

T-ConcFunSub

∀ i. Γ ` {x : Pix → Pi} <: {x : P ′i x → P ′i}

Γ ` ⊕i {x : Pix → Pi} <: ⊕i {x : P ′i x → P ′}

Figure 3.3.: Context-sensitive refinement typing rules.

order procedure - in the first call, this procedure is bound to the result of evaluating

g n ; in the second call, the procedure (bound to p ) is the result of the first partial

application. Since f negates the value yielded by applying its procedure argument

to () , we thus infer the following specification:

farg1 : {{true⊕ true} → {ν ≥ 0 ⊕ ν ≤ 0}} → farg2 : {true⊕ true} → {ν ≤ 0 ⊕ ν ≥ 0}

3.2 Context-sensitive Refinement Type System

This section refines the refinement type system in Fig. 2.3 for adding context-

sensitivity. Fig. 3.3 refines only the refinement type inference rules related with
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context-sensitivity; the other rules are shown in Fig. 2.3. Rule T-Fun associates a

context-sensitive refinement function type with an abstraction. The structure of this

type is determined by the different contexts in which the abstraction is applied (Γi)

generated from rule T-Conc described below. The first judgment in the antecedent

considers the type of the abstraction body in all type environments Γi enriched by

a type binding of bound variable x with refinement type Pix . The second judgment

asserts that Pie , the type associated with the body of the abstraction, be a subtype

of the return type of the abstraction. The abstract labels that subscript function

identifiers in the rules are used to express context-sensitivity but are not part of

the program syntax, and are constructed during the interprocedural type refinement

phase.

There are two rules for extracting and generating context-sensitive refinement type

functions. A term f with type ⊕i {x : Pix → Pi} reflects the type of all uses of f in

different contexts; the type at a given context can be indexed by the label at the use

(rule T-Pick). Conversely, we can construct the concatanation of the types at each

context to yield the actual type of the function (rule T-Conc).

Rule T-ConcFun generalizes the usual subtyping rule on functions to deal with

context-sensitivity. The function subtyping rules implicitly encode subtyping chains,

allowing specifications to be propagated across function boundaries.

Our semantics enjoys the usual progress and preservation properties; evaluation

preserves types, and well-typed programs do not get stuck. (An assertion violation

causes the program to halt with the special value fail .)

Theorem 3.2.1 (Refinement Type Safety)

1. (Preservation) If Γ ` e : P and e ↪→ e′ then Γ ` e′ : P

2. (Progress) If Γ ` e : P , where e 6= fail then e is either a constant or an

abstraction, or there exists an e′ such that e ↪→ e′.

Proof Proof is immediate from Theorem 2.1.1.
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3.3 Verification Procedure

Our verification system consists of (a) a type-checking algorithm that encodes

intra-procedural path constraints and generates verification conditions whose validity

can be checked by a first-order decision procedure, and (b) a counterexample guided

refinement type refinement loop that uses the counterexample yielded by a verification

failure to strengthen existing invariants, and propagate new ones inter-procedurally

via refinement subtyping chains.

3.3.1 Refinement Type Checking

To support refinement type inference, we introduce refinement type templates

(PT ), which are refinement types whose refinement expressions are only refinement

variables (κ). The pick or selection operator κ.i on refinement variable allows ⊕ to

be pushed into refinements (as described in Sec. 3.1), and hence omitted in template

definitions. Instantiation of the refinement variables to concrete predicates takes place

through the type refinement algorithm described in Sec. 3.3.2.

κ ∈ RefinementVar ::= κ | κ.i PT ∈ Template ::= {ν : B |κ} | {x : PT → PT}

Figure 3.4.: Syntax.

The first step of our verification procedure is to assign each function a refinement

type template as described earlier. By applying our inference rules, with the type

template, given a type environment Γ and expression e, we can construct refinement

types for local expressions and derive a set of subtyping constraints, which will be

subsequently used to generate verification conditions (VC) as in Sec. 2.2.

A solution in our system is defined by a refinement environment A that maps

refinement variables κ to refinements. We lift this notion to refinement types A(PT )
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and type environment A(Γ) by substituting each place holder κ with A(κ) appearing

in PT and Γ. A verification condition c is valid if A(c) is valid. We say A satisfies

a subtyping constraint Γ ` PT 1 <: PT 2 if A(Γ) ` A(PT 1) <: A(PT 2). A is a valid

solution if it satisfies all subtype constraints.

We deconstruct arbitrary subtyping constraints to base subtyping constraints

(Fig. 3.3). According to the Subt-Base rule (Sec. 2.2), the verification condition

formula is generated as

〈A(Γ)〉 ∧ 〈A(r1)〉 ⇒ 〈A(r2)〉

To allow our verification engine to deal with unknown higher-order functions, we

encode higher-order functions into an uninterpreted form. Suppose the type of func-

tion f is x0 : Px0 → · · · → xn : Pxn → Pf . We encode Pf to be {[f/F ]ν =

F(x0, x1, · · · , xn)}; here, F(x0, x1, · · · , xn) is an uninterpreted term representing the

result of function. Applications of unknown function f are encoded by substituting

actuals for the appropriate (suitably encoded) formal. This gives us the ability to

verify a function modularly without having to know the set of definitions referenced

by a functional argument or result. For example, for the program shown in Fig. 3.1,

the variable r in the let-binding, r = g x , is encoded as [x/x0][g/F ](F(x0)), which

is simply g x. The subtyping constraint built for checking the post-condition during

the verification of f , leads to the construction of the verification condition:

((x ≥ 0 ∧ r = g x)⇒ ν = r) ∧ ((¬(x ≥ 0) ∧ s ≥ 0)⇒ ν = s)⇒ (ν ≥ 0)

3.3.2 Counterexample-guided Refinement Type Inference

The heart of our counterexample-guided type refinement loop is given in Fig. 3.5.

Our refinement algorithm exploits the refinement type template and subtyping con-

straints generated from type inference rules and finally returns solutionA. In Solve ,

our method iteratively type checks each procedure of the given program using the

subtyping rules listed in Fig. 2.3 until a fix-point is reached. When a procedure

cannot be typed with the set of current refinements, our method supplies the un-
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Refine (Γ, A, {x : PT x → PT}, λx.e, C) =

if exists c ∈ C such that A(c) is not valid with a witness of ce

then

let A′ = case c of

| Γ ` {ν : B|p1} <: {ν : B|r2} ⇒
let pred = case r2 of | p2 ⇒ r2 | ⇒ A[r2]

in Strengthen ({x : PT x → PT}, A, wp (2, ce, pred), r2)

| Γ ` {ν : B| κ1} <: {ν : B| κ2} ⇒
A[κ1 7→ (A[κ1]) ∧ (A[κ2])]

in Refine (Γ, A′, {x : PT x → PT}, λx.e, C)

else A

Solve (procedures as List[Γ, {x : PT x → PT}, λx.e, C], A) =

if exists (Γ, {x : PT x → PT}, λx.e, C) for a procedure needs to be checked

then

Solve (procedures, Refine (Γ, A, {x : PT x → PT}, λx.e, C))

else A

Figure 3.5.: Counterexample guided type refinement algorithm.

verified procedure’s type environment Γ, the current refinement map A, its type

template x : PT x → PT , the unverified function λx.e, and the verification conditions

C constructed for the function to Refine which can then proceed to strengthen the

function’s refinement type.

Counterexample generation. Our refinement algorithm first constructs a coun-

terexample ce for an unverified verification condition. The counterexample is derived

by solving the negation of the desired verification condition:

〈A(Γ)〉 ∧ 〈A(r1)〉 ∧ ¬〈A(r2)〉
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The encoding of Γ and r1 reflects path information; by the structure of the rules

in Fig. 2.3, the encoding of refinement r2, on the other hand, reflects a safety prop-

erty that is implied by 〈Γ〉 ∧ 〈r1〉. Thus, an assignment to this formula leads to a

counterexample of a possible safety violation; this counterexample path is represented

as a straight-line program.

A path expression of the form: “if p then et else ef” is translated to:

“assume p; et” if an assignment from the VC evaluates p to true and “assume ¬p;
ef” otherwise. Consider our example from Fig. 3.1. A first-order decision procedure

would find an assignment to the the negation of the VC as an error witness, e.g., r

= -1 and x = 1 . The representation of the counterexample path of procedure f

given in Fig. 3.1 is thus:

fun f g x = assume (x >= 0); l et r = g x in r

According to the two different forms of subtyping constraints generated, refine-

ment types can be refined from the counterexample path in one of two ways: weakest

precondition generation or procedure specification propagation.

Weakest precondition generation. In this setting, the constraint is of the

form: Γ ` {ν : B | p1} <: {ν : B | r2}, corresponding to the first case in Refine

in Fig. 3.5, where p1 is a concrete predicate and r2 is either a concrete predicate

or a refinement variable or a selection of refinement variable. This constraint is

generated when based typed expression is supplied as function argument or return

or establishing assertions. Our type refinement in this case can be implemented by a

backward symbolic analysis analogous to weakest precondition generation, operating

over a counterexample. Given an arbitrary program construct e, our analysis wp

simply pushes up the postcondition δ backwards, substituting terms for values in δ

based on the structure of the term e. To ensure termination, recursive functions are

unrolled a fixed number of times, defined by the parameter i. As is typical for weakest

precondition generation, wp ensures that the execution of e, from a state satisfying

wp(i, e, δ), terminates in a state satisfying δ. The definition of wp is given in Fig. 3.6.
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wp(i, e, δ) =

let δ = match e with

| v → [e/ν]δ

| op (v0, · · · , vn)→ [e/ν]δ

| assume v; e→

(v ⇒ wp(i, e, δ))

| if v then e1 else e2 →

((v ∧ wp(i, e1, δ)) ∨ (¬v ∧ wp(i, e2, δ)))

| let x = e1 in e2 →

wp(i, e1, [ν/x]wp(i, e2, δ)))

| f ~y →

(match f with

| unknown fun or partial application→ [(f ~y)/ν]δ

| known fun (when let f = λ~x. e)→ [~y/~x]wp(i, e, δ)

| known fun (when let f = fix ( fun f → λ~x.e))→

if i > 0 then [~y/~x]wp(i− 1, e, δ) else false )

in

if exists f ~y in δ and f is a known fun

then wp(i, f ~y, [ν/(f ~y)]δ) else δ

Figure 3.6.: Weakest precondition generation definition.

Our wp function is standard, extended to deal with unknown function calls but

for which context information constraining their arguments or results is available,

reflected in the f ~y case for an application expression when f is an unknown function
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with a list of argument ~y or f ~y is a partial application. (The concept of known

function and unknown function is defined in Sec. 2.1.) Here, we can only strengthen

relevant signatures, deferring the re-verification of the procedure being invoked until

it becomes known. The called function’s post-condition will be eventually propagated

via refinement subtyping chains back to the procedures that flow into this call-site;

in doing so, pre-conditions of these functions could be strengthened, requiring re-

verification of the calling contexts in which they occur to ensure that these contexts

imply the pre-condition. Such flows are handled directly by the subtyping chains

analyzed by the refinement phase.

When a function call f(x) is encountered and the abstraction to which f is

bound is known precisely (e.g., based on a syntactic or control-flow analysis pre-

processing phase), our method strengthens the post-condition of the function’s body

of f to that available at the call reflected in the last two lines of the definition—if there

exists a known function f that has substituted an unknown function in δ (e.g. at a

call-site), and f ~y ∈ δ where ~y is a list of arguments, we perform wp(i, f ~y, [ν/(f ~y)]δ).

Essentially, wp recursively applies our verification technique to refine the function’s

precondition based on the post-condition defined by the context in which it is called.

wp can then be executed from this call site operating on the rest of statements of the

counterexample beyond the call site and the newly strengthened precondition.

In the f ~y case, if f is bound to a known recursive function, since we restrict the

number of times a recursive function is unrolled, when i = 0, we simply return false

to avoid considering further unrolling of f ; otherwise, the bad-condition δ is directly

pushed back to the definition of f in order to drive the sampling for f . In the latter

case, the value of i is accordingly decremented. In this chapter, because any inferred

specification needs to be verified by the verification algorithm, it suffices to set i = 2

(in Fig. 3.5), meaning that recursive functions are unrolled at most two times. If 2 is

insufficient, further unrollings are implicitly embedded into the refinement phase for

validating specifications inferred when setting i to 2 initially and so on and so forth.

When the context is clear, we often write wp(i, e, δ) as wp(e, δ) as shorthand.
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Consider the example in Fig. 3.1. The post-condition inferred is ν ≥ 0. We can

infer the precondition shown in Sec. 3.1 by applying our wp rules as follows:

wp( assume (x ≥ 0); let r = g x in r ), ν ≥ 0) =

wp( assume (x ≥ 0); wp(let r = g x in r , ν ≥ 0)) =

wp( assume (x ≥ 0); wp( r = g x , (wp(ν = r , ν ≥ 0)))) =

wp( assume (x ≥ 0); wp( r = g x , r ≥ 0)) =

wp( assume (x ≥ 0); g x ≥ 0) =

x ≥ 0⇒ g x ≥ 0

Thus g ’s specification is strengthened to g : {{ν ≥ 0} → {ν ≥ 0}}.
Procedure specification propagation. In this setting, the subtyping con-

straint is of the form: Γ ` {ν : B | κ1} <: {ν : B | κ2}, corresponding to the

second case in Refine in Fig. 3.5, Refinement variables are introduced when defin-

ing refinement type templates; this occurs during inference of function abstraction

and fix expressions. Ensuring the subtyping constraint holds requires that any in-

stantiation of κ2 be propagated to κ1. This enables refinements associated with the

post-condition of a higher order function to be propagated into the real function body,

and conversely to propagate refinements associated with a function’s pre-condition

back to the parameters of higher order function.

Consider how we might verify the program shown in Fig. 3.2. Our method initially

infers a refinement type template for f as {{κ11 → κ12} → κ2 → κf}. The assertion

in main drives a new post-condition {ν ≥ 0} for twice , and hence f2 which is the

second the call to f, instantiating κf to {true ⊕ ν ≥ 0}. This constraint is then

propagated to the post-condition of neg since neg subtypes to f at the call site of

twice in main . The weakest pre-condition backward analysis of our system then

strengthens the pre-condition for neg and propagates it back to f , instantiating

{κ12} to {true ⊕ ν ≤ 0}. In twice , our technique needs to ensure, at the second

call site of f2, the actual higher-order function p subtypes to the first argument of f

where p is derived from the first call to f notated as f1. The subtyping relation can
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then be expressed as Γ ` {κ2.1 → κf.1} <: {κ11 .2 → κ12 .2}. The post-condition in

κ12 .2 ({ν ≤ 0}) is then propagated to κf.1, which becomes {ν ≤ 0⊕ ν ≥ 0}. Finally,

the context-sensitive type for f is derived as

farg1 : {{true⊕ true} → {ν ≥ 0 ⊕ ν ≤ 0}} → farg2 : {true⊕ true} → {ν ≤ 0 ⊕ ν ≥ 0}

3.3.3 Correctness

We prove that our counterexample-guided refinement algorithm is sound and able

to return the weakest solution to discharge all subtyping constraints and verification

goals. We firstly relate wp computation with the big step semantics of our idealized

language, which is given in Fig. 3.7. We define Σ as whole program state space. For

a program state σ ∈ Σ, it is a map from program variables to values. The meaning

of [e, σ] ⇓ σ′ is that the expression e takes state σ to state σ′. We use ν to denote

evaluation result of e in σ′ and [e, σ] ⇓ e′ is a shorthand of [e, σ] ⇓ (ν = e′). Rule

Eval− App1 deals with full function application while Eval− App2 deals with partial

application.

Definition 3.3.1 (Partial Correctness Assertion) we say σ |= P if assertion P is

evaluated to true by σ. We say |= {Q1}e{Q2} if ∀σ ∈ Σ, ∀σ′ ∈ Σ, (σ |= Q1 ∧ ([e, σ] ⇓
σ′))⇒ (σ′ |= Q2). Q1 and Q2 is the pre- and post-condition of e respectively.

The following lemma states the validity of wp computation. Formally, wp is de-

fined recursively over the abstract syntax of statements. Actually, wp semantics is

a Continuation-passing style semantics of state transformers where the predicate in

parameter is a continuation.

Lemma 3 (wp is valid) For any expression e, post-condition Q, and state σ and σ′,

If [σ, e] ⇓ σ′ and σ′ |= Q then we have σ |= wp(e,Q).

Proof Induction on the evaluation judgment ⇓.
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[e′, σ] ⇓ σ′ Eval− Fun

[ let f = fix (f, λ~x. e) in e′, σ] ⇓ (σ′; f 7→ λ fix (f, ~x. e))

x ∈ dom(σ) x is not a function

[x, σ] ⇓ (σ; ν 7→ x)
Eval− Var1

x ∈ dom(σ) x is a function

[x, σ] ⇓ (σ(x))
Eval− Var2

[f, σ] ⇓ λ~x.e arity (~x) = arity (~v) [e, σ; ~x 7→ ~v] ⇓ σ′
[f ~v, σ] ⇓ σ′ Eval− App1

[f, σ] ⇓ λ~x~y. e arity (~x) = arity (~v) arity (~y) > 0

[f ~v, σ] ⇓ (σ; ~x = ~v; ν 7→ λ~y. e) Eval− App2

[v, σ] ⇓ true [e2, σ; v 7→ true] ⇓ σ′
[σ, if v then e2 else e3] ⇓ σ′ Eval− If − True

[v, σ] ⇓ false [e3, σ; v 7→ false] ⇓ σ′
[σ, if v then e2 else e3] ⇓ σ′ Eval− If − False

[e′, σ] ⇓ σ′ [σ;x 7→ σ′(ν), e] ⇓ σ′
[let x = e′ in e, σ] ⇓ σ′ Eval− Let

[v, σ] ⇓ true
[assert v, σ] ⇓ σ Eval− assertion1

[v, σ] ⇓ false
[assert v, σ] ⇓ ⊥ Eval− assertion2

Figure 3.7.: Big-step semantics for our iealized language.

Definition 3.3.2 (Weakest Solution) Under a set of verification conditions C, for

two solutions A and A′, we define A ≤C A′ if foreach c as {Γ ` {ν : B|r1} <: {ν :

B|r2}} ∈ C, foreach {ν : B|κ} ∈ {R(Γ) ∪ {ν : B|r1}}, A′(Γ) ` {ν : B|A′(κ)} <: {ν :

B|A(κ)}. A∗ is the weakest solution if

1. A∗C is valid.

2. For each valid solution A, A∗ ≤C A

Lemma 4 (Refinement) For a given procedure as four-tuple (Γ, A, {x : Px → P},
λx.e, C), if A′ = Refine (Γ, A, {x : Px → P}, λx.e, C) then,
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1. A ≤C A′

2. if A is not valid for C, then A 6= A′

3. if A′′ is valid for C and A ≤C A′′ then A′ ≤C A′′

Proof

1. According to the definition of Refine ,

A′ ≡ A[κc 7→ A(κ) ∧ rc(κc)]

i.e., some placeholder κc is strengthened with additional refinement rc(κc).

Foreach c as {Γ ` {ν : B|r1} <: {ν : B|r2}} ∈ C, foreach {ν : B|κ} ∈ {Γ ∪ {ν :

B|r1}},

• κ /∈ κc. A′(κ) = A(κ) so A′(Γ) ` {ν : B|A′(κ)} <: {ν : B|A(κ)} holds

naturely.

• κ ∈ κc. A′(Γ) ` {ν : B|A′(κ)} <: {ν : B|A(κ)} since 〈A(Γ)〉 ∧ 〈A(κ) ∧
rc(κ)〉 ⇒ 〈A(κ)〉 holds.

2. Since A is not valid for C, there exists c as (Γ ` {ν : B|r1} <: {ν : B|r2}) ∈ C
such that Ac is not valid. From the definition of Refine ,

A′Γ ` A′(r1) <: A′(r2)

From 1,

A′Γ ` A′(r2) <: A(r2)

Thus, A′Γ ` A′(r1) <: A(r2).

If A = A′ then,

AΓ ` A(r1) <: A(r2)

which contradicts the assumption that c is not valid.
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3. Since A′′C is valid and A ≤ A′′,

∀ κ, for each c as {Γ ` {ν : B|r1} <: {ν : B|r2}} ∈ C,

A′′Γ ` {ν : B|A′′r1} <: {ν : B|A′′r2} (a)

And, for each {ν : B|κ} ∈ {R(Γ) ∪ {ν : B|r1}},

A′′(Γ) ` {ν : B|A′′(κ)} <: {ν : B|A(κ)} (b)

According to the definition of Refine ,

A′ ≡ A[κc 7→ A(κ) ∧ rc(κc)]

i.e., some placeholder κc is strengthened with additional refinement rc(κc).

• κ /∈ κc. A′(κ) = A(κ) must hold. By (a), so A′′(Γ) ` {ν : B|A′′(κ)} <:

{ν : B|A′(κ)}

• κ ∈ κc. In this case A′(κ) = A(κ) ∧ rc(κ)

– Both r1 and r2 are in the form of place holder with substitution. Sup-

pose c is Γ ` κ <: κ′ and rc(κ) = A(κ′).

Since A′′ is valid.

A′′Γ ` A′′κ <: A′′κ′

Based on (b),

A′′Γ ` A′′κ <: Aκ′

Thus,

A′′Γ ` A′′κ <: rc(κ)

Based on,

A′′Γ ` A′′κ <: Aκ ∧ rc(κ)

Finally,

A′′Γ ` A′′κ <: A′κ

A′′(Γ) ` {ν : B|A′′(κ)} <: {ν : B|A′(κ)} holds immediately.
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– Otherwise rc(κ) is from weakest precondition generation due to in-

validity of c. Allow r2 to be either κ2 or a simple predicate e2, by

(b),

A′′(Γ) ` {ν : B|A′′r2} <: {ν : B|Ar2} (c)

By (a) and (c),

A′′Γ ` {ν : B|A′′r1} <: {ν : B|Ar2} (d)

According to (d), the semantics of wp and Lemma 3,

A′′(Γ) ` {ν : B|A′′(κ)} <: {ν : B|rc(κ)} (e)

By (b), (e),

A′′(Γ) ` {ν : B|A′′(κ)} <: {ν : B|A(κ) ∧ rc(κ)}

So A′′(Γ) ` {ν : B|A′′(κ)} <: {ν : B|A′(κ)} holds.

Finally, A′ ≤C A′′.

Theorem 3.3.1 (Iterative Solve) For a given list of procedures each as a four-

tuple (Γ, A, {x : Px → P}, λx.e, C) with an arbitrary coarse solution Aany, if

Solve terminates and Solve returns A then A is the weakest solution.

Proof The termination of Solve means a solution A. Let A∗ be the weakest

solution. We prove by induction over n that after n iterations of the loop in Solve ,

A ≤ A∗. In the base case, A maps each place holder to true and thus it is obvious

A ≤ A∗. Assume that after n iterations, A ≤ A∗. In the n + 1 iteration, obtain A′

= Refine (Γ, A, λx.e, {x : Px → P}, C). Due to that A∗ is valid and A ≤ A∗,
A′ ≤C A∗ hold based on Lemma 4. As the n+ 1 iteration only update place holders

involved in C, A′ ≤ A∗. Finally, the returned solution A from Solve satisfies

A ≤ A∗. However, as A∗ is the weakest solution, so by definition A∗ ≤ A. Thus, A
is a valid solution such that A = A∗
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We provide two correctness results for our verification algorithm Solve (proce-

dures as List[Γ, {x : PT x → PT}, λx.e, C], Ainit) where Ainit is an initial solution

for unknown refinement type variables in which the unknowns in function types are

mapped to true . The first (Soundness) states that the refinement types inferred

by our verification procedure are consistent with our type rules. The second (Weak)

states that our procedure generates the least type necessary to discharge the subtyp-

ing constraints collected by the inference algorithm. In the following, R(Γ) recursively

extracts refinement base types {ν : B|κ} from the domain of Γ.

Theorem 3.3.2 (Verification Algorithm)

1. (Soundness) Let A be the result of Solve (procedures as List[Γ, {x : PT x →
PT}, λx.e, C], Ainit). Then, provided Solve terminates, A(Γ) ` λx.e : {x :

A(PT x)→ A(PT )}.

2. (Weak) And, for all other valid solution A′, the algorithm generates the weakest

solution: ∀c as {Γ ` {ν : B|r1} <: {ν : B|r2}} ∈ C, and ∀ {ν : B|κ} ∈
{R(Γ) ∪ {ν : B|r1}}, A′(Γ) ` {ν : B|A′(κ)} <: {ν : B|A(κ)}.

Proof

1. Immediate from Theorem 2.2.1.

2. Immediate from Theorem 3.3.1.

3.3.4 Invariant Generation

Because our technique does not guarantee termination given the undecidability of

automatically synthesizing loop invariants, the size of a refinement function type may

grow into an infinite representation, and a fixed-point may never be reached. Consider

the ML program fragment shown in Fig. 3.8 adapted from [9]. The procedure iteri
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fun iteri i xs f =

case xs of

[ ] => ()

| x :: xs’ => (f i x; iteri (i+1) xs’ f)

fun mask a xs =

l et g j y = · · · y · · · Array.sub (a, j) · · · in

i f Array.length a = List.length xs then

iteri 0 xs g

else () end

Figure 3.8.: A program that has a non-trivial loop invariant.

visits the elements of a list xs , applying function f to each element and its index

in the list. Procedure mask calls iteri when the length of its array and list

arguments are the same. It supplies function g as the higher-order argument to

iteri which performs some computation involving a list and array element at the

same index. We desire to verify the array bound safety property j < len(a ) for

the array access in procedure g (Note j ≥ 0 can be directly proved by our method

introduced in Sec. 3.3.2).

During the course of verifying this program, we would need to discharge a spec-

ification that forms a pre-condition for iteri asserting that len(xs ) 6= 0 ⇒ i

< len(a ). However, verifying this specification requires a theorem prover to con-

clude that len(xs )-1 6= 0 ⇒ i+1 < len(a ) as precondition for the recursive call

to iteri (i+1) xs’ . In trying to discover a counter-example to this claim, a

theorem prover would likely generate an infinite number of pre-conditions, len(xs )

- k 6= 0 ⇒ i + k < len(a ) where k = 0, 1, 2 · · · What is required is a sufficiently

strong invariant that can be used to validate the required safety properties. While

programmers could certainly write such specifications if necessary, we follow the idea

of interpolation-based model-checking [22] to automatically infer them when possible.
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fun iteri0 i0 xs0 f0 =

case xs0 of

[ ] => ()

| x0 :: xs0’ => (f0 i0 x0; iteri1 (i0+1) xs0’ f0)

fun iteri1 i1 xs1 f1 =

case xs1 of

[ ] => ()

| x1 :: xs1’ => (f1 i1 x1; iteri2 (i1+1) xs1’ f1)

fun iteri2 i2 xs2 f2 = halt

Figure 3.9.: Unrolling a recursive function for invariant discovery using interpolation.

When our mainline verification algorithm diverges or reaches a pre-determined

timebound during the analysis of a recursive procedure, it is unrolled incrementally

together with its calling context. Our method then infers refinement type templates

and generates subtyping constraints for the k-unrolled procedures. Pre-conditions of

the higher order functions used in recursive procedure are propagated via subtyping

chain from that of the real function they represent for. Post-conditions of the higher

order functions are also propagated from that of the real function which can be

obtained from our type inference algorithm. We then exploit a technique described

in [23] to infer refinement types from the collected base subyping constraints. The

basic idea is to use the interpolation of the first-order formulas derived from the

subtyping constraints to deduce an instantiation for a given type refinement variable

κ. We desire that the prover returns a more suitable refinement beyond that yielded

by a weakest precondition generator. Refinements synthesized from k-unrolled non-

recursive procedures are folded back to the original procedure as candidates.

For example, suppose our method discovers that it must unroll the recursive pro-

cedure iteri two times, obtaining the program shown below:
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Here, halt is a special term, representing a termination point. Because we

maintain the original calling context of iteri , we have len a = len xs in the

typing environment and leverage subtyping constraints to establish that the actual g

subtypes to the formal f0 . We infer refinements for this unrolled excerpt using the

obtained base subtyping constraints. We thus have the following subtyping constraint:

i1 : κi1, i0 : κi0, xs0 : κxs0, len (xs0) = len (xs0′) + 1, len (xs) = len (a)

` {ν = xs0′ } <: κxs1

that establishes that the actual xs0’ given to iteri1 subtypes to the formal xs1 .

In the body of iteri1 , there is another constraint for the call to f1 i1 :

i1 : κi1, xs1 : κxs1, len (xs1) = len (xs1′) + 1 ` {ν ′ = i1} <: {ν ′ < len (a) }

Because we have already inferred the refinement type for procedure g before typing

iteri and obtained precondition ν ′ < len(a) for its first argument, we can use

it to also serve as the precondition of the first argument of f1 propagated through

the subtyping chains.

We extend the above constraints into first order logic formulas:

{ i1 = i0 + 1 ∧ i0 = 0 ∧ xs0 = xs ∧ len (xs0) = len (xs0′) + 1 ∧

len (xs) = len (a) ∧ ν = xs0′ }(a) ⇒ κxs1

κxs1 ⇒ { i1 = i0 + 1 ∧ ν = xs1 ∧ len (xs1) = len (xs1′) + 1 ∧

ν ′ = i1 ⇒ ν ′ < len (a) }(b)

The unknown refinement represented by κxs1 is indeed an interpolation of formula

(a) and formula (b) and can be inferred by feeding them into an appropriate inter-

polation theorem prover [22] which may return len(ν) + i1 = len(a) as result.

Our method then yields len(ν) + i = len(a) (discarding subscript) as a refinement

candidate of the second argument xs of procedure iteri .

After candidate refinement synthesis, our method then applies an elimination

procedure [7] to filter out incorrect candidates. If the original procedure is still not
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typable, the process is repeated, unrolling it k + 1 times. For this example, with

the above refinement candidate, we can correctly verify the pre-condition of f in

iteri . Since the theorem prover can use the case condition to know length(xs ) >

0 and based on the invariant i + len(xs ) = len(a ), it can determine that i <

len(a ) must hold. Our method finally generates the appropriate refinement type for

iteri as:

iteri : i : int→ {xs : ′a list| i + len(ν) = len(a)} →
{f : {farg1 : int | 0 ≤ ν < len(a)} → ′a→ unit} → unit

Note the invariant generation module is only invoked when our system diverges

during the verification of a recursive procedure. We differ from [23] in two respects:

first, [23] does not use an elimination procedure since it tries to infer refinement

types for the original program using a whole program analysis; second, we only infer

refinement candidates for a non-recursive unrolled code fragment instantiated upon

divergence, instead of the original whole program, greatly reducing the number of

instances where interpolation computation is required.

3.4 Implementation

We have implemented our verification system in Popeye. Popeye takes as in-

put an SML program (not necessarily closed) and outputs specifications inferred for

the procedures defined by the program. We have provided specifications for built-

in primitive datatypes as well as arrays, lists, tuples, and records that are used to

bootstrap the inference procedure. The Yices theorem prover is used as the veri-

fication engine. CSIsat [24] is employed to generate interpolations when inferring

candidate refinements for recursive procedures and loops. The implementation is

incorporated within the MLton whole-program optimizing compiler toolchain and

consists of roughly 14KLOC written in SML1.

1The Popeye implementation is available at http://code.google.com/p/
popeye-type-checker/

http://code.google.com/p/popeye-type-checker/
http://code.google.com/p/popeye-type-checker/
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3.4.1 Case Study: Bit Vectors

To gauge Popeye’s utility, we applied it to an open-source bit vector library

(bitv) [25] (version 0.6). A bit vector is represented as a record of two fields, bits ,

an array containing vector’s elements, and length , an integer that represents the

number of bits that the vector holds. Operations on bit vectors should enforce the

invariant that (bits.length− 1) · b < bits.length · b, where b is a constant that

defines the number of bits intended to be stored per array element. This invariant

is assumed for all procedures. Popeye successfully type checks the program com-

bined with 5 manually generated preconditions (for recursive procedures as prover [24]

cannot deal with mod operation heavily used in the library) by relatively longer ver-

ification time than that of Dsolve [7] in this benchmark; however Dsolve requires

manual addition of extra 14 user-supplied qualifiers.

Bug Detection. Without any programmer annotations, Popeye discovered an

array out-of-bounds error that occurs in the blit function:

fun blit {bits=b1, length=l1} {bits=b2, length=l2}

ofs1 ofs2 n =

i f n < 0 || ofs1 < 0 || ofs1 + n > l1

|| ofs2 < 0 || ofs2 + n > l2

then assert false

else unsafe_blit b1 ofs1 b2 ofs2 n

This function calls unsafe blit only if a guard condition that checks that all

offset value and the number of bits (n ) to be copied are positive, and that the range

of the copy fit within the bounds of the source and target vectors. The counterex-

ample reported for blit procedure corresponds to an input as {length (b1 )=2,

length (b2 )=0, l1=60 , ofs1=32 , l2=0 , ofs2=0 , len=0 }. The guard holds

under this assignment, but because unsafe blit attempts to access the offset in

the target bit-vector that is the starting point for the copy, before initiating the copy

loop, an array out-of-bounds exception gets thrown. In this example, Popeye reports
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a test case that serves as a witness to the bug, and can help direct the programmer to

identify the source of the error. The primary novelty of this technique in this regard is

its ability to generate a precise counterexample path with concrete inputs that serve

as a witness to the violation without requiring explicit user confirmation as Dsolve.

Complex Refinement Generation. Procedure unsafe blit found in this li-

brary tries to copy n bits starting at offset ofs1 from bit-vector v1 to bit-vector

v2 with target offset ofs2 . Popeye discovers the following precondition:

((ofs2 + n)− 1)/b) < v2.length

This is a non-trivial specification comprised of refinements that we believe would

be difficult, in general, for programmers to construct. Systems such as Dsolve

require users to provide these qualifiers explicitly. The ability to generate non-trivial

refinements automatically only using counterexamples is an important distinguishing

feature of our approach compared to e.g., LiquidTypes [7].

3.4.2 Experimental Results

To test its accuracy, we have applied Popeye to a number of synthetic SML

programs from the benchmark suite used to evaluate MoCHI [13]. While these

benchmarks are small (typically less than 100 LOC), they exercise complex control-

and dataflow, and exploit higher-order procedures heavily, in ways intended to make

refinement type inference challenging. Details of these benchmarks are provided

in [13]. In the table, column num ref denotes the number of refinements discov-

ered by Popeye. num cegar shows how many iterations of the refinement loop were

necessary for Popeye to converge. prover call gives the number of theorem prover

calls; there are typically more prover calls than CEGAR loop iterations because the

results of a counterexample usually entails propagation of newly discovered invariants

to other contexts, thus requiring re-verification (and hence additional theorem prover

calls). cegar time shows the time spent on refinement loops. run time gives the total

running time taken.
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Program num ref num cegar prover call cegar time run time

fhnhn 3 4 35 0s 0.014s

neg 15 20 230 0.004s 0.18s

max 10 11 175 0.005s 0.95s

r-file 11 21 205 0.012s 1.56s

r-lock 10 18 108 0.006s 0.60s

r-lock-e 13 18 113 0.01s 0.68s

repeat-e 39 18 237 0.11s 4.87s

list-zip 2 4 149 0.01s 1.55s

array-init 35 106 3617 0.03 102.3s

Figure 3.10.: Popeye benchmark results.

The first seven benchmarks shown in Fig. 3.10 cannot be verified by Dsolve using

its default set of simple qualifiers since either context-sensitive refinement types or

non-trivial invariants are required. The last two of these seven (suffixed with -e ) are

buggy, and thus cannot cannot also be automatically proved by Dsolve. The last

two benchmarks requires recursive procedure invariants which can be synthesized by

our invariant generation module. Here, a single unrolling of the recursive procedure

in repeat-e was sufficient to witness the error; in contrast, Popeye required three

unrollings of the recursive procedure in array-init to find a suitable set of candidate

refinements. We note that MoCHI fails to verify the array-init program. While

MoCHI can also verify the first eight benchmarks in this table, its formulation is a bit

more complex than ours, and does not easily generalize to deal with data structures

and user-level datatypes.
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3.5 Related Work

There has been much work on the use of refinement types for checking com-

plex safety properties of ML programs. Freeman and Pfenning [2] describe a re-

finement type inference scheme defined in terms of an abstract interpretation over a

programmer-specified lattice of refinements for each ML type, and a restricted use

of intersection types to combine these refinements that still preserves decidability of

type inference. DML [3] is a conservative extension of ML’s type system that sup-

ports type checking of programmer-specified refinement types; the system supports

a form of partial type inference whose solution depends upon the set of refinements

found in a linear constraint domain.

To reduce the annotation burden imposed by systems like DML, LiquidTypes [7,

8] requires programmers to only specify simple candidate qualifiers from which more

complex refinement types defined as conjunctions of these refinements are inferred by

a whole program abstract interpretation. Our approach differs from liquid types in

four important respects: (1) we attempt to infer refinements, (2) a counterexample

path together with a test case can be reported as a program bug witness; (3) the type

refinement fixpoint loop enables compositional verification, propagating specifications

via refinement subtyping chains on demand; (4) the refinement types we inferred are

context-sensitive.

Broadly related to our goals, HMC [9] also borrows techniques from imperative

program verification to verify functional programs. It does so by reducing the problem

of checking the satisfiability of the constraints generated in a liquid type system to

a safety checking problem of a simple imperative program. However, the translated

imperative program loses the structure of the original source semantics. Thus, it

is not obvious how we might convert a counterexample reported in the translated

program into the original source for debugging.

Terauchi [19] also proposes a counterexample-guided refinement type inference

scheme, albeit based on a whole-program analysis. A counterexample in his approach
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is an “unwound” slice of the program that is untypable using the current set of

candidate types, rather than a counterexample path. Since the unfolded program

may be involved in multiple program paths, many of which may not be relevant to

the verification obligation, it would appear that the size of the constraint sets that

needs to be solved may become quite large.

There has been much recent interest in using higher-order recursion schemes [11,

12] to define expressive model-checkers for functional programs. In [13,14], predicate

abstraction is proposed to abstract higher-order program with infinite domains like

integers to a finite data domain; the development in these papers is limited to pure

functional programs without support for data structures. Model checking arbitrary µ-

calculus properties of finite data programs with higher order functions and recursions

can be reduced to model checking for higher-order recursion schemes [11]. Finding

suitable refinements relies on a similar constraint solving to [19, 23] for a straight-

line higher-order counterexample program. Such techniques involve substantial re-

engineering of first-order imperative verification tools to adapt them for a higher-order

setting.

One important motivation for our work is to reuse well-studied imperative program

verification techniques. For example, predicate abstraction [15] has been effectively

harnessed by tools such as slam [26] and blast [27] to verify complex properties

of imperative programs with intricate shape and aliasing properties. Software verifi-

cation tools, such as Boogie [28], ESC/Java [29] and CALYSTO [30] construct first

order logic formula to encode a program’s control flow. If a verification condition,

expressed via programmer-specified assertions or specifications, cannot be discharged,

the counterexample path can be used to refine and strengthen it.
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4 LEARNING BASED REFINEMENT TYPE INFERENCE

Refinement types and random testing are two seemingly disparate approaches to

build high-assurance software for higher-order functional programs. Refinement types

allow the static verification of critical program properties (e.g. safe array access).

Refinement type systems such as DML [3] and LiquidTypes [7] have demonstrated

their utility in validating useful specifications of higher-order functional programs.

On the other hand, random testing, exemplified by systems like QuickCheck [31],

can be used to define useful underapproximations, and has proven to be effective at

discovering bugs. However, it is generally challenging to prove the validity of program

assertions, as in the program shown above, simply by randomly executing a bounded

number of tests.

Tests (which prove the existence, and provide conjectures on the absence, of bugs)

and types (which prove the absence, and conjecture the presence, of bugs) are two

complementary techniques for understanding program behavior. They both have well-

understood limitations and strengths. It is therefore natural to ask how we might

define synergistic techniques that exploit the benefits of both.

Approach. We present a strategy for automatically constructing refinement types

for higher-order program verification. The input to our approach is a higher-order

program P together with P ’s safety property ψ (e.g. annotated as program asser-

tions). We identify P with a set of sampled program states. “Good” samples are

collected from test runs; these are reachable states from concrete executions that do

not lead to a runtime assertion failure that invalidates ψ. “Bad” samples are states

generated from symbolic executions which would produce an assertion failure, and

hence should be unreachable; they are synthesized from a backward symbolic execu-

tion, structured to traverse error paths not explored by good runs. The goal is to

learn likely invariants ϕ of P from these samples. If refinement types encoded from
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ϕ are admitted by a refinement type checker and ensure the property ψ, then P is

correct with respect to ψ. Otherwise, ϕ is assumed as describing (or fitting) an in-

sufficient set of “Good” and “Bad” samples. We use ϕ as a counterexample to drive

the generation of more “Good” and “Bad” samples. This counterexample-guided ab-

straction refinement (CEGAR) process [16] repeats until type checking succeeds, or

a bug is discovered in test runs.

There are two algorithmic challenges associated with our proof strategy: (1) how

do we sample good and bad program states in the presence of complex higher-order

control and dataflow? (2) how do we ensure that the refinement types deduced from

observing the sampled states can generally capture both the conditions (a) sufficient

to capture unseen good states and (b) necessary to reject unseen bad ones?

The essential idea for our solution to (1) is to encode the unknown functions

of a higher-order function (e.g. function m in Fig. 1.1) as uninterpreted functions,

hiding higher-order features from the sampling phase. Our solution to (2) is based

on learning techniques to abstract properties classifying good states and bad states

derived from the CEGAR process, without overfitting the inferred refinement types

to just the samples.

Implementation. We have implemented a prototype of our framework built on top

of the ML type system. The prototype can take a higher-order program over base

types and polymorphic recursive data structures as input, and automatically verify

whether the program satisfies programmer-supplied safety properties. We have evalu-

ated our implementation on a set of challenging higher-order benchmarks. Our exper-

iments suggest that the proposed technique is lightweight compared to a pure static

higher-order model checker (e.g. MoCHI [13]), in producing expressive refinement

types for programs with complex higher-order control and data flow. Our prototype

can infer invariants comprising arbitrary Boolean combinations for recursive functions

in a number of real-world data structure programs, useful to verify non-trivial data

structure specifications. Existing approaches (e.g. LiquidTypes [7]) can verify these
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Verifier (P, ϕ, ψ)

Deducer (P, ϕ, ψ)

Learner (VG, VB)

Runner (P, iv, ψ)

ψ failed

intput iv

bad samples VB

good samples VG

likely inv ϕ

failed inv ϕ

ψ verified

Safety Property ψ
Program P with initial inv ϕ : true

Figure 4.1.: Learning based refinement type inference.

programs only if such invariants are manually supplied which can be challenging for

programmers.

Contributions. This chapter makes the following contributions:

• A CEGAR-based learning framework that combines testing with type check-

ing, using tests to exercise error-free paths and symbolic execution to capture

error-paths, to automatically infer expressive refinement types for program ver-

ification.

• An integration of a novel learning algorithm that effectively bridges the gap

between the information gleaned from samples to desired refinement types. No-

tably, the precision of intersection types [19] are recovered in our learning ap-

proach, and allows us to infer context-sensitive invariants.

• A description of an implementation, along with experimental results over a

range of complex higher-order programs, that validates the utility of our ideas.

4.1 Overview

This section describes the framework of our approach, outlined in Fig. 4.1. Our

technique takes a (higher-order) program P and its safety property ψ as input. To

bootstrap the inference process, the initial program invariant ϕ is assumed to be

true . A Deducer (a) uses backward symbolic execution starting from program states
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l et main n j =

l et a = f n in

let r = init 0 n a in

{δ1 :
�� ��(j ≥ 0) ∧ (j < n) ∧ r j 6= 1 }

i f j≥0 ∧ j<n

then assert (r j = 1)

l et f n i =

(assert(0≤i ∧ i<n);0)

l et upd i a y j =

i f (j = i) then y

else a j

l et rec init i n a =

{δprebad :
�� ��(i ≥ n ∧ δ5) ∨ (¬(i ≥ n) ∧ δ4) }

i f i ≥ n then

{δ5 :
�� ��(j ≥ 0) ∧ (j < n) ∧ a j 6= 1

from [a/ν]δpostbad
} a

else {δ4 after processing upd in δ3}
{δ3 :

�� ��i + 1 ≥ n ∧ (j ≥ 0) ∧ (j < n) ∧ upd i a 1 j 6= 1 }

l et u = upd i a 1

{δ2 :
�� ��i + 1 ≥ n ∧ (j ≥ 0) ∧ (j < n) ∧ u j 6= 1

unroll init
}

in init (i+1) n u

{δpostbad:
�� ��(j ≥ 0) ∧ (j < n) ∧ ν j 6= 1

from [ν/r]δ1
}

Figure 4.2.: A higher-order program and its bad-conditions (in the blue box).

that violate ψ, to supply bad sample states at all function entries and exits, i.e., those

that reflect error states of P , sufficient to trigger a failure of ψ. A Runner (b) runs P
using randomly generated tests, and samples good states at all function entries and

exits. These good and bad states are fed to a Learner (c) that builds classifiers from

which likely invariants ϕ (for functions) are generated. Finally a Verifier (d) encodes

the likely invariants into refinement types and checks whether they are sufficient to

prove the provided property. If the inferred types fail type checking, the failed likely

invariants ϕ are transferred from the Verifier to the Deducer, which then generates

new sample states based on the cause of the failure. Our technique thus provides

an automated CEGAR approach to lightweight refinement type inference for higher-

order program verification.

In the following, we consider functional arguments and return values of higher-

order functions to be unknown functions. All other functions are known functions.

Example. To illustrate, the program shown in the left column of Fig. 4.2 makes

heavy use of unknown functions (e.g., the functional argument a of init is an

unknown function). In the function main , the value for a supplied by f is a
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closure over n , and when applied to a value i , it checks that i is non-negative but

less than n , and returns 0. The function init iteratively initializes the closure a ;

in the i -th iteration the call to upd produces a new closure that is closed over a

and yields 1 when supplied with i . Our system considers program safety properties

annotated in the form of assertions. The assertion in main specifies that the result

of init should be a function which returns 1 when supplied with an integer between

[0, n ).

Verifying this program is challenging because a proof system must account for

unknown functions. The program also exhibits complex dataflow (e.g., init can

create an arbitrary number of closures via the partial application of upd ); thus, any

useful invariant of init must be inductive. We wish to infer a useful refinement

type for init, consistent with the assertions in main and f without having to know

the concrete functions that may be bound to a a priori (note that a is dynamically

updated in each recursive iteration of init ).

Hypothesis domain. Assume that f is higher-order function and Θ(f) includes

all the arguments (or parameters) and return variables bound in the scope of f .

For each variable x ∈ Θ(f), if x presents an unknown function, we define Ω(x) =

[x0;x1; · · · ;xr] in which the sub-indexed variables are the arguments (x0 denotes the

first argument of x) and xr denotes the return of x. Otherwise, if x is a base typed

variable, Ω(x) = [x]. We further define Ω(f) =
⋃
x∈Θ(f) Ω(x). We consider refinement

types of f with type refinements constructed from the variables in Ω(f). For example,

Ω(init ) includes variables i, n, a0, ar where a0 and ar denote the parameter and

return of a .

Assume {y1, · · · , ym} are numeric variables bound in Ω(f). In this paper, following

LiquidTypes [7], to ensure decidable refinement type checking, we restrict type

refinements to the decidable logic of linear arithmetic. Formally, our system learns

type refinements (invariants for function f) which are arbitrary Boolean combination

of predicates in the form of Equation 4.1:

c1y1 + · · ·+ cmym + d ≤ 0 (4.1)
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where {c1, · · · , cm} are integer coefficients and d is an integer constant. Our hypoth-

esis domain is parameterized by Equation 4.1.

To deliver a practical algorithm, we define C = {−1, 0, 1} and D as the set of the

constants and their negations that appear in the program text of f and requires that

all the coefficients ci ∈ C and d ∈ D. We define two helper functions used throughout

the paper.

min(y1, · · · , ym) = min
∀i.ci∈C. d∈D

{c1y1 + · · ·+ cmym + d} − 1

max(y1, · · · , ym) = max
∀i.ci∈C. d∈D

{c1y1 + · · ·+ cmym + d}+ 1

We now exemplify the execution flow presented in Fig. 4.1 by learning an invariant

for function init .

Deducer. Any invariant inferred for init must be sufficiently strong to prevent

assertion violations. Using assertions in the program, we perform a backward symbolic

analysis (defined in Sec. 4.2), to capture bad runs, the pre- and post conditions of a

known function sufficient to lead to an assertion failure, which we call its pre- and

post-bad conditions. Bad program states are sampled as (SMT) solutions to such

conditions. Program states at a function’s entry and exit are called its pre- and

post-states.

Consider the bad-conditions in the boxes in the program in Fig. 4.2, generated by

a backward symbolic analysis from the assertion in main to the call to init . To

capture bad conditions that cause failures, we negate the assertion, incorporating the

path condition before the assertion in δ1. Substituting ν (syntactic sugar for the value

of an expression) for r in δ1, we obtain δpostbad which denotes the post-bad condition

for init . δ5 instantiates ν in δpostbad to the real return variable a for the then

branch of the if -expression; assume the bad-condition for the else branch is δ4,

we then infer the pre-bad condition for init as δprebad. Notably, in this process, we

consider unknown functions as uninterpreted (e.g. a in δ5), allowing us to generate

useful constraints over their input (e.g. j ) and output (e.g. a j ). As a result, bad

samples for init can be queried from δprebad and δpostbad, using SMT solvers with
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decidable first-order logic with uninterpreted functions [32]. Recursive functions are

unrolled twice in this example as reflected by δ2.

Consider how we might generate a useful precondition for init. Recall that a0 and

ar denote the parameter and return values of the unknown function a within init .

The bad pre-states, sampled from δprebad for init , are listed as entries under label B

in Fig. 4.3a. Our symbolic analysis concludes, in the absence of proper constraints on

init ’s inputs, that an assertion violation in main occurs if the call to the closure

a with 0 returns either -1 or 2 when the iterator i is already increased to 1 .

Furthermore, the symbolic analysis for an unknown function is deferred until a

known function to which it is bound (say, at a call-site) is supplied. The conditions

defined for the unknown function that lead to assertion failures can eventually be

propagated to the known function and used for deriving its bad samples. This is

demonstrated in δ3, where the unknown function u is substituted with the function

upd , which can drive sampling for upd .

Deducer is also used to provide a test input for Runner based on failed invariants

as counterexamples. For the initial case, we use random testing to “seed” the inference

process.

Runner. Our test infrastructure instruments the entry and exit of function bodies

to log values of program variables into a log-file; these values represent a coarse

underapproximation of a function’s pre- and post-state. For example, with a random

test input, we might invoke main by supplying 4 as the argument for n and 0 as

the argument for j . When init is invoked from main , we record the binding for

its parameters, i to 0 and n to 4. The values for arguments i and n can be used

to build a coarse specification. The question is how do we seed a specification for a ,

without tracking its flow to and from upd , which happens within a series of recursive

calls to init ? Note that the argument to the application of a takes place in upd

but not init . To realize an efficient analysis, we sample the unknown function a by

calling it with inputs from [min (i , n ), ..., max (i , n )] in the instrumented code,

with the expectation that its observed input/output pairings can be subsequently
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abstracted into a relation defined in terms of i and n . Note that, at run-time, the

values of i and n are known. This design is related to the hypothesis domain and

function min and max are exactly defined according to the hypothesis domain (see

their definitions above).

In Fig. 4.3a, entries labeled under G represent good pre-states at the entry of

init ; these states lead to a terminating execution that does not trigger an assertion

failure. In the second iteration of the function init , we record that function a

returns 1 when supplied with 0. This corresponds to the good sample in the first row

in the table; at this point, the closure a has been initialized such that (a 0) = 1 and

(a a0) = 0 for 0 < a0 < n.

Learner. A classifier that admits all good samples and prohibits all bad ones is

considered a likely invariant. We rely on predicate abstraction [15] to build these

classifiers. For illustration, consider a subset of the atomic predicates obtained from

Equition 4.1 (simplified for readability): Π0 ≡ a0 ≥ 0,Π1 ≡ a0 < n,Π2 ≡ ar <

n,Π3 ≡ a0 < i,Π4 ≡ ar < i,Π5 ≡ i < n,Π6 ≡ ar = 1. Our goal is to learn

a sufficient invariant over such predicates. The challenge is to obtain a classifier

that generalizes to unseen states. We are inspired by the observation that a simple

invariant is more likely to generalize than a complex one [33]. Similar arguments have

been demonstrated in machine learning and static verification techniques [27].

To learn a simple invariant, a learning algorithm should select a minimum subset

of the predicates that separates all good states from all bad states. In the example,

we first convert the original data sample into a Boolean table, evaluating the atomic

predicates using each sample; the result is shown in Fig. 4.3b and we show the selection

informally in Fig. 4.3c (Π3 and Π6 constitute a sufficient classifier). To compute a

likely invariant, we generate its truth table Fig. 4.3d. The table rejects all (Boolean)

bad samples in Fig. 4.3c and accepts all the other possible samples, including the good

samples in Fig. 4.3c. Note that we generalize good states. The truth table accepts

more good states than sampled. We apply standard logic minimization techniques [34]
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n i a0 ar

G

4 1 0 1

4 1 1 0

4 1 2 0

4 3 2 1

4 3 3 0

B
1 1 0 2

2 1 0 -1

(a) samples

Π0 Π1 Π2 Π3 Π4 Π5 Π6

G

1 1 1 1 0 1 1

1 1 1 0 1 1 0

1 1 1 0 1 1 0

1 1 1 1 1 1 1

1 1 1 0 0 1 0

B
1 1 0 1 0 0 0

1 1 1 1 1 1 0

(b) relate samples to predicates

Π3 Π6

G

1 1

0 0

B 1 0

(c) select predicates

Π3 Π6

G

1 1

0 0

0 1

B 1 0

(d) truth table

Figure 4.3.: Classifying init ’s good (G) and bad (B) samples.

to the truth table to generate the Boolean structure of the likely invariant. We obtain

¬Π3 ∨ Π6, which in turn represents the following likely invariant:

¬(a0 < i) ∨ ar = 1

During the course of sampling the unknown function a , our system captures that

certain calls to a may result in an assertion violation (rooted from the assertion in

f ). Consider a call to a that supplies an integer argument less than 0 or no less than

n. These calls, omitted in the table, provide useful constraints on a ’s inputs, which

are also used by Learner. Indeed, comparing such calls to calls that do not lead to an

assertion violation allows the Learner to deduce the invariant: ψ0 ≡ a0 ≥ 0 ∧ a0 < n,
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that refines a ’s argument. We treat ψ0 and ψ1 as likely invariants for the precondition

for init. A similar strategy can be applied to also learn the post-condition of init .

Verifier. We encode likely program invariants into refinement types in the obvious

way. For example, the following refinement types are automatically synthesized for

init :

i : int→ n : int→

a : (a0 : {int|ν ≥ 0 ∧ ν < n} → {int|¬(a0 < i) ∨ ν = 1})

→ ({int|ν ≥ 0 ∧ ν < n} → {int|ν = 1})

This type reflects a useful specification - it states that the argument a to init

is a function that expects an argument from 0 to n , and produces a 1 only if the

argument is less than i ; the result of init is a function that given an input between

0 and n produces 1 . Extending [7], we have implemented a refinement type checking

algorithm, which confirms the validity of the above type that is also sufficient to prove

the assertions in the program.

CEGAR. Likely invariants are not guaranteed to generalize if inferred from an in-

sufficient set of samples. We call likely invariants failed invariants if they fail to

prove the specification. They are considered counterexamples, witnessing why the

specification is refuted. Notice that, however, these could be spurious counterexam-

ples. We develop a CEGAR loop that tries to refute a counterexample by sampling

more states. If the counterexample is spurious, new samples prevent the occurrence

of failed invariants in subsequent iterations.

Bad sample generation. Assume that Learner is only provided with the first bad

sample in Fig. 4.3a. The good and bad samples are separable with a simple predicate

Π2 ≡ ar < n. This predicate is not sufficiently strong since it fails to specify the input

of a . To strengthen such an invariant, we ask for a new bad sample from the SMT

solver for the condition:

ϕprebad ∧ (ar < n)
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which was captured as the second bad sample in Fig. 4.3a. The new bad sample

would invalidate the failed invariants.

Good sample generation. We exemplify our CEGAR loop in sampling good states

using the program of Fig. 1.1. To bootstrap, we may run the program with arguments

1,2 and 3 , and infer the following types:

max ::(x : int→ y : int→ z : int→

m : (· · · )→ {int|ν > x ∧ ν ≥ y})

The refinement type of max is unnecessarily strong in specifying that the return value

must be strictly greater than x . To weaken such a type, we seek to find a sample in

which the return value of max equals x . To this end, we forward the failed invariant

to the Deducer, which symbolically executes the negation of the post-condition of

max (ν > x ∧ ν ≥ y) back to main using our symbolic analysis. A solution to the

derived symbolic condition (from an SMT solver) constitutes a new test input, e.g.,

a call to main with arguments 3 , 2 and 1 . With a new set of good samples, the

program then typechecks with the desired refinement types:

max :: (x : int→y : int→z : int→

m : (m0 : int→m1 : int→{int| ν ≥ m0 ∧ ν ≥ m1})

→{int|ν ≥ x ∧ ν ≥ y ∧ ν ≥ z})

f :: (x : int→y : int→{int| ν ≥ x ∧ ν ≥ y ∧

((x ≤ y ∧ ν ≤ y) ∨ (x > y ∧ ν > y))})

The refinement type for f reflects the result of both the first and the second test.

The proposition defined in the first disjunct, x ≤ y ∧ ν ≤ y captures the behavior of

the call to f from max in the first test, with arguments x less than y ; the second

disjunct x > y∧ ν > y captures the effect of the call to f in the second test in which

x is greater than y .

Data Structures. Our approach naturally generalizes to richer (recursive) data

structures. Important attributes of data structures can often be encoded into mea-
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l et rec iteri i xs f =

match xs with

| [ ] → ()

| x::xs →
(f i x;

iteri (i+1) xs f)

l et mask a xs =

l et g j y =

a[j] ← a[j] && y in

i f Array.length a =

len xs then

iteri 0 xs g

Figure 4.4.: A simple data structure example.

sures (data-sorts), which are functions from a recursive structure to a base typed

value (e.g. the height of a tree). Our approach verifies data structures by generating

samples ranging over its measures. In this way, we can prove many data structure

invariants (e.g. proving a red-black tree is a balanced tree).

Consider the example in Fig. 4.4. Function iteri is a higher-order list indexed-

iterator that takes as arguments a starting index i , a list xs , and a function f .

It invokes f on each element of xs and the index corresponding to the elements

position in the list. Function mask invokes iteri if the lengths of a Boolean array

a and list xs match. Function g masks the j -th element of the array with the

j -th element of the list.

Our technique considers len , the length of list (xs ), as an interesting measure.

Suppose that we wish to verify that the array reads and writes in g are safe. For

function iteri , based on our sampling strategy, we sample the unknown function

f by calling it with inputs from [min (i , len xs ), ..., max (i , len xs )] in the

instrumented code. Since f binds to g , defined inside of mask , our system captures

that some calls to f result in (array bound) exception, when the first argument to

f is less than 0 or no less than i+len xs . Separating such calls from calls that do

not raise the exception, our tool infers the following refinement type:

iteri :: (i : {int|ν ≥ 0} → xs : ′a list→

f : (f0 : {int|ν ≥ 0 ∧ ν < i + len xs} → ′a→ ())→ ())
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This refinement type is the key to prove that all array accesses in function mask

(and g ) are safe.

4.2 Higher-order Program Sampling

In this section, we sketch how our system combines information gleaned from tests

and (backward) symbolic analysis to prepare a set of program samples for higher-order

programs.

Sampled Program States. In our approach, sampled program states, ranged over

with the metavariable σ, map variables to values in the case of base types and map

unknown functions to a set of input/output record known to hold for the unknown

function from the tests. For example, if x is a base type variable we might have that

σ(x) = 5. If f is a unary unknown function that was tested on with the arguments

0, 1 and 2 (such as the case of a in Fig. 4.3a), we might for instance have that

σ(f) = {(f0 : 0, fr : 1), (f0 : 1, fr : 0), (f0 : 2, fr : 0)} where we use f0 to index the

first argument of f and fr to denote its return variable. The value of fr is obtained

by applying function f to the value of f0. Importantly, fr is assigned a special value

“err ” if an assertion violation is triggered in a call to f with arguments recorded in

f0.

WP Generation. “Bad” program states are captured by pre- and post-bad con-

ditions of known functions sufficient to lead to an assertion violation. To this end,

we simply use our backward symbolic analysis wp, defined in Fig. 3.6, with only one

exception:

wp(i, e, δ) =

match e with

| assert v → ¬v ∨ δ

| · · ·
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For a program e, this analysis pushes up the negation of assertions inside e back-

wards, substituting terms for values in a bad condition δ based on the structure of e.

Initially, δ is set to false , meaning that bad conditions are only driven by assertions.

The parameter i limits that recursive functions are unrolled only i times.

Our wp analysis encodes unknown functions into uninterpreted functions. As

a result, we can generate constraints over the input/output behaviors of unknown

functions for higher-order functions (e.g. δ5 in Fig. 4.2). Following the definition

in Fig. 3.6, the symbolic analysis for the actual function represented by the unknown

function is deferred until it becomes known (e.g. δ3 in Fig. 4.2).

During wp, the symbolic conditions collected at the entry and exit point of each

function is treated as the pre- and post-bad condition of the function (e.g. δprebad and

δpostbad in Fig. 4.2).

Program Sampling. Our approach instruments the original program at the entry

and exit point of a function to collect values for each function parameter and return,

together with variables in its lexical scope (for closures). The instrumentation for base

type variables is trivial. To sample an unknown function, we adopt two conservative

strategies.

1. A side-effect of wp’s definition is that it provides hints on how unknown functions

are eventually used because the arguments to such functions are already encoded

into uninterpreted forms. If the variables that compose the arguments are all in

the lexical scope, we call the function with those arguments (e.g. the argument j

to unknown function a inside function update in Fig. 4.2 is considered in-scope).

2. The arguments supplied to unknown functions may not be in-scope (e.g. recall

that in function init in Fig. 4.2 the argument j to a is supplied in update

and undefined in init). In this case, for a base type argument, we supply

integers drawn from min(~x) to max(~x) where ~x are integer parameters from the

higher-order function that hosts the unknown function. The goal is to build a

refinement type of the unknown function based on its relation (parameterized
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l et app x (f:int→(int→int)→int) g = f x g

l et f x k = k x

l et check x y = (assert (x = y); x)

l et main a b = app (a * b) f (check (a * b))

Figure 4.5.: Generating samples for g may trigger assertion violations in check .

by our hypothesis domain) with variables in ~x. The definition of min and max

is in Sec. 4.1. For a function type argument that is not in-scope, we similarly

supply ghost functions with return values from the above domain.

For each known function, bad samples (VB) can be queried from an SMT solver as

solutions to its pre- and post-bad conditions generated by wp. During the course of

sampling good states, the call to an unknown function with arguments according to

the second sampling strategy (above) may raise an assertion failure that is associated

with an “err ” return value. We classify the subset of samples involving “err ” as

an additional set of bad samples (V ′B). The rest of the samples from test outcomes

constitute good program states (VG). Intuitively, VB can constrain the output while

V ′B can constrain the input of unknown function in a likely invariant. For example, we

may call (main 0 0) for the program given in Fig. 4.5 and obtain the sample states

for function app shown in Fig. 4.6 where the first argument of f and g are supplied

from x -1 to x+1. Samples in which calls to the unknown function g return err

(because it would trigger an assertion violation in check ) will be used to strengthen

g ’s pre-condition.

Sample Generalization. Our main idea is to generalize useful invariants from

good program states based on the expectation that such invariants (even for unknown

functions) should be observable from test runs. By summarizing the properties that

hold in all such runs, we can construct likely invariants. In addition, the use of bad

program states, which are either solutions of bad-conditions queried from an SMT

solver (VB) or collected from the “err ” case during sampling of an unknown function
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x f0 f1 fr g0 gr

0 1 g err -1 err

0 0 g 0 0 0

0 -1 g err 1 err

· · ·

Figure 4.6.: Sample table for pre-state of app in Fig. 4.5.

(V ′B), enables a demand-driven inference technique. With a set of good (VG) and bad

(VB ∪ V ′B) program states, our method exploits a learning algorithm L(VG, VB) (resp.

L(VG, V
′
B)) to produce a likely invariant that separates VG from VB (resp. V ′B). We

lift these invariants to a refinement type system and check their validity through

refinement type checking technique (Sec. 4.4).

4.3 Learning Algorithm

We describe the design and implementation of our learning algorithm L(VG, VB)

in this section. Suppose we are given a set of good program states VG and a set of

bad program states VB, where both VG and VB contain states which map variables

to values. We simplify the sampled states by abstracting away unknown function

f : each sampled state σ in VG and VB only records the values of its parameters

f0, · · · and return fr. We base our analyses on a set of atomic predefined predicates

Π = {Πi}0≤i<n from which program invariants are constructed. Recall the hypothesis

domain defined in Sec. 4.1. Each atomic predicate Πi is of the form:

c1y1 + · · ·+ cmym + d ≤ 0

where {y1, · · · , ym} are numerical variables from the domains of VG and VB, each

ci ∈ C (i = 1, · · · ,m) is an integer coefficient and d ∈ D is an integer constant.

We have restricted D to a finite set of integer constants and its negations from the

program text and C = {−1, 0, 1}. Note that further restricting the number of nonzero
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ci to at most 2 enables the learning algorithm to choose predicates from a subset of

the octagon domain. In our experience, we have found such a selection to be a feasible

approach, attested by our experiments in Sec. 4.6. Thanks to this parameterization,

we can draw on predicates from a richer abstract domain without requiring any re-

engineering of the learning algorithm.

The problem of inferring an invariant then reduces to a search problem from the

chosen predicates. A number of static invariant inference techniques have been pro-

posed for efficient search over the hypothesis space generated by Π [7,35]. Compared

to those, our algorithm has the strength of discovering invariants of arbitrary Boolean

structure. In our context, given Π, an abstract state α over σ ∈ (VG ∪ VB) is defined

as:

α(σ) ≡ { 〈Π1(σ), · · · ,Πn(σ)〉 }

We say that L(VG, VB) is consistent with respect to VG and VB, if ∀σ ∈ VG . α(σ)⇒
L(VG, VB), and ∀σ ∈ VB . α(σ) ∧ L(VG, VB) ⇒ false . Intuitively, we desire L to

compute an interpolant or classifier (that is derived from atomic predicates in Π) that

separates the good program states from the bad states [36].

However, we would like to discover classifiers from samples with the property that

they generalize to yet unseen executions. Therefore, we exploit a simple observation:

a general invariant should be simple enough. Specifically, we answer the question by

finding the minimal invariant from the samples, in terms of the number of predicates

that are used in the likely invariant. This idea has also been explored before in the

context of computing simple proofs based on interpolants [27,37].

To this end, we build the following constraint system. Using Π, we transform

VG and VB that are defined over integers to V b
G and V b

B defined over Boolean values.

Specifically, V b
G = {〈(Π1(σ), · · · ,Πn(σ))〉| σ ∈ VG}. V b

B is defined dually. Fig. 4.3b is

an example of such conversion from Fig. 4.3a. We associate an integer variable seli
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Algorithm 1: L (VG, VB)

1 let (ϕ1, ϕ2) = encode (VG, VB) in

2 let k := 1 in

3 if sat (ϕ1 ∧ ϕ2) 6= UNSAT) then

4 while not (sat (ϕ1 ∧ ϕ2 ∧ (Σiseli = k)) do

5 k := k + 1

6 McCluskey (smt model (ϕ1 ∧ ϕ2 ∧ (Σiseli = k)))

7 else abort “Invariant not in hypothesis domain”

to the ith predicate Πi(0 ≤ i < n). If Πi should be selected for separation in the

classifier, seli is assigned to 1. Otherwise, it is assigned as 0.

ϕ1 :
∧

∀g,b. g∈V b
G,b∈V

b
B

∨
0≤i<n

(g(Πi) 6= b(Πi) ∧ seli = 1)

ϕ2 :
∧

0≤i<n

0 ≤ seli ≤ 1

ϕc : min(Σ0≤i<nseli)

The first constraint ϕ1 specifies the separation of good states from bad states—for

each good state g and bad state b, there must exist at least one predicate Πi labeled

by seli such that the respective evaluations of Πi on g and b differs.

The second constraint ϕ2 ensures that each xi must be between 0 and 1. The third

constraint ϕc specifies the cost function of the constraint system and minimizing this

function is equivalent to minimizing the number of predicates selected for separation,

which in turn results in a simple invariant as discussed.

Algorithm 1 computes a solution for likely invariant. It firstly builds ϕ1 and ϕ2

as stated. Then it iteratively solves the constraint system to find the minimum k

that renders the constraint system satisfiable. In our experience, since the number

of parameters of a function is not large, and the fact that a few number of samples

usually suffice for discovering an invariant, the call to an SMT solver in our algorithm
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is very efficient. For example, a solution of the constraint system built over Fig. 4.3b is

shown in Fig. 4.3c. By design, our algorithm guarantees that the invariants discovered

are the minimum one to separate VG and VB and therefore, it is very likely that they

will generalize.

When the solution is computed, the likely invariant should be a Boolean combi-

nation of the predicates Πi if seli=1 in the solution. We use a Boolean variable Bi
to represent the truth value of predicate Πi and generate a truth table T over the

Bi variables for the selected predicates. Formally {B = Bi| seli = 1(0 ≤ i < n)}. To

construct the likely invariant, we firstly generate a table V b
B , which only retains the

values corresponding to the selected predicates Πi (seli = 1) in V b
B. Each row of the

truth table T is a configuration (assignment) to the variables in B. If a configuration

corresponds to a row in V b
B , its corresponding result in T is false. Otherwise, the

result in true. Intuitively, T must reject all the evaluations to B if they appear

in a bad sample in V b
B and accept all the other possible evaluations to B (which of

course include those in V b
G). See Fig. 4.3d as an example of the generated truth table

from Fig. 4.3c. In line 6 of Algorithm 1, the call to McCluskey applies standard sound

logic minimization techniques [34] to T to compute a compact Boolean structure of

the likely invariant.

Lemma 5 L (VG, VB) is consistent.

Lemma 5 claims that our algorithm will never produce an invariant that misclassifies

a good sample or bad sample.

4.4 Verification Procedure

To yield refinement types, we extend standard types with invariants which are

automatically synthesized from samples as type refinements. The invariants inferred

for a function f are assigned to unknown refinement variables (κ) in the refinement

function type of f and verified via the verification procedure defined in Sec. 2.2.
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Notably, our approach can properly account for unknown functions whose order is

more than one, that is unknown functions which may also takes functional arguments.

Recall the sample states generated for function app in Fig. 4.6. In the app function,

the argument f is an unknown function whose second argument f1 is also an unknown

function as the type in Fig. 4.5 shows. We did not sample the input/output values

for function f1 and only recorded its supplier, g . We observe that such an unknown

function will be eventually supplied with another function. For example, in the body

of app , g will be supplied for f1. This indicates the invariant inferred for g is also

likely to be invariant for f1 so the type refinements for g can flow into that of f1.

Formally, consider the refinement function subtyping rule in Fig. 2.3:

Γ ` P ′x <: Px Γ;x : P ′x ` P <: P ′

Γ ` {x : Px → P} <: {x : P ′x → P ′}

If the type refinement in Px is synthesized, it can be propagated to that of P ′x.

For example, according to the subtyping rule, g must subtype to f1. So f1 can

then inherit the type refinements for g . We then let our type inference algorithm

decide a valid type instantiation, following [7]. In Fig. 4.6, separating the samples

that represent good calls to f and g with the samples that represent bad calls (e.g.,

calls that raise an err ), we infer the invariant: f0 = x and g0 = x. Leveraging

the type inference algorithm with the likely type refinement ν = x, we conclude the

desired type for app :

app ::(x : int→ f : (f0 : {int| ν = x} →

f1 : ({int|ν = x} → int)→ int)→

g : (g0 : {int|ν = x} → int)→ int)

4.4.1 CEGAR Loop

Algorithms. Our Main algorithm (Algorithm 2) takes as input a higher-order pro-

gram e with its safety property ψ that is expected to hold at some program point.

We first annotate ψ in the source as assertions at that program point and use ran-
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all good program 
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good 
sample

bad 
sample

unseen good 
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unseen bad 
program state

invariant as classifier

(a) over-approximate invariant

all good program 
state

all bad program 
state

good 
sample

bad 
sample

unseen good 
program state

classifier

(b) under-approximate invariant

all good program 
state

good 
sample

classifier

all bad program 
state

bad 
sample

(c) desired invariant

Figure 4.7.: CEGAR loop: invariant as classifier.

dom test inputs iv (like [31]) to bootstrap our verification process (line 1). We then

instrument the program using the strategy discussed in Sec. 4.2. Function run com-

piles and runs the instrumented code with iv (line 2); concrete program states at

the entry and exit of each known function are logged to produce good states VG.

(We omit including additional bad states V ′B caused by calls to unknown functions

returning “err ” in the instrumented code (see Sec. 4.2), for simplicity.) We then

enter the main CEGAR loop (line 4-8). With a set of good and bad states for each

known function, the function learn invokes the L learning algorithm (see Sec. 4.3)

to generate likely invariants (line 5) which are subsequently encoded as the function’s

refinement types for validation (line 6). If the program typechecks, verification is

successful. Otherwise, type checking is considered to fail because these invariants are

synthesized from an insufficient set of samples. We try generating more samples for

the learning algorithm, refining the failed invariants (line 8). Notably, our backward

symbolic analysis (wp) requires to bound the number of times recursive functions are

unrolled. This is achieved by passing the bound parameter i to Refine. Initially i is

set to 2 (line 3 of Algorithm 2).
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Algorithm 2: Main e ψ

Input: e is a program; ψ is its safety property

Output: verification result

1 let (e′, iv) = (annotate e ψ, randominputs e) in

2 let (VG, VB) := (run (instrument e′) iv, ∅) in

3 let i := 2 in

4 while true do

5 let ϕ = learn (VG, VB) in

6 if verify e′ ϕ then

7 return “Verified”

8 else (VG, VB) := Refine (i, e, ψ, ϕ, VG, VB)

The Refine algorithm (see Algorithm 3) guides the sample generation to refine a

failed likely invariant. The first step of Refine is the invocation of the wp procedure

over the given higher-order program annotated with the property ψ (line 1 and 2); this

step yields pre-and post-bad conditions for each known function sufficient to trigger a

failure of some assertion (line 3). A failed invariant may be too over-approximate (fail-

ing to incorporate needed sufficient conditions) or too under-approximate (failing to

account for important necessary conditions). This is intuitively described in Fig. 4.7a

where the classifier (as invariant) only separates the observed good and bad samples

but fails to generalize to unseen states.

To account for the case that it is too over-approximate, we firstly try to sample

new bad states (line 4). The idea is reflected in Fig. 4.7b. The new bad samples

should help the learning algorithm strengthen the invariants it considers. For each

known function, we simply conjoin the failed likely pre- and post-invariants with

the pre- and post-bad conditions derived earlier from the wp procedure. Bad states

(VB) are (SMT) solutions of such conditions (line 5). Note that bad cond and ϕ are

sets of bad conditions and failed invariants for each known function in the program.

Operators like ∧ and ∪ in Algorithm 3 are overloaded in the obvious way. If no new
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Algorithm 3: Refine (i, e, ψ, ϕ, VG, VB)

Input: (e, ψ) are as in Algorithm 2; ϕ are failed invariants; i is the number of

times a recursive function is unrolled in wp; VG and VB are old good

and bad samples

Output: good or bad samples (VG, VB) that refines ϕ

1 let e′ = annotate e ψ in

2 let = wp (i, e′, false) in

3 let bad cond = bad conditions of functions from wp call in

4 if sat ( bad cond ∧ϕ) then

5 (VG, (deduce (bad cond ∧ϕ)) ∪ VB)

6 else

7 let test cond = wp (i, annotate e ϕ, false) in

8 if sat ( test cond) then

9 let iv = deduce test cond in

10 ((run (instrument e′) iv) ∪ VG, VB)

11 else Refine (i+ 1, e, ψ, ϕ, VG, VB)

bad states can be sampled, we account for the case that failed invariants are too

under-approximate (line 6).

Our idea of sampling more good states is reflected in Fig. 4.7c. The new good state

should help the learning algorithm weaken the invariants it considers. To this end,

we annotate the failed pre- and post-invariant as assertions to the entry and exit of

function bodies for the known functions where such invariants are inferred. (Function

annotate substitutes variables representing unknown function argument and return

in a failed invariant with the actual argument and return encoded into uninterpreted

form in the corresponding function’s pre- and post-bad conditions. For example, a 0

and ar in Fig. 4.3a are replaced with j and a j in a failed invariant for the init

function (consider δ5) in Fig. 4.2.) Note that these invariants only represent an under-

approximate set of good states. To direct tests to program states that have not been
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seen before, the wp procedure executes the negation of these annotated assertions

back to the program’s main entry to yield a symbolic condition (line 7). Function

deduce generates a new test case for the main entry (line 8 and 9) from the (SMT)

solutions of the symbolic condition. The new good states from running the generated

test inputs are ensured to refine the failed invariant (line 10).

In function Refine, we only consider unrolling recursive function a fixed i times.

As stated, if this is not sufficient, we increase the value of i and iterate the refinement

strategy (line 11). However, in our experience (see Sec. 4.6), unrolling the definition of

a recursive function twice usually suffices based on the observation that the invariant

of recursive function can be observed from a shallow execution. Particularly, i is

unlikely to be greater than the maximum integer constant used in the if -conditions

of the program.

Algorithm Output. (a) In the testing phase (Runner), the Main algorithm ter-

minates with test inputs witnessing bugs in function run when the tests expose

assertion failures in the original program. (b) In the sampling phase (Deducer), since

our technique is incomplete in general, if a program has expressions that cannot be

encoded into a decidable logic for SMT solving, Refine may be unable to infer neces-

sary new samples because the sat function (line 4 and line 8 of Algorithm 3) aborts

with undecidable result. (c) In the learning phase (learner), it terminates with “In-

variant not in hypothesis domain” in line 7 of Algorithm 1 when no invariant can be

found in the search space (which is parameterized by Equation 4.1 in Sec. 4.1). (d)

In the verifying phase (verifier), it returns “Verified” in line 5 of Algorithm 2 when

specifications are successfully proved.

4.4.2 Soundness and Convergence

Our algorithm is sound since we rely on a sound refinement type system [7] for

proving safety properties and a concrete test input for witnessing program bugs.
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Desired Invariant. For a program e with some safety property ψ, a desired in-

variant of e should accept all possible (unseen) good states and reject all (unseen)

bad states. Recall that our hypothesis domain is the arbitrary Boolean combination

of predicates, parameterized by Equation 4.1 in Sec. 4.1. We claim the CEGAR loop

in Algorithm 2 converges : it could eventually learn a desired invariant ϕ, provided

that one exists expressible as a hypothesis in the hypothesis domain.

Theorem 4.4.1 [Convergence] Algorithm 2 converges to a desired invariant.

Proof First, assume Refine (line 7 of Algorithm 2) does not take a desired invariant

as input; otherwise Algorithm 2 has already converges. We also assume the existence

of an efficient SMT solver for checking satisfiability. We claim, by iteratively increas-

ing i, the number of times recursive functions are unrolled in e, Refine can eventually

generate a new pair of good/bad samples that refine ϕ.

To show the reason, we assume such a value of i does not exist. Formally,

∀i. wp(i, e,¬ϕ) ⇒ false (a)

∀i. ϕ ∧ wp(i, e, ψ) ⇒ false (b)

We use ΣG and ΣB to denote all the possible good states and bad states respectively.

1) By definition, we have

∀σB ∈ ΣB. ∃i. σB ∈ wp(i, e, ψ) (c)

Combining Equation (b) and Equation (c),

∀σB ∈ ΣB. σB /∈ ϕ (d)

2) Furthermore, by definition,

∀σG ∈ ΣG. ∃i.wp(i, e, α(σG)) 6⇒ false (e)
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Recall that, given the set of atomic predicates Π (from our hypothesis domain), an

abstract state α is defined as:

α(σ) ≡ { 〈Π1(σ), · · · ,Πn(σ)〉 }

It is clear that α(σG) is a conjunction of the predicates (or their negations) from

Π, while ϕ is a Boolean combination of the predicates (or their negations) from Π,

guaranteed by the construction of the learning algorithm L. As a result, for an

arbitrary good state σG ∈ ΣG, the logic relationship between α(σG) and ¬ϕ is either

α(σG)⇒ ¬ϕ or α(σG) ∧ ¬ϕ⇒ false.

Combing Equation (a) and Equation (e), however, for an arbitrary σG, α(σG)⇒
¬ϕ is impossible. This is because, if we have α(σG) ⇒ ¬ϕ, then we must have

∃i. wp(i, e,¬ϕ) 6⇒ false due to Formula (e), by induction on the structure on e,

contradicting with Formula (a).

Hence, we must have,

∀σG ∈ ΣG. α(σG) ∧ ¬ϕ⇒ false (f)

From Equation (f),

∀σG ∈ ΣG. α(σG)⇒ ϕ (g)

Combining Equation (d) and Equation (g), ϕ is a desirable invariant because it accepts

all possible good states that are not sampled and rejects all possible bad states, which

contradict our assumption that Refine does not take a desired invariant as input.

As a result, we guarantee to find a value of i that drives the sampling for good/bad

samples that refine ϕ. In each CEGAR iteration, by construction, a new sample

provides a witness of why a failed invariant should be refuted.

According to Lemma 5, our learning algorithm produces a consistent hypoth-

esis that separates all good samples from bad samples. As a result, the CEGAR

loop does not repeat hypothesis: a failed invariant, once refuted, cannot be repro-

duced in later CEGAR iterations. Our technique essentially enumerates the hypoth-

esis space and ensures that all hypotheses will be eventually considered by adding
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more samples. Finally, the hypothesis domain is finite since the coefficients and

constants of atomic predicates are accordingly bounded (see Sec. 4.3); the CEGAR

based sampling-learning-checking loop in Algorithm 2 converges in a finite number of

iterations.

Intuitively, the above proof assumes Refine (line 8 of Algorithm 2) does not take

a desired invariant as input; otherwise Algorithm 2 has already converges. Refine can

iteratively increase i, the number of times recursive functions are unrolled in e, to

generate a new pair of good/bad samples that refine ϕ. Otherwise, if such a value of

i does not exist, ϕ already classified all the unseen good/bad samples. Hence, in each

CEGAR iteration, by construction, a new sample provides a witness of why a failed

invariant should be refuted.

According to Lemma 5, our learning algorithm produces a consistent hypoth-

esis that separates all good samples from bad samples. As a result, the CEGAR

loop does not repeat failed hypothesis. Our technique essentially enumerates the hy-

pothesis domain. Finally, the hypothesis domain is finite since the coefficients and

constants of atomic predicates are accordingly bounded (see Sec. 4.3); the CEGAR

based sampling-learning-checking loop in Algorithm 2 converges in a desired invariant

in a finite number of iterations.

Inductive Invariant. A desired invariant, however, might not be an inductive

invariant. Consider the type checking rule for recursive functions:

Γ; f : {x : Px → P};x : Px ` e : Pe Γ;x : Px ` Pe <: P

Γ ` fix ( fun f → λx. e) : {x : Px → P}
The refinement type system (Fig. 2.3) we use is an inductive invariant checking sys-

tem. The refinement types encoded from a candidate invariant of fix ( fun f →
λx. e) can be type checked in our refinement type system only if it is inductive.

However, a program may have many invariants and, for recursive functions, and only

inductive ones should be used to assist verification.

We can slightly adapt our counterexample-guided refinement algorithm to achieve

relative completeness, meaning that if an inductive invariant actually exists in the
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hypothesis domain the algorithm can eventually find it. If the number of recursive

function unrollings i exceeds a certain bound in Algorithm 3, the algorithm can just

terminate and uses a set F to save possibly non-inductive invariants. It is OK if

the bound is not set to a sufficiently large value, because Algorithm 2 then moves

to the next round and we enforce the learning algorithm to return a hypothesis

invariant different with any invariants in F . Such a constraint can be easily encoded

into our learning algorithm Algorithm 1. Algorithm 2 then essentially enumerates

the hypothesis domain and can eventually find an inductive invariant, provided one

actually exits expressible.

4.4.3 Algorithm Features

In Algorithm 2, the refinement type system and test system cooperate on invariant

inference. The refinement type system benefits from tests because it can extract

invariants from test outcomes. Conversely, if previous tests do not expose an error

in a buggy program, failed invariants serve as abstractions of sampled good states.

By directing tests towards the negation of these abstractions, Algorithm 3 guides test

generation towards hitherto unexplored states.

Second, it is well known that intersection types [19] are necessary for verification

when an unknown function is used more than once in different contexts [13]. Instead

of inferring intersection types directly as in [13], we recover their precision by infer-

ring type refinements (via learning) containing disjunctions (as demonstrated by the

example in Fig. 4.2).

4.5 Inductive Data Structures

As stated in Sec. 4.1, we extend our framework to verify inductive data struc-

ture programs with specifications that can be encoded into type refinements using

measures [8, 38]. For example, a measure len, representing list length, is defined
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l et rec len l =

match l with

| x :: xs →
len xs + 1

| [ ] → 0

l et reverse zs =

l et rec aux xs ys =

match xs with

| [ ] → ys

| x::xs → aux xs (x::ys)in

let r = aux zs [ ] in

(assert(len r = len zs); r)

Figure 4.8.: Samples of data structures can be classified by measures.

in Fig. 4.8 for lists. We firstly extend the syntax of our language to support inductive

data structures.

e ::= · · · | 〈v〉 | C〈v〉 | match v with |i Ci〈xi〉 → ei

M ::= (m, 〈Ci〈xi〉 → εi〉) ε ::= m | c | x | ε ε

The first line illustrates the syntax for tuple constructors, data type constructors

where C represent a constructor (e.g. list cons ), and pattern-matching. M is a

map from a measure m to its definition. To ensure decidability, like [8], we restrict

measures to be in the class of first order functions over simple expressions (ε) so that

they are syntactically guaranteed to terminate. The typing rules for the extended

syntax are adapted from [8] and are given in Fig. 4.9. In rule T-Constructor,

the type refinement for an inductive data structure returned by a constructor is a

conjunctions of relation between the measure of the constructed expression and the

variables bound by the constructor arguments. The rule T-Match stipulates that the

entire expression has type P if and only if P is well-formed in the type environment,

and that, for each case expression ei of the match, ei must also have type P in the type

environment extended with the guard predicate that captures the relation between the

measure of the matched expression and the variables bound by the matched pattern.

To support this extension, we also need to extend our wp definition in Fig. 4.10.

The basic idea is that when a recursive structure is encountered, its measure defi-
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T-Constructor

Γ ` Cj〈v〉 : {ν : ty(Cj)| ∧m m(ν) = εj(〈v〉)}

T-Match

Γ ∧
∧
m

m v = ε 〈xi〉 ` ei : P Γ ` P

Γ ` match v with |i Ci〈xi〉 → ei : P

Figure 4.9.: Refinement typing rules for inductive data structures.

wp(i, e, φ) = match e with

| Ci〈v〉 when (m, 〈Ci〈xi〉 → εi〉) ∈M → [εi 〈v〉/(m ν)]φ

| { match v with |i Ci〈xi〉 → ei} when (m, 〈Ci〈xi〉 → εi〉) ∈M →∨
i

{∃〈x′i〉.[〈x′i〉/〈xi〉]((m v) = εi〈xi〉 ∧ (wp(i, ei, φ)))}

| · · ·

Figure 4.10.: wp rule for inductive data structures.

nitions are accordingly unrolled: (1) for a structure constructor Ci〈e〉, we derive the

appropriate pre-condition by substituting the concrete measure definition εi〈e〉 for

the measure application m ν in the post-condition; this is exemplified in Fig. 4.11

where bad-condition δ2 is obtained from δ1 by substituting len ys for len ys + 1

based on the definition of measure len; (2) for a match expression, the pre-condition

is derived from a disjunction constructed by recursively calling wp over all of its case

expressions, which are also extended with the guard predicate capturing the mea-

sure relation between e and 〈xi〉. All the 〈xi〉 need to be existentially quantified and

skolemized when fed to an SMT solver to check satisfiability. The bad condition δ3

in Fig. 4.11 is such an example.

With the extended definition, sampling inductive data structures is fairly strait-

forward. To collect “good” states, in the instrumentation phase, for each inductive



89

l et rec aux xs ys =

δprebad : δ3 ∨ δ4
match xs with

δ4 : len xs = 0 ∧ len ys 6= len zs

| [ ] → ys

δ3 : ∃xs′.len xs = 1 + len xs′ ∧ [xs′/xs]δ2

| x::xs →
δ2 : len xs = 0 ∧ len ys + 1 6= len zs

l et ys = x::ys in

δ1 : len xs = 0 ∧ len ys 6= len zs

aux xs ys in

δpostbad : len ν 6= len zs

Samples:

len xs len ys len zs

G
1 2 3

2 1 3

B
1 0 2

1 0 0

Likely invariant:

len xs + len ys = len zs

Figure 4.11.: Learning a data structure function’s precondition from its samples.

data structure serving as a function parameter or return value in some data structure

function, we simply call its measure functions and record the measure outputs in

the sample state. To collect “bad” states, we invoke an SMT solver on the bad-

conditions for each data structure functions to find satisfiability solutions. The solver

can generate values for measures because it interprets a measure function in bad-

conditions as uninterpreted.

Consider how we might infer a precondition for function aux in Fig. 4.8. Note that

aux is defined inside reverse and is a closure which can refer to variable zs in its

lexical scoping. A good sample (G) presents the values of len xs, len ys and len zs,

trivially available from testing. A bad sample (B) captures a bad relation among

len xs, len ys and len zs that is sufficient to invalidate the assertion in the reverse

function, solvable from δprebad in Fig. 4.11. With these samples, our approach infers

the following refinement type for aux, which is critical to prove the assertion.

xs : ’a list→ ys : {’a list| len xs + len ν = len zs}

→ {’a list | len ν = len zs}
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If function aux is not defined inside of function reverse where zs is not in

the scope of aux , our technique infers a different type for aux , xs : ’a list →
ys : ’a list→ {’a list | len xs + len ys = len ν}.

When there is a need for sampling more good states in the Refinement algorithm

(Algorithm 3), generating additional test inputs for data structures from wp-condition

reduces to Korat [39], a constraint based test generation mechanism. Alternatively,

the failed invariants can be considered incorrect specifications. We can directly gener-

ate inputs to the program by causing it to violate the specifications following [40,41].

Notably, the former approach is complete if the underlying SMT solver can always

find a model for any satisfiable formula. As an optimization for efficiency, we boot-

strap the verification procedure with random testing to generate a random sequence

of method calls (e.g. insert and remove functions) up to a small length s in the

Main algorithm (line 1 of Algorithm 2). In our experience in Sec. 4.6, setting s to

300 allows the system to converge for all the container structures we consider without

requiring extra good samples; this result supports a large case study [42] showing

that test coverage of random testing for container structures is as good as that of

systematic testing.

4.6 Experimental Results

We have implemented our approach in a prototype verifier.1 Our tool is based

on OCaml compiler. We use Yices [43] as our SMT solver. To test the utility of

our ideas, we consider a suite of around 100 benchmarks from the related work.

Our experimental results are collected in a laptop running Intel Core 2 Duo CPU

with 4GB memory. Our experiments are set up into three phases. In the first step,

we demonstrate the efficiency of our learning based invariant generation algorithm

(Sec. 4.3) by comparing it with existing learning based approaches, using non-trivial

first-order loop programs. In this step, we only compare first-order programs because

1https://www.cs.purdue.edu/homes/zhu103/msolve/

https://www.cs.purdue.edu/homes/zhu103/msolve/
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Loops N L T CPA ICE SC MC2

cgr2 2 0.2 0.3s 1.7s 6.9s 2.7s 17.3s

ex23 3 0.3 0.4s 16.7s 17.4s 4.7s 0.1s

sum1 5 0.6 0.8s 1.5s 1.8s 2.6s 29.1s

sum4 2 0.1s 0.1s 3.2s 2.6s × ×
tcs 2 0.1s 0.1s 1.7s 1.4s 0.5s ×

trex3 2 0.1s 0.3s × 2.2s × ×
prog4 3 0.3s 0.5s 1.6s × × 0.1s

svd 2 0.5s 1.0s 19.1s × 5.9s ×

Figure 4.12.: Evaluation using loop programs.

the sampling strategies used in the other learning based approaches do not work in

higher-order cases. In the second and third steps, we compare with MoCHI and

LiquidTypes, two state-of-the-art verification tools for higher-order programs.

4.6.1 Learning Benchmarks

We collected challenging loop programs found in an invariant learning framework

ICE [44]. We list in Fig. 4.12 the programs that took more than 1s to verify in their

tool. In the table, N and T are the number of CEGAR iterations and total time of our

tool (L is the time in learning). And × means an adequate invariant was not found.

We additionally compare our approach to CPA, a static verification tool [45] and three

related learning based verification tools that are also based on the idea of inferring

invariants as classifiers to good/bad sample program states: ICE [44], SC [46] and

MC2 [47]. Our tool outperforms ICE because it completely abstracts the inference

of the Boolean structure of likely invariants while ICE requires to fix a Boolean

template prior to learning; it outperforms SC because it guides samples generation

via the CEGAR loop; it outperforms MC2 due to its attempt to find minimal invariants

from the samples for generalization.
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Program N L T I DI MoCHI

ainit 4 1.9s 2.3s 5 4 5.7s

amax 4 0.6s 0.9s 5 2 2.4s

accpr 3 0.8s 1.1s 7 0 3.9s

fold fun list 3 0.2s 0.6s 5 0 3.7s

mapfilter 5 0.7s 1.2s 3 2 18.5s

risers 3 0.1s 0.3s 4 2 2.4s

zip 3 0.1s 0.2s 1 0 2.4s

zipunzip 3 0.1s 0.2s 1 0 1.7s

Figure 4.13.: Evaluation using MoCHI benchmarks.

4.6.2 MoCHI Higher-order Programs

To gauge the effectiveness of our protptype with respect to existing automated

higher-order verification tools, we consider benchmarks encoded with complex higher-

order control flow, reported from MoCHI [13], including many higher-order list ma-

nipulating routines such as fold , forall , mem and mapfilter .

We gather the MoCHI results on an Intel Xeon 5570 CPU with 6 GB memory,

running an up-to-date MoCHI implementation, a machine notably faster than the

environment for our system. A CEGAR loop in MoCHI performs dependent type in-

ference [19,23] on spurious whole program counterexamples from which suitable predi-

cates for refining abstract model are discovered based on interpolations [37]. However,

existing limitations of interpolating theorem provers may confound MoCHI. For ex-

ample, it fails to prove the assertion given in program in Fig. 4.8.

In Fig. 4.13, N and T are the number of CEGAR iterations and total time of our

tool (L is the time spent in learning), I is the number of discovered type refinements,

among which DI shows the number of disjunctive type refinements inferred. Column

MoCHI shows verification time using MoCHI. Fig. 4.13 only lists results for which

MoCHI requires more than 1 second. Our tool also takes less than 1s for the rest
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l et make_list m =

i f m <= 0 then [ ]

else (m) :: make_list (m-1)

l et make_list_list m =

i f m <= 0 then [ ]

else make_list (m)::

make_list_list (m-1)

l et ne (xs: int list) =

match xs with

[ ] -> 1

| x::xs -> 0

l et filter p (xs: ’a list list) =

match xs with

[ ] -> [ ]

| x::xs ->

i f p x >= 1 then filter p xs

else x::(filter p xs)

l et ok (xs: ’a list list) =

match xs with

[ ] -> [ ]

| x::xs -> (assert (length x > 0);

x :: ok xs)

l et main m =

ok (filter ne (make_list_list m))

Figure 4.14.: A case study of mapfilter.

of MoCHI benchmarks. Performance improvements range from 2x to 18x. We

typically infer smaller and hence more readable types than MoCHI. In the case

of mapfilter , where the performance differential is greatest, MoCHI spends 6.1s

to find a huge dependent intersection type in its CEGAR loop. This results in an

additional 10.7s spent on model checking. In contrast, our approach tries to learn a

simple classifier from easily-generated samples to permit generalization.

Case Study.

The source code of mapfilter is given in Fig. 4.14. The implementation uses

make list list to build a list of list. It then calls the filter function which

filters out all the empty list using a filter function p which essentially binds to ne .

In the main procedure, we use the ok function to recursively test a safety property:

there should not exist any empty list in the result list of filter .
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For simplicity, we only apply wp to unroll filter once. From the application

wp(ok (filter · · · ), false ), we obtain

∃xs′.(len xs = 0 ∧ false ) ∨

(len xs = 1 + len xs′ ∧ len (hd xs) > 0)

as the pre-bad condition for ok . The first disjunction corresponds to the empty list

case in ok while the second disjunction corresponds to the nonempty list case, which

encodes the negation of the assertion. Since only one iteration of ok is considered, the

formula is an under-approximation of a sound bad-condition. We continue to apply

wp and push the pre-bad condition of ok into the post-bad condition for filter :

∃xs′.(len ν = 0 ∧ false ) ∨

(len ν = 1 + len xs′ ∧ len (hd ν) > 0)

where the special variable ν denotes the procedure’s result list. A pre-bad condition

for filter is then derived from it as:

∃xs′.(len xs = 0 ∧ false) ∨ (len xs = 1 + len xs′ ∧

((p (hd xs) ≥ 1 ∧ false) ∨ (p (hd xs) < 1 ∧ len (hd xs) ≤ 0)))

This formula captures the if-then-else rule encoded in wp (some non-interesting dis-

junctions and quantifiers are ignored for simplicity). Unknown functions are encoded

as uninterpreted.

From filter ’s pre-bad condition, it is now obvious of how to call the unknown

function p in the instrumentation phase: we will supply hd xs as the arguments;

since it is a list, we will sample its length in the good states for filter . Let us focus

on filter ’s pre-condition inference. After running the program with (main 2), a

set of good/bad samples is shown in Fig. 4.15 where each bad sample is generated as

a model to the pre-bad condition via an SMT solver. Clearly, although p is consid-

ered uninterpreted, its input/output is still constrained via the term len (hd xs ).

Applying our learning algorithm, we can gradually find a likely invariants shown in
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class len p0 pr

Pos
2 0

0 1

Neg 0 0

len p0 > 0 ∧ pr ≤ 0 ∨

len p0 ≤ 0 ∧ pr > 0

Figure 4.15.: Learning a specification for mapfilter.

the right column of Fig. 4.15. Together with a similar analysis for post-condition

inference, we obtain the following refinement type for filter :

p : {p0 : ’a list→ {int | (len p0 > 0 ∧ ν ≤ 0) ∨ (len p0 ≤ 0 ∧ ν > 0)}}

→ xs : {’a list list} → {{’a list | len ν > 0}list}

This type clearly specifies that the unknown function p returns an integer that is

greater than 0 only if it takes an empty list as input and any nonempty list is filtered

away in filter ’s result. This type is sufficient to prove the assertion in ok .

We now show how higher-order model checking [13] (implemented in MoCHI)

works for this program. MoCHI develops a CEGAR loop combined with predicate

abstraction, which can be considered as a variant of finite state and pushdown model

checking [16]. In CEGAR, MoCHI actually performs a dependent type inference [19,

23] on a spurious whole-program counterexample trace from which suitable predicates

for refining the abstract model is discovered based on interpolations [37] derived from

a theorem prover. For the mapfilter program, MoCHI spends 10.2s to find the

correct abstraction refinement predicates in its CEGAR. However, we find suitable

“interpolants” from a set of program states local to filter and do not depend on an

interpolating theorem prover.

Using the abstract refinement predicates from CEGAR, predicate abstraction in

MoCHI converts higher-order language semantics into a boolean program capable

of being expressed as recursion schemes [11], a recursive tree grammar. The satisifi-

ability of safety properties can be answered by a query from the generated tree. The
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Program LOC An LiqTyAn T Property

List 62 6 12 2s Len1

Sieve 15 1 2 1s Len1

Treelist 24 1 2 1s Sz

Fifo 46 1 5 2s Len1

Ralist 102 2 6 2s Len1, Bal

Avl tree 75 3 9 20s Bal, Sz, Ht

Bdd 110 5 14 13s VOrder

Braun tree 39 2 3 1s Bal,Sz

Set/Map 100 3 10 14s Bal,Ht

Redblack 150 3 9 27s Bal,Ht,Clr

Vec 310 15 39 110s Bal,Len2,Ht

Figure 4.16.: Evaluation using data structure benchmarks.

tool spends 10.7s on model checking the converted program. The primary reason

is that, based on the discovered interpolations, a large number of complex depen-

dent intersection types [19] for filter are inferred, which challenges the underlying

model checker. In contrast, our approach makes an effort to learn a simple classifier

from samples to permit generalization. As a result, the time required by proving our

verification conditions benefits from the concision of the invariants.

4.6.3 Inductive Functional Data Structure Programs

We further evaluate our approach on some benchmarks that manipulate data

structures. List is a library that contains standard list routines such as append ,

length , merge , sort , reverse and zip . Sieve implements Eratosthene’s

sieve procedure. Treelist is a data structure that links a number of trees into a list.

Braun tree is a variant of balanced binary trees. They are described in [3]. Ralist

is a random-access list library. Avl tree and Redblack are implementation of two
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balanced tree AVL tree and Redblack tree. Bdd is a binary decision diagram library.

Vec is a OCaml extensible array libraray. These benchmarks are used for evaluation

in [7]. Fifo is a queue structures maintained by two lists, adapted from the SML

library [48]. Set/Map is the implementation of finite maps taken from the OCaml

library [49].

We check the following properties: Len1, the various procedures appropriately

change the length of lists; Len2, the vector access index is nonnegative and properly

bounded by the vector length; Bal, the trees are recursively balanced (the definition

of balance in different tree implementations varies); Sz or Ht, the functions coordinate

to change the number of elements contained and the height of trees; Clr, the tree

satisfies the redblack color invariant; VOrder, the BDD maintains the variable order

property.

The results are summarized in Fig. 4.16. LOC is the number of lines in the program,

An is the number of required annotations (for instrumenting data structure specifica-

tions), T is the total time taken by our system. LiqTyAn is the number of annotations

optimized in LiquidTypes system. The number of annotations used in our system

is reflected in column An. These annotations are simply the property in Fig. 4.16.

Our experiment shows that we eliminate the burden of annotating a predefined set of

likely invariants used to prove these properties, required in LiquidTypes, because

we infer such invariants automatically.

For example, in the Vec library, an extensible array is represented by a balanced

tree with balance factor of at most 2. To prove the correctness of its recursive balanc-

ing routine, recbal (l , v , r ), which aims to merge two balanced trees (l and r )

of arbitrarily different heights into a single balanced tree together with a data struc-

ture element v , our tool infers a complex invariant (equivalent to a 4-DNF formula)

describing the result of recbal. Without that invariant, the refinement type checker

will end up rejecting the correct implementation. In contrast, such a complicated

invariant is required to be manually provided in LiquidTypes. Or, at least, the

programmer has to provide the shape of the desired invariant (the tool then considers
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all likely invariants of the presumed shape). The annotation burden of recbal in

LiquidTypes is listed as below in which ν refers to the result of recbal and ht

is a measure definition that returns the height a tree structure.

1.Bal (ν)(A : vec) : ht ν {≤,≥} htA {−,+} [1, 2, 3]

2.Bal (ν) : ht ν{≥,≤}(ht l >= ht r ? ht l : ht r) {−,+} [0, 1, 2]

3.Bal (ν) : ht ν ≥ (ht l ≤ ht r + 2 ∧ ht l ≥ ht r − 2 ?

(ht l ≥ ht r ? ht l : ht r) + 1 : 0)

4.Bal (ν) : ht ν ≥ (ht l ≥ ht r ? ht l : ht r) +

(ht l ≤ ht r + 2 ∧ ht l ≥ ht r − 2 ? 1 : [0,−1])

The four annotations are already complex because the desired invariant of recbal

must contain disjunctive clauses. Without suitable expertise, providing such annota-

tions could be challenging. In comparison, our tool automatically generates a Boolean

combination of the necessary atomic predicates parameterized from the hypothesis

domain (parameterized from Equation 4.1). It learns invariants from sampling the

program and closes the gap between the programmer’s intuition and inference mech-

anisms performed by formal verification tools.

Fig. 4.16 does not show the time taken by LiquidTypes because it crucially

depends on the relevance of user-provided invariants.

Limitations. There are a few limitations to our current implementation. First, we

rely on an incomplete type system Sec. 2.2. In particular, our type system is not as

complete as [50] which automatically adds ghost variables into programs to remedy

incompleteness in the refinement type system. Second, our tool fails if our hypothesis

domain is not sufficiently expressive to compute a classifier for an invariant. As part

of future work, we plan to consider ways to gradually increases the expressivity of

the hypothesis domain by parameterizing Equation 4.1. Third, this technique does

not allow data structure measures to be defined as mappings from datatypes to sets
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(e.g. a measure that defines all the elements of a list), preventing us from inferring

properties like list-sorting, which requires reasoning about the relation between the

head element and all elements in its tail.

4.7 Related Work

There has been much work exploring the incorporation of refinement types into

programming languages. DML [3] proposed a sound type-checking system to vali-

date programmer-specified refinement types. LiquidTypes [7] alleviates the burden

for annotating full refinement types; it instead blends type inference with predi-

cate abstraction [15], and infers refinement types from conjunctions of programmer-

annotated Boolean predicates over program variables, following the Houdini ap-

proach [35].

There has also been substantial advances in the development of dependent type

systems that enable the expression and verification of rich safety and security prop-

erties, such as Ynot [51], F* [52], GADTs and type classes [53, 54], albeit without

support for invariant inference. The use of directed tests to drive the inference pro-

cess additionally distinguishes our approach from these efforts.

Higher-order model checkers, such as MoCHI [13], compute predicate abstrac-

tions on the fly as a white-box analysis, encoding higher-order programs into recur-

sion schemes [11]. Recent work in higher-order model checking [55] has demonstrated

how to scale recursion schemes to several thousand rules. We consider the verification

problem from a different angle, applying a black-box analysis to infer likely invariants

from sampled states. In a direction opposite to higher-order model checking, HMC [9]

translates type constraints from a type derivation tree into a first-order program for

verification. However, 1) the size of the constraints might be exponential to that of the

original program; 2) the translated program loses the structure of the original, thus

making it difficult to provide an actual counterexample for debugging. Popeye [56]

suggests how to find invariants from counterexamples on the original higher-order
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source, but its expressiveness is limited to conjunctive invariants whose predicates

are extracted from the program text.

Refinement types can also be used to direct testing, demonstrated in [40]. A

relatively complete approach for counterexample search is proposed in [41] where

contracts and code are leveraged to guide program execution in order to synthesize

test inputs that satisfy pre-conditions and fail post-conditions. In comparison, our

technique can only find first-order test inputs for whole programs. However, existing

testing tools can not be used to guarantee full correctness of a general program.

Dynamic analyses can in general improve static analyses. The ACL2 [57] system

presents a synergistic integration of testing with interactive theorem proving, which

uses random testing to automatically generate counterexamples to refine theorems.

We are in part inspired by Yogi [58], which combines testing and first-order model

checking. Yogi uses testing to refute spurious counterexamples and find where to

refine an imprecise program abstraction. We retrieve likely invariants directly from

tests to aid automatic higher-order verification.

There has been much interest in learning program invariants from sampled pro-

gram states. Daikon [59] uses conjunctive learning to find likely program invariants

with respect to user-provided templates with sample states recorded along test runs.

A variety of learning algorithms have been leveraged to find loop invariants, using both

good and bad sample states: some are based on simple equation or template solv-

ing [44,60,61]; others are based on off-the-shell machine learning algorithms [36,46,47].

However, none of these efforts attempt to sample and synthesize complex invariants,

in the presence of recursive higher-order functions.



101

5 AUTOMATICALLY LEARNING SHAPE SPECIFICATIONS

Understanding and discovering useful specifications in programs that manipulate so-

phisticated data structures are central problems in program analysis and verification.

A particularly challenging exercise for shape analyses, and the focus of this chapter,

involves reasoning about ordering specifications that relate the shape of a data struc-

ture (e.g., the data structure implements a binary tree) with the values contained

therein (e.g., the binary tree traverses its elements in-order).

To illustrate the issue, consider the elements function shown in Fig. 5.1. The

intended behavior of this function is to flatten a binary tree into a list by calling

the recursive function flat which uses an accumulator list for this purpose. We

depict the input-output behavior of elements with an input tree t and output

list ν in Fig. 5.2.1 The meta-variable ν in the figure represents the result of calling

elements (i.e., in this case ν = elements t for the input tree rooted at node

t).2 While there are a number of specifications that we might postulate about this

function (e.g., the number of nodes in the output list is the same as the number of

nodes in the input tree, or the values contained in the output list are the same as

the values contained in the input tree), a more accurate and useful specification, that

subsumes the others, is that the in-order relation between the elements of the input

tree corresponds exactly to the forward-order (i.e., occurs-before) relation between

the elements of the output list.

We are interested in automatically learning specifications of this kind that ex-

press interesting ordering relations between the elements of a data structure, taking

into account properties of the structure’s shape, based solely on input-output obser-

vations. While having such specifications has obvious benefit for improved program

1Ignore the non-solid arrows and their labels for the time being.
2We preserve this convention throughout the chapter.
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type ’a list =

| Nil

| Cons ’a *

’a list

type ’a tree =

| Leaf

| Node ’a *

’a tree *

’a tree

// flat:’a tree -> ’a list

// -> ’a list

l et rec flat accu t =

match t with

| Leaf -> accu

| Node (x, l, r) ->

flat(x::(flat accu r)) l

// elements:’a tree->’a list

l et elements t = flat [ ] t

Figure 5.1.: Tree flattening function.
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Figure 5.2.: Pictorial example of atomic shape predicates.

documentation and understanding, they are particularly useful in facilitating modu-

lar verification tasks. For example, ordering specifications naturally serve as interface

contracts between data structure libraries and client code that can be subsequently

leveraged by expressive refinement type checkers [62].

Even for a function as simple as elements , however, manually providing a

specification that relates the values contained within the input tree and output list is
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non-trivial [63, 64]. It is even less apparent how we might define a data-driven infer-

ence procedure to automatically discover and verify such properties. This is because

any such procedure must consider the symbiotic interplay of three key components,

each of which is complex in its own right: (i) a specification language that is both

expressive enough to describe properties relating the shape of a data structure and

the values that it contains (for example the in-order relation mentioned above), yet

which is nonetheless amenable as a target for learning and specification synthesis;

(ii) a learning algorithm that can perform this synthesis task, yielding input-output

specifications from the predicates drawn from the specification language; and, (iii) an

automated verification procedure that enables formal verification of the implementa-

tion with respect to synthesized specifications learnt from observations.

Specification language . Our approach directly leverages the type definition of a

data structure to enable generation of a set of atomic predicates that state general

ordering properties about the values contained in the data structure with respect to

its shape, given that interesting properties of inductive data structures are typically

related to the way in which constructors are composed.

Learning algorithm . Our technique algorithmically uses these atomic predicates to

postulate potentially complex shape specifications, learnt exclusively from the input-

output behavior of functions that manipulate the data structure.

Notably, existing data-driven learning techniques are ineffective in discovering

such specifications. Template-based mining techniques [59,61,65] require us to provide

the Boolean skeleton of these specifications a priori, which we often do not know.

Classification-based learning techniques [44,46,47,66,67] search for specifications that

rule out so-called bad program states that represent violations of programmer-supplied

assertions, usually annotated as post-conditions in source programs. The quality of

searched specifications is thus limited by the quality of these annotations. More

importantly, because these approaches fail to discover any useful information in the

absence of annotated assertions, they would be unable to discover any interesting

specification for the assertion-free program given in Fig. 5.1.
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We address these issues by presenting the first (to the best of our knowledge)

data-driven technique to automatically discover expressive shape specifications, with-

out assuming any predefined templates, assertions or post-conditions, yet which is

nonetheless able to learn the strongest inductive invariant (Sec. 5.3.2) in the solution

space from which specifications are drawn.

Verification procedure . Our algorithm automatically verifies the correctness of

these specifications in an expressive refinement type system. Cognizant that a pre-

sumed specification ψ may only express an unsound approximation of the correct

hypothesis, our technique is progressive: i.e., provided that the solution space from

which specifications are drawn is sufficiently expressive, an unsound ψ serves as a

counterexample that can be used to generate additional tests, eventually leading to

the strongest inductive invariant in the solution space.

Contributions. Thus, our key contributions are in the development of a principled

approach to generate useful atomic predicates for inductive data types drawn from a

rich specification language, and a convergent learning algorithm capable of inferring

verifiable ordering specifications using these predicates. Specifically, we:

1. Discover predicates for the expression of shape properties and generate their in-

ductive definitions from the type definition of arbitrary user-defined algebraic

data types.

2. Devise a data-driven learning technique to perform automatic inference and syn-

thesis of function specifications using these predicates. Importantly, this learn-

ing strategy assumes no programmer annotations in source programs.

3. Verify the soundness of discovered specifications leveraging an expressive refine-

ment type system equipped with a decidable notion of subtyping.

4. Evaluate our ideas in a tool, DOrder, which we use to synthesize and verify

specifications on a large set of realistic and challenging functional data structure

programs.



105

The remainder of the chapter provides an overview of our specification language

(Sec. 5.1); explains the synthesis mechanism through a detailed example (Sec. 5.2);

provides details about type system, verification procedure, as well as soundness

and progress results (Sec. 5.3); and describes generalizations of the core technique,

presents implementation results, related work and conclusions (Secs. 5.4, 5.5, and 5.6).

5.1 Specification Language

The search space of our data-driven learning procedure includes shape proper-

ties defined in terms of atomic predicates stating either the containment of a certain

value in a data structure, or relations establishing ordering between two elements

found within the structure. These predicates define the concept class from which

specifications are generated [68]. We discuss the basic intuition for how these pred-

icates are extracted for the data types defined in our running example in Fig. 5.1

below.

We first consider possible containment predicates for trees. We are interested in

knowing if a certain value u is present in a tree t. By observing the type definition of

’a tree in Fig. 5.1, we know that only the constructor Node contains a value of

type ’a as its first argument. Therefore we can deduce that if u is present in t then

either t = Node (u, lt, rt), or t = Node (v , lt, rt) and u is contained within lt or rt

(with u 6= v). A similar argument can be made about lists. Containment predicates

like these are denoted with a dashed horizontal arrow (ν 99K u and t 99K u) as shown

in the first two rows of Fig. 5.3.

A more interesting predicate class is one that establishes ordering relations be-

tween two elements of a data structure, u and v . Recall that in the tree defi-

nition only Node constructors contain values. However, since Node contains two

inductively defined subtrees, there are several cases to consider when establishing an

ordering relation among values found within a tree t. If we are interested in cases

where the value u appears “before” (according to a specified order) v , we could ei-
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ν 99K u the value u is reachable from the list ν

t 99K u the value u is reachable from the tree node t

ν : u → v the value u appears before the value v in list ν

t : u ↙ v
the value v occurs in the left subtree of

a node containing the value u in tree t

t : u ↘ v
the value v occurs in the right subtree of

a node containing the value u in tree t

t : u xv

there is a node in the tree t for which

u is contained in its left subtree and

v is contained in its right subtree.

Figure 5.3.: Atomic shape predicates for lists and binary trees.

ther have that: (i) the value v occurs in the first (left) subtree from a tree node

containing u, described by the notation t : u ↙ v in Fig. 5.3, (ii) the value v occurs

in the second (right) subtree, described by the notation t : u ↘ v , (iii) or both values

are in the tree, but u is found in a subtree that is disjoint from the subtree where v

occurs. Suppose there exists a node whose first subtree contains u and whose second

subtree contains v . This is the last case of Fig. 5.3, and it is denoted as t : u xv .

The symmetric cases are obvious, and we do not describe them. Notice that in this

description we have exhausted all possible relations between any two values in a tree.

The same argument can be made for list , which renders either the forward-order

if the value u comes before v in a list l as l : u → v , or the backwards-order for the

symmetric case. Thus, our ordering predicates consider all relevant applications of

constructors in which u and v are supplied as arguments.

The inductive definitions of the predicates obtained for lists and trees are presented

in Fig. 5.4. For lists, the containment predicate l 99K u recursively inspects each

element of a list l and holds only if u can be found in the list. The ordering predicate

l : u → v relates a pair (u, v) to l if u appears before v in l. Similar definitions are
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list l = Nil l = Cons (u ′, l′)

l 99K u false u = u ′ ∨ l′ 99K u

l : u → v false (u = u ′ ∧ l′ 99K v) ∨ l′ : u → v

tree t = Leaf t = Node (u ′, tl, tr)

t 99K u false u = u ′ ∨ tl 99K u ∨ tr 99K u

t : u ↙ v false
(u = u ′ ∧ tl 99K v) ∨

tl : u ↙ v ∨ tr : u ↙ v

t : u ↘ v false
(u = u ′ ∧ tr 99K v) ∨

tl : u ↘ v ∨ tr : u ↘ v

t : u xv false
(tl 99K u ∧ tr 99K v) ∨

tl : u xv ∨ tr : u xv

Figure 5.4.: Ordering and containment for list and tree.

given for trees. For example, the predicate t : u xv is satisfied only if the tree t

contains a subtree (including t itself) whose left subtree contains u and right subtree

contains v .

To enable verification using off-the-shelf SMT solvers, our specification language

disallows quantifier alternations (specifications are in prenex normal form, with uni-

versal quantification only permitted at the top-level), but nonetheless retains expres-

sivity by allowing arbitrary Boolean combinations of the predicates. For example, we

can specify elements (Fig. 5.1) with the following two specifications:(
∀u, ν 99K u ⇐⇒ t 99K u

)
(
∀u v , ν : u → v ⇐⇒


t : v ↙ u ∨
t : u xv ∨
t : u ↘ v

) (5.1)
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where the free variables u, v of Fig. 5.3 are universally quantified. In words, the

specifications state that: (i) the values contained in the input tree t and the output

list ν are exactly the same and (ii) for any two values u and v that appear in the

forward-order in the output list ν, they are in the in-order of the input tree and vice

versa. These specifications accurately capture the intended behavior of the function.

The full power of our specification language is realized in a practical extension

(Sec. 5.4.2) that combines shape predicates with relational data ordering constraints,

which are binary predicates, resulting in what we refer to as shape-data properties. For

example, the following specification describes the characteristics of a binary search

tree (BST), such as the instantiation (tree t) given in Fig. 5.2:(
∀u v , (t : u ↙ v ⇒ u > v) ∧ (t : u ↘ v ⇒ u < v)

)
We can refine the specification of elements when applied to a BST to yield an

accurate shape-data property that states the output list must be sorted: (∀u v , ν :

u → v ⇒ u < v).

Hypothesis Domain. Equipped with these inductive definitions, we can define

the hypothesis domain of containment and ordering properties which we denote as

Ω. Given a function f , our hypothesis domain consists of a set of atomic predicates

which relate the inputs and outputs of f . Assume that θ(f) is the set of function

parameters and return values for f . Moreover, assume that θD(f) is the subset of

θ(f) that includes all variables with data structure type (e.g., list or tree ) and

θB(f) is the subset of θ(f) that includes all variables with base type (e.g., bool or

type variables).

The set of containment and ordering atomic predicates corresponding to a data

structure variable d ∈ θD(f) included in the hypothesis domain of f contains:

Ω(d) = {d 99K u, d 99K v} ∪


{d : u → v , d : v → u} typeof (d) = list
d : u ↙ v , d : u ↘ v , d : u xv ,

d : v ↙ u, d : v ↘ u, d : v xu

 typeof (d) = tree
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where only well-typed predicates are considered (depending on the type of d).

The logical variables u and v are free here, and will be universally quantified in the

resulting specifications. For a variable x ∈ θB(f) of a base type we define:

Ω(x) =


x typeof (x) = bool

{u = x, v = x} ∪

{d 99K x | d ∈ θD(f)}
otherwise

Finally, the hypothesis domain of a function f consists of the atomic predicates de-

scribed by the definition of Ω(f) below.

Ω(f) =
⋃

x∈θ(f)

Ω(x)

Specification Space. Assume that we denote with BF (Ω) the smallest set of

Boolean formulas containing all the atomic predicates of Ω and closed by standard

propositional logic connectives. The specification space of a function f , denoted by

Spec(Ω, f), is the set of input-output specifications derivable from BF (Ω(f)):

Spec(Ω, f) = {(∀u v , ξ) | ξ ∈ BF (Ω(f))}

The free variables u and v occurring in the predicates found in ξ are universally

quantified. Our construction guarantees that the specifications in Spec(Ω, f) can be

encoded within the BSR (Bernays-Schönfinkel-Ramsey) first-order logic.

5.2 Specification Inference

Fig. 5.7 illustrates the design and implementation of our specification inference

system. The input to our system is a data structure program. To bootstrap the

inference process, we can use any advanced testing techniques for data structures.

For simplicity, we use a random testing approach based on QuickCheck [31], which

runs the program with a random sequence of calls to the API (interface functions) of

the data structure. During this phase, we collect a set of inputs and outputs for each
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⌫

82

70

68 71

68 70 71 82 83 91

83 91t accu

? unreachable
node

(a) Vflat: input (t and accu), and

output (ν) sampled data structures

from flat .

ΠI



Π0 ≡ t : u ↙ v Π1 ≡ t : u ↘ v Π2 ≡ t : u xv

Π3 ≡ t : v ↙ u Π4 ≡ t : v ↘ u Π5 ≡ t : v xu

Π6 ≡ t 99K u Π7 ≡ t 99K v

Π8 ≡ accu : u → v Π9 ≡ accu : v → u

Π10 ≡ accu 99K u Π11 ≡ accu 99K v

ΠO Π12 ≡ ν 99K u Π13 ≡ ν : u → v

(b) Hypothesis domain (Ω(flat )):

ΠI(Ω(flat )) = {Π0, · · · ,Π11}, and

ΠO(Ω(flat )) = {Π12,Π13}.

(u, v) Π0 Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12 Π13

S

(68, 70) 0 0 0 1 0 0 1 1 0 0 0 0 1 1

(83, 91) 0 0 0 0 0 0 0 0 1 0 1 1 1 1

(82, 83) 0 0 0 0 0 0 1 0 0 0 0 1 1 1

(68, 71) 0 0 1 0 0 0 1 1 0 0 0 0 1 1

(70, 71) 0 1 0 0 0 0 1 1 0 0 0 0 1 1

U

(91, 83) 0 0 0 0 0 0 0 0 0 1 1 1 1 0

(91, 70) 0 0 0 0 0 0 0 1 0 0 1 0 1 0

(71, 68) 0 0 0 0 0 1 1 1 0 0 0 0 1 0

(82, 70) 1 0 0 0 0 0 1 1 0 0 0 0 1 0

(71, 70) 0 0 0 0 1 0 1 1 0 0 0 0 1 0

(82, ⊥) 0 0 0 0 0 0 1 0 0 0 0 0 1 0

(⊥, 82) 0 0 0 0 0 0 0 1 0 0 0 0 0 0

(83, ⊥) 0 0 0 0 0 0 0 0 0 0 1 0 1 0

(⊥, 83) 0 0 0 0 0 0 0 0 0 0 0 1 0 0

(c) V b
flat is the evaluation of Vflat expressed in terms of the predicates of Fig. 5.5b.

Figure 5.5.: Learning shape specifications for the flat function in Fig. 5.1.
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Π1 Π2 Π3 Π6 Π8 Π11 Π13

S

0 0 1 1 0 0 1

0 0 0 0 1 1 1

0 0 0 1 0 1 1

0 1 0 1 0 0 1

1 0 0 1 0 0 1

U

0 0 0 0 0 1 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Boolean Formula from Fig. 5.5c

Π13 ⇐⇒ Π3 ∨Π8 ∨ (Π6 ∧Π11) ∨Π2 ∨Π1

Figure 5.6.: Predicates selected for separation w.r.t. Π13.

data structure function f into a sample set (which we generally denote with Vf ). We

assume the existence of generic serialization and deserialization functions, with the

obvious recursive structure on the definition of the types. The bookkeeping of inputs

and outputs simply records the mappings of variables to values, which in the case of

inductive data structures uses their trivial serialization.

Our system analyzes the data type definitions in the program and automatically

generates a set of atomic predicates (c.f. Sec. 5.1), defining the hypothesis domain

for the learning phase. For each function f , we partition its hypothesis domain

Ω(f) into ΠI(Ω(f)): the predicates over input variables of f (e.g., t and accu for

the flat function in Fig. 5.1), and ΠO(Ω(f)): the predicates over the functions

output (the implicit variable ν). When the context is clear, we use ΠI(f) or ΠI to

abbreviate ΠI(Ω(f)). This convention also applies to ΠO(f) and ΠO. The extraction

of predicates is abstractly depicted in the top left component of Fig. 5.7.
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Verification

Data Structure
Function : f

Atomic Predicate
Synthesis:

ΠI(f),ΠO(f)

ψ
√Specification

Synthesis : ψ

Sampling : Vf

Figure 5.7.: Specification synthesis architecture.

We then apply our learning algorithm to the samples in Vf , learning input-output

relations over the atomic predicates of ΠI(f) and ΠO(f) that hold for all the samples.

We obtain a candidate specification ψ for f , which is then fed into our verification

system. In case verification fails, we show in Sec. 5.3 that our technique can make

progress towards a valid specification for f by adding more tests systematically, pro-

vided that one such specification exists in the specification space of f . We illustrate

the entire process by considering the verification of the flat function in Fig. 5.1.

5.2.1 Sampling

We first instrument the entry and exit points of functions to collect their inputs

and outputs during testing. We use V flat to denote the set of samples collected

during sampling for flat . Intuitively, V flat represents a coarse underapproximation

of flat ’s input and output behavior. Abstractly, we regard a sample σ as a function

that maps program variables to concrete values in the case of base types, or a serialized

data structure in the case of inductive data types.

Fig. 5.5a presents a pictorial view of a sample resulting from a call to flat . The

sample manipulated by flat contains the input variables t and accu, as well as the

result ν (i.e. ν = flat t accu). In the figure, t is a root node with value 82, a link

to a left subtree rooted at a node with value 70, and no right subtree; accu is a two

node list. In the sample, the result of the evaluation of flat is a list in which the

in-order traversal of t is appended to accu.



113

Unreachables. While recording input/output pairs for runs of the function allows

us to learn how its arguments and result are manipulated, it is also important to

establish that data structures that are not used by the function cannot affect its be-

havior. To express such facts, we establish a frame property that delimits the behavior

of the function f . The property manifests through a synthetic value ⊥, which sym-

bolically represents an arbitrary value known to be unrelated to the data structures

manipulated by f . Our learning algorithm considers the behavior of predicates in the

hypothesis domain with respect to this value. By stating atomic containment and

ordering predicates in terms of ⊥, we ensure that specifications inferred for f focus

on values found in the data structures directly manipulated by f , preventing those

specifications from unsoundly approximating values unrelated to the data structures

manipulated by f .

Atomic Predicates. Given the atomic predicates in the hypothesis domain Ω( flat )

which are divided into ΠI and ΠO as shown in Fig. 5.5b,3 we next relate observed

samples with these predicates. Fig. 5.5c (ignore the first column labeled with S and

U for the moment) shows the result of evaluating the atomic predicates of Ω(flat )

– which are essentially recursive functions over the data structure – with different in-

stantiations for u and v derived from the sampled input/output pairs.4 The variables

u and v , which are always universally quantified in the final specifications, range over

values observed in the sampled data structures as well as the synthetic value ⊥. Im-

portantly, since rows containing identical valuations for the predicates do not aid in

learning, we keep at most one row with a unique valuation, discarding any repetitions.

We denote the samples represented by this table as V b
flat , a Boolean abstraction (or

abstract samples) of V flat according to Ω(flat ).

For instance, the first row considers the pair where the variable u has the value 68,

and the variable v has the value 70. The last four rows of Fig. 5.5c, containing pairs

with the synthetic value ⊥, and marked in blue, generalize observed data structures,

3ΠO is simplified by removing the symmetric cases for ease of exposition.
4Entries are labeled 0 for false, and 1 for true.
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Π1

Π2

Π3

Π8

Π6
Π11

Π4

ϕ

¬ϕ

Π5

V b
flat V b

flat

Π13

¬Π13

Π12

Figure 5.8.: Learning a classifier ϕ.

relating them to hypothetical elements ⊥ not accessible by the data structures of

flat . Thus, the pair (82,⊥) evaluates to true in Π6 because 82 is reachable in t; all

ordering predicates related to t where u = ⊥ or v = ⊥ (i.e., Π0 − Π5) are false since

there is no ordering relation between 82 and a value unreachable from t (see Fig. 5.5a).

5.2.2 Learning Specifications

Fig. 5.8 depicts our specification learning algorithm w.r.t. Π13, in which the full

set of observed abstracted samples V b
flat are depicted twice. They represent identical

copies of the whole space of abstract samples. Each dot represents a valuation of

in Fig. 5.5c. Each set marked with a predicate Π represents the samples that satisfy

Π. On the left hand side of the picture, we show the subsets of samples that satisfy

each predicate from Π0 to Π12. For perspicuity, the picture does not present an exact

representation of the sets shown in Fig. 5.5c; in particular some predicates not used in

the final specification are omitted. On the right hand side, we depict the separation

of V b
flat according to Π13. The objective of our learning is to obtain a classifier ϕ in

terms of the input predicates of ΠI (from Π0 to Π11) and Π12 which captures the same

set of samples that are included in the output predicate Π13. Once we find one such

classifier ϕ, we know that in all samples the following predicate holds: Π13 ⇐⇒ ϕ.
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This predicate can be considered a specification abstractly relating the function inputs

to its outputs, according to the predicate Π13.5

To synthesize this candidate specification by means of the output predicate Π13,

we split the samples in V b
flat according to whether the predicate Π13 holds in the

sample or not. In Fig. 5.5c we mark with S the samples Satisfying Π13, and with U

the samples for which Π13 is Unsatisfied. Then, the goal of our learning algorithm is

to produce a classifier predicate over ΠI (from Π0 to Π11) and Π12 which can separate

the samples in S from the samples in U.

However, the potential search space for a candidate specification is often large,

possibly exponential in the number atomic predicates in the hypothesis domain. To

circumvent this problem, our technique is inspired by the observation that a simple

specification is more likely to generalize in the program than a complex one [27,33].

To synthesize a simple specification, a learning algorithm should select a minimum

subset of the predicates that can achieve the separation. The details of the learn-

ing algorithm are presented in Sec. 5.2.3, but we show the final selection informally

in Fig. 5.6: Π1, Π2, Π3, Π6, Π8 and Π11 constitute a sufficient classifier. To compute

a final candidate classifier, we generate its truth table from Fig. 5.6. The truth table

should accept all the samples in S from Fig. 5.6 and conservatively reject every other

sample. This step is conservative because we only generalize the samples in U (the

truth table rejects more valuations than the ones sampled in Fig. 5.6). We omit this

step in our example in Fig. 5.5.

Once this truth table is obtained for the selected predicates, we apply standard

logic minimization [34] techniques to infer the Boolean structure of the classifier.

The obtained solution is shown in Fig. 5.6, which in turn represents the following

candidate specification by unfolding the definitions of the predicates ΠI and ΠO:

(
∀u v , ν : u → v ⇐⇒


t : v ↙ u ∨ accu : u → v

∨ (t 99K u ∧ accu 99K v)

∨ t : u xv ∨ t : u ↘ v

 ) (5.2)

5A similar construction of the input-output relation according to the output predicate Π12, which
is also in ΠO, will be considered later.
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l et rec insert x t =

match t with

| Leaf -> T (x, Leaf, Leaf)

| Node (y, l, r) ->

i f x < y then Node (y, insert x l, r)

else i f y < x then Node (y, l, insert x r)

else t

Figure 5.9.: Binary search tree insertion function.

Notice we add quantifiers to bind u and v , which essentially generalizes the specifica-

tion to all other unseen samples.

To construct all salient input-output relations between ΠI and ΠO in Fig. 5.5b, we

enumerate the predicates in ΠO. In a similar way, we use the other output predicate

Π12 ≡ ν 99K u to partition V b
flat , learning the following specification:

(
∀u, ν 99K u ⇐⇒ (t 99K u ∨ accu 99K u)

)
(5.3)

Verification. The conjunction of these two specifications are subsequently encoded

into our verification system as the candidate specification for flat . We have imple-

mented an automatic verification algorithm (described in Sec. 5.3), which can validate

specifications of this kind.

Precision. The structure of Fig. 5.5c allowed us to find a classifier separating S

from U, and thus provided us with a “⇐⇒ ” specification precisely relating ΠI with

Π12 or Π13. Unfortunately, but unsurprisingly, this is not always the case.

To see why, consider how we might infer a shape specification for the insert

function of a binary search tree (see Fig. 5.9), whose hypothesis domain is shown

in Fig. 5.10. As before, we proceed by executing the function, generating an abstract

view of the function’s concrete samples of V b
insert shown in Fig. 5.11.
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ΠI



Π0 ≡ t : u ↙ v Π1 ≡ t : u ↘ v Π2 ≡ t : u xv

Π3 ≡ t : v ↙ u Π4 ≡ t : v ↘ u Π5 ≡ t : v xu

Π6 ≡ t 99K u Π7 ≡ t 99K v

Π8 ≡ u = x Π9 ≡ v = x

ΠO Π10 ≡ ν : u ↙ v · · ·

Figure 5.10.: Hypothesis domain for the insert function.

As we have seen earlier, we would use Π10 to partition V b
insert to establish a

relation between the predicates in ΠI and the predicates in ΠO of Fig. 5.10. If we

consider the first S sample in Fig. 5.11, we see that it is exactly the same as the

first sample in U (except for the value of Π10), meaning that no classifier can be

generated from Fig. 5.11 to separate the samples precisely according to Π10, since

their intersection is not empty. To see why this could occur, consider the evaluation

of

insert 3 (Node (Node (Leaf , 2, Leaf ), 5, Leaf ))

Here, the input tree rooted at 5 has a non-empty left subtree rooted at 2. Based on

the recursive definition of insert , 3 is inserted into the right subtree of 2 and is

still in the left subtree of 5. Thus, abstracting the input-output behavior of insert

with a pair of elements (u = 5 and v = 3) in the sample would correspond to the first

row of S in Fig. 5.11 while the first row of U corresponds to an abstraction of a pair

of elements (u = 2 and v = 3). Clearly, the latter pair does not satisfy Π10 while the

former does.

To succeed in this case we need to relax the condition of obtaining exact “⇐⇒ ”

specifications by removing the samples that coincide in S and U for Π10 from S in

V b
insert. By doing so, upon inferring a classifier ϕ, we can conclude that ϕ ⇒ Π10 is

a likely specification for insert , since the set S has been generalized. Conversely,
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Π0 Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10

S
0 0 0 0 0 0 1 0 0 1 1

1 0 0 0 0 0 1 1 0 0 1

U

0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 1 0 1 1 0 0 0

0 0 0 1 0 0 1 1 0 0 0

0 1 0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 1 1 0 0 0

0 0 1 0 0 0 1 1 0 0 0

Figure 5.11.: Partition V b
insert evaluated from predicates in Fig. 5.10 using Π10.

if the coinciding samples are removed from U, we can learn another classifier ϕ′ and

output a specification of the form Π10 ⇒ ϕ′.

Adopting this relaxation, our approach infers the following specification for insert:

(
∀u v , t : u ↙ v ⇒ ν : u ↙ v

)
∧(
∀u v , ν : u ↙ v ⇒

 (t 99K u ∧ v = x) ∨
t : u ↙ v

)
which asserts that x is added only in the bottom layer of the tree and the order of

elements of the input tree is preserved in the output tree.

5.2.3 Formalization of Learning System

We now formalize the learning algorithm discussed in Sec. 5.2.2. Given a function

f and the hypothesis domain Ω (Sec. 5.1), the problem of inferring an input-output

specification for f reduces to a search problem in the solution space of Spec(Ω, f),

driven by the samples of f .
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For the remainder of the chapter, we assume that a program sample σ is a mapping

that binds program variables to values. These mappings are obtained from the log-file

that records the execution trace. To relate the hypothesis domain Ω(f) to a set of

samples Vf , we formally define a predicate-abstraction [15] function α on a sample

σ ∈ Vf as follows:

α(σ,Ω(f)) =
{
〈Π0(σ, u, v), · · · ,Πn(σ, u, v)〉

∣∣
u, v ∈ Val(σ) ∪ {⊥} and Π0, · · · ,Πn ∈ Ω(f)

}
where we assume that Val(σ) returns all values appearing in data structures within

σ. This definition is trivially extended to a set of samples, for which we overload

the notation as α(Vf ,Ω(f)). As can be seen in the definition above, we consider the

symbolic value ⊥ (unreachable from f c.f. Sec. 5.2.1) when sampling the quantified

variables u and v . The evaluation of predicates in Ω(f) is extended to the abstract

value ⊥ with the following set of equations:

(d 99K ⊥) = (d : u R⊥) = (d : ⊥R v) = 0 (x = ⊥) = ∗

for allR ∈ {↙,↘, x→}, u, v ∈ Val(σ) and x ∈ θB(f). Notice that by the semantics

of ⊥, we do not need to consider the data structure d ∈ θD(f) in the equations above.

In the first and the second cases, since ⊥ is assumed to be unrelated to d we can

safely deduce that the predicate must evaluate to 0. In the final case, any valuation

of the predicate is possible, since we do not know the value of ⊥; in that case, the

evaluation results in ∗ representing either 0 or 1.

Algorithm 4 defines the main synthesis procedure. The first step is to obtain a set

of samples Vf for the function f as described in the previous section. These samples

are then evaluated according to Ω(f) using the abstraction function α (deriving V b
f ).

For any valuation with a predicate Πj resulting in a value ∗ the full vector is duplicated

to consider both possible valuations of Πj.

We then call the Learn algorithm (Algorithm 5 described below) to synthesize a

candidate specification for f , which efficiently searches over the hypothesis domain of
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Algorithm 4: Synthesize (f)

let Vf = test(f) in;

let V b
f = α(Vf ,Ω(f)) in;

let ξ = Learn (V b
f , ΠI(Ω(f)), ΠO(Ω(f))) in (∀ u v , ξ)

f , based on the valuation V b
f . The resulting specification is returned after universally

quantifying the free variables u and v .

Algorithm 5 takes as input a set of abstract samples (Boolean vectors) V b, each

of which is an assignment to the predicates in ΠI ∪ ΠO; it aims to learn relations

expressed in propositional logic between the predicates in ΠI and those in ΠO, using

the structure of V b.

For each predicate Π ∈ ΠO, the algorithm partitions V b into the abstract sat

samples V b
S which satisfy Π and the unsat samples V b

U which do not. Each abstract

sample σb ∈ V b
S ∪ V b

U is a Boolean vector over the predicates ΠC ≡ ΠI ∪ ΠO\{Π}.
If V b

S is empty, we conclude that ¬Π is a candidate specification. The case when

V b
U is empty is symmetric. Otherwise the learning algorithm L aims to produce a

consistent binary classifier ϕ with respect to V b
S and V b

U , that is, it must satisfy the

following requirement:(
∀σb ∈ V b

S , ϕ(σb)
)

&
(
∀σb ∈ V b

U , ¬ϕ(σb)
)

In other words, the result of L(V b
S , V

b
U ,ΠC) should be an interpolant [36] separating

the sat samples (V b
S ) from the unsat samples (V b

U). If this classification algorithm

succeeds, Π ⇐⇒ L(V b
S , V

b
U ,ΠC) captures the iff relation between Π and the rest of

the predicates in ΠI ∪ ΠO (c.f. ΠC).

However, there is no guarantee that V b
S and V b

U must be separable because there

could be coinciding samples in V b
S and V b

U . To address this possibility, we first remove

coinciding samples from V b
U and infer Π ⇒ L(V b

S , V
b
U\V b

S ,ΠC), and similarly remove

them from V b
S , resulting in the specification L(V b

S\V b
U , V

b
U ,ΠC)⇒ Π. Algorithm 5 does

not list the cases when V b
U\V b

S or V b
S\V b

U are empty. In such cases, it is impossible for
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Algorithm 5: Learn (V b, ΠI , ΠO)∧
Π∈ΠO

(
let (V b

S , V b
U ) = partition(Π,V b) in

let ΠC = ΠI ∪ΠO\{Π} in
if V b

S = ∅ then ¬Π

else if V b
U = ∅ then Π

else (Π⇒ L(V b
S , (V

b
U\V b

S ),ΠC)) ∧
(L((V b

S\V b
U ), V b

U ,ΠC)⇒ Π)
)

L to find a classifier, indicating that the hypothesis domain is insufficient to find a

corresponding relation between Π and ΠC .

The implementation of L(V b
S , V

b
U ,ΠC) reduces to the well-studied problem of in-

ferring a classifier separating some samples V b
S from the other samples V b

U using pred-

icates form ΠC [46,67]. To generalize, we attempt to find the solution which uses the

minimal number of predicates from the hypothesis domain to classify the samples, as

exemplified in Fig. 5.6. A number of off-the-shelf solvers can be used to solve this

constraint optimization problem [69, 70]. We employ the simple classifier described

in Sec. 4.3 to implement L.

5.3 Verification

To formally verify program specifications, we encode them into refinement types

( RType in Fig. 2.1) and employ a refinement type system. A data type such as

list is specified into a refinement data type written {ν : list | ψ} where ψ (a type

refinement predicate) is a Boolean-valued expression. This expression constraints the

value of the term (defined as the special variable ν) associated with the type. In

this chapter, ψ is drawn from the specification space parameterized by a hypothesis

domain Ω. For expository purposes, we assume Ω is instantiated to the domain

defined in Sec. 5.1.



122

Recall that a refinement function type, written {x : Px → P}, constrains the

argument x by the refinement type Px, and produces a result whose type is specified

by P . We use the specType function Sec. 2.1 to encode a function specification into

a refinement function type. For example, the specification (5.3) is encoded as the

following type:

flat : accu : ’a list → t : ’a tree →{
ν : ’a list |

(
∀u, ν 99K u ⇐⇒ (t 99K u ∨ accu 99K u)

)}

5.3.1 Refinement Type System

An excerpt of our refinement type system is given in Fig. 5.12. The type system

is an extension of Liquid Types [7, 8]. The basic typing judgment is of the form

Γ ` e : P , where the typing environment Γ comprises type bindings mapping program

variables to refinement types (eg. x : P ), and refinement predicates constraining the

variables bound in Γ. The judgment means that under the environment Γ, where the

values in the bound variables are assumed to satisfy the constraints contained in Γ,

the expression e has the refinement type P . To ease the exposition, we show only

the most salient rules, and in particular, we only show instances of the general rules

for the list data structure. The full type system provides general rules for arbitrary

inductive data types and is presented in Sec. 5.4.1.

The List Match rule stipulates that the entire expression has type P if the

body of each of the match cases has type P under the type environment extended

with the variables bound by the matched pattern, where the variables bound assume

types as defined by the constructor definition. Moreover, we unfold the inductive

definitions of the atomic predicates from our hypothesis domain Ω in the environment,

exploiting the fact that we know the structure of the matched pattern (c.f. the case

considered), thus allowing us to use the variables bound in the matched pattern to

instantiate the variables of the recursive unfolding of the predicate. For instance,
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List Match

Γ ` v : ’a list[
Γ; (∀u v , v : u → v ⇐⇒ false ∧ ∀u, v 99K u ⇐⇒ false)

]
` e1 : P Γ; x : ’a; xs : ’a list ; (∀u, v 99K u ⇐⇒ (u = x ∨ xs 99K u)

∧ ∀u v , v : u → v ⇐⇒ ((u = x ∧ xs 99K v) ∨ xs : u → v))

 ` e2 : P

Γ `
(

match v with | Nil → e1 | Cons (x, xs)→ e2

)
: P

List Constructor (Cons)

‖Γ‖ 
 x : ’a ‖Γ‖ 
 xs : ’a list

Γ ` Cons(x, xs) :
{
ν : ’a list

∣∣ ∀u v , ν : u → v ⇐⇒ ((u = x ∧ xs 99K v) ∨ xs : u → v)

∧ ∀u, ν 99K u ⇐⇒ (u = x ∨ xs 99K u)

}

Function

Γ; f : {x : Px → P};x : Px ` e : Pe Γ;x : Px ` Pe <: P

Γ ` fix ( fun f → λx. e) : {x : Px → P}

Subtype DType

Valid(〈Γ〉 ∧ 〈ψ1〉 ⇒ 〈ψ2〉)

Γ ` {D | ψ1} <: {D | ψ2}

Figure 5.12.: Refinement typing rules for shape specifications (list excerpt).

in the Cons (x, xs) case, we use x and xs to stand for the existential variables u ′

and l′ in the definition of Fig. 5.4. In summary, the guard predicates unfold the

inductive definitions introduced in Fig. 5.4. This strategy of unfolding inductive

definitions when explicitly deconstructing (with pattern matching) data structures is

reminiscent of the ones used in [8, 71, 72]. The typing rule for List Constructor

follows the same idea as the rule for List Match in the type of the consequent.

The Function rule for recursive functions has a subtyping constraint associated

with function abstractions:
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Γ;x : Px ` Pe <: P

which establishes a constraint on the post-condition P of the abstraction (in our case

encoding the synthesized candidate specifications) and it is required to be consistent

with Pe inferred for the function body using the type checking rules.

Finally, the rule Subtype DType checks whether a refinement type subtypes an-

other by issuing an implication verification condition over the refinement predicates

of the types involved. We use the notation 〈ψ〉 to denote the encoding of refine-

ment predicates ψ into terms of (decidable) BSR logic. Our encoding translates the

containment and ordering predicates in ψ into uninterpreted relations.

The validity check in the premise of the rule Subtype DType requires that the

conjunction of the environment formula 〈Γ〉 and 〈ψ1〉 implies 〈ψ2〉. Our encoding of

〈Γ〉 is adapted from [7,8]:

〈Γ〉 =
∧{

〈[x/ν]ψ〉
∣∣ (x : {τ | ψ}) ∈ Γ ∧ τ ∈ B ∪D

}
Recall that for a function f , the set of specifications allowed in the specification space

of containment and ordering formulae are restricted to the form:

ψ ∈ {(∀u v , ξ) | ξ ∈ BF (Ω(f))}

The prenex normal form of the encoding of the premise in the rule Subtype DType,

Valid(〈Γ〉 ∧ 〈ψ1〉 ⇒ 〈ψ2〉, therefore results in a ∃∗∀∗ quantifier prefix, with no func-

tions. As a result, subtype checking in our system is decidable and can be handled

by a BSR solver [73].

The soundness of the refinement type system is defined with respect to a reduction

relation (↪→) that encodes the language’s operational semantics, which is standard:

Theorem 5.3.1 If ∅ ` e : P , then either e is a value, or there exists an e′ such that

e ↪→ e′ and ∅ ` e′ : P .

The completeness of subtype checking reduces to the completeness of the underlying

solver for inductive data types. For lists or trees, we use additional axioms (as lo-

cal theory extensions [74]) based on first-order axiomatizations of transitive closures
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found in [17, 18] to bound the shape of list or tree data structures in BSR models to

ensure completeness.

5.3.2 Progress

For a candidate specification ψ inferred for the recursive function f , our verifi-

cation algorithm encodes ψ into the refinement type of f and checks the following

judgment
Γf ` fix ( fun f → λx. e) : specType(Γf , f, ψ)

where Γf is the type environment under which f is defined. We call a specification ψ

which can be type-checked as shown above an inductive invariant of f . We call ψ the

strongest inductive invariant of f in Spec(Ω, f), if for any other inductive invariant

ψf of f in Spec(Ω, f), Γf ` specType(Γf , f, ψ) <: specType(Γf , f, ψf ) holds.

Importantly, our technique is progressive. This means that it is always possible

to add new tests to refine ψ whenever ψ fails to be inductive, provided that one

inductive invariant exists in the specification space. We formalize the progressive

property in Theorem 5.3.2 under the assumption that the underlying solver is com-

plete (c.f. Sec. 5.3.1).

The theorem states that if an inductive invariant of f exists in the specification

space parameterized by Ω (i.e., in Spec(Ω, f)), then for any candidate specification ψ

inferred for f , either ψ is such an invariant (i.e., refinement type checking succeeds)

and is the strongest one in the specification space, or there exists a test input which

yields a concrete program sample that invalidates ψ. We remark that finding such

a test input reduces to the well-studied problem of generating inputs for a program

(function f) causing it to violate its specifications (safety property ψ). In our setting,

we can harness techniques such as [75], which provides a relatively complete method

for counterexample generation in functional (data structure) programs, to derive test

inputs that violate ψ. In fact, because ψ is an input-output specification, we can

directly reconstruct a new test input from SMT models of subtype checking failures.
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In turn, running the learning algorithm using the new program samples from the new

input, necessarily produces a more refined invariant. This strategy, which can be

implemented via a CEGIS (counterexample guided inductive synthesis) loop [68,76],

ensures that we can construct a finite number of test cases to guarantee convergence

in the presumed specification space.

Theorem 5.3.2 Given a function f with a hypothesis domain Ω, and assuming that

an inductive invariant of f exists in Spec(Ω, f), if Γf 6` fix ( fun f → λx. e) :

specType(Γf , f, ψ) where ψ = Synthesize(f), then there exists a test input for f

which leads to an unseen sample σ of f , for which ψ(σ) does not hold; otherwise ψ

is the strongest inductive invariant of f in Spec(Ω, f).

Proof We begin the proof by firstly introducing several notations that will be used

throughout the proof. Without loss of generality, we assume f is a recursive function.

Let Σ be the entire sample space of f (each sample collects an input-output

behavior of f). We define the set of samples reachable up to the nth recursive call of

f as Reach(ϕinit, n) where ϕinit is the set of all the possible inputs to f (the most

general precondition of f). Intuitively, the precondition ϕinit represents all the valid

input values of f . For example, if the type of a parameter of f is a tree, then ϕinit

defines that the corresponding input must be a tree instead of other data structures.

We assume ψ is the candidate invariant produced by our specification inference

algorithm (Algorithm 4).

Let us define the predicate Ψ(n), which is true if and only if the candidate invari-

ant ψ can be invalidated in less than n+ 1 recursive calls to f , meaning the recursive

call to f is unfolded at most n times:

Ψ(n) = ∃σ ∈ Reach(ϕinit, n). ¬ψ(σ)

This predicate is true if there exists a test input (satisfying ϕinit and we do not

care the specific values of the input), which unfolds f ’s recursion n times and then

produce a sample σ that renders ψ unsatisfiable. Essentially, the satisifiability of

Ψ(n) explains why ψ is not an invariant of f .
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We now split the proof into two parts:

(A). To prove the theorem, when Γf 6` fix ( fun f → λx. e) : specType(Γf , f, ψ)

there must exist an input to f that invalidate ψ, we assume there exists no such

test input to f that can produce at least one unseen program sample σ, for which

ψ(σ) does not hold. In turn, this means ∀n. Ψ(n) is unsatisfiable. According to the

definition of Ψ(n), we have

∀n.Reach(ϕinit, n)⇒ ψ

Recall that ϕinit is the most general precondition of f . Because n can be lifted to

infinity, ψ is obviously an invariant of f , possibly not an inductive invariant though.

We keep our proof simple by assuming ΩO(f) = {ΠO}, that is, we assume that

there is only one predicate in ΩO(f). The proof can be trivially extended to consider

the case in which there are multiple predicates in ΩO(f), due to the construction

of Algorithm 5.

We also assume that Spec(Ω, f) is expressive enough to represent inductive invari-

ants of f . Particularly, we assume that the strongest inductive invariant in Spec(Ω, f)

is ψind. Note that we are unaware of the contend of ψind. We only know its existence.

We can assume that ψind is given in the following form, capturing the input-output

relations of f ,

ψind = ∀u v , ψind1 ∧ ψind2

ψind1 = (ϕind1 ⇒ ΠO)

ψind2 = (ΠO ⇒ ϕind2)

Recall that ψ is the candidate invariant produced by our learning algorithm. Based

on the construction of Algorithm 5, we can observe that ψ is of the form

ψ = ∀u v , ψ1 ∧ ψ2

ψ1 = (ϕ1 ⇒ ΠO)

ψ2 = (ΠO ⇒ ϕ2)
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where ϕ1 and ϕ2 are classifiers learned by the L algorithm (Sec. 4.3) invoked by Al-

gorithm 5 (which range over ΩI(f) in this case).

We denote by Ω(ϕindi) the set of atomic predicates used to construct ϕindi where

i = 1, 2. Each atomic predicate in Ω(ψindi) belongs to the hypothesis domain of Al-

gorithm 5. We also use Ω(ϕi) to denote the set of atomic predicates appearing in ϕi

where i = 1, 2. Of course, these predicates belong to the hypothesis domain of our

learning algorithm, following our assumptions.

Without loss of generality, in what follows we assume Ω(ϕi) ⊆ Ω(ϕindi) where

i = 1, 2. This is valid because if there indeed exists an atomic predicate Π that

belongs to Ω(ϕi)\Ω(ϕindi) where i = 1, 2, we can add the predicate Π into ϕindi by

rewriting ϕindi as ϕindi ∧ (Π ∨ ¬Π). Therefore we only need to consider the case in

which Ω(ϕi) ⊆ Ω(ϕindi) holds where i = 1, 2.

We further claim that Ω(ϕi) ⊂ Ω(ϕindi) is not possible. Recall that our learning

algorithm finds the minimum classifier ϕi in terms of the number of selected atomic

predicates from Ω(f) to classify all the abstract Boolean samples S (which are derived

from the predicate-abstraction function α defined in Sec. 5.2.3 applied to input-output

samples that satisfy ΠO) and all the abstract Boolean samples U (which are derived

from the α function applied to input-output samples that do not satisfy ΠO) where

i = 1, 2. (Algorithm 5 carefully deals with the case in which there exist identical

samples in S and U .) Besides, ψind is assumed to be the strongest inductive invariant

of f in Spec(Ω, f). If the number of predicates in Ω(ϕi) is less than that in Ω(ϕindi),

the samples used to build the classifier ϕi are not sufficient in the sense that, after

removing coinciding samples, either S is less than the set of (Boolean) satisfiable

assignments to the predicates in ϕindi (which are restricted to the predicates in Ω(ϕi)

only) or U is less than the set of (Boolean) unsatisfiable assignments to the predicates

in ϕindi (which are also restricted to the predicates in Ω(ϕi) only) where i = 1, 2.

Otherwise, it is impossible that Ω(ϕindi) involves more predicates than Ω(ϕi). If the

S samples are not sufficient and consider i = 2, it is not possible that the candidate

invariant ∀u v , ψ2 is a true invariant because Sec. 4.3 rejects any Boolean assignment
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to the selected atomic predicates that are not observed ; if the S samples are sufficient

but the U samples are not sufficient and consider i = 1, for similar reasons, it is not

possible that the candidate invariant ∀u v , ψ1 is a true invariant. As a result, the

fact that either S or U is not sufficient therefore immediately contradicts our previous

assumption that ψ is an invariant of f .

Hence, we only need to consider the case Ω(ϕi) = Ω(ϕindi) where i = 1, 2. Finally,

we are able to give our 2-stage proofs.

Proof goal 1. To prove that ψ2 ⇒ ψind2, it suffices to show that ϕ2 ⇒ ϕind2.

Recall that ϕ2 is constructed from a truth table T over the predicates in Ω(ϕ2) or

Ω(ϕind2) using logic minimization based on our learning algorithm (Sec. 4.3). By

abuse of notation, in the following, we choose the same variable T to represent

the truth table over the predicates in Ω(ϕ2) and the logic formula that it can

be reduced to.

By our assumption that ψind is an inductive invariant, we conclude that so

is ∀u v , ψind2. Recall that in Sec. 4.3, T is encoded using the α function

from samples using the same atomic predicates that compose ϕind2 (coinciding

abstract samples between S and U removed from U only). We must have

T ⇒ ϕind2

Otherwise, ψind cannot be an invariant for f because it fails on input-output

samples of f . Based on the fact that the logic minimization algorithm that

we use [34] to get ϕ2 from T ensures that ϕ2 is logically equivalent to T . We

therefore conclude ϕ2 ⇒ ϕind2, from which it is obvious that

ψ2 ⇒ ψind2

Proof goal 2. To prove that ψ1 ⇒ ψind1, it suffices to show that ϕind1 ⇒ ϕ1.

Recall that ϕ1 is constructed from a truth table T over the predicates in Ω(ϕ1)

or Ω(ϕind1), using logic minimization based on our learning algorithm (Sec. 4.3).
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Again, by abuse of notation, in the following, we choose the same variable T
to represent the truth table over the predicates in Ω(ϕ1) and the logic formula

that it can be reduced to.

Let us firstly assume that there exist some test input iv and two values (u, v)

such that (iv, u, v) ∈ ϕind1 (i.e., (iv, u, v) evaluates ϕind1 to true) but (iv, u, v) /∈
T . Because we assumed that ψind (and ∀u v , ψind1) is an inductive invariant

of f , (iv, f(iv), u, v) is a valid sample that satisfies ΠO. Then, if (iv, u, v) /∈ T
we have that T was not obtained from a sufficient test suite for inferring an

inductive invariant of f . Particularly, ∀u v , ψ2 (here ψ2 is ΠO ⇒ ϕ2 where ϕ2 is

also computed from the samples) cannot be a true invariant because a Boolean

sample in α((iv, f(iv)),Ω(f)) which satisfies ΠO is not included in the Boolean

samples to learn ϕ2.

We conclude by contradiction that there must exist no test input iv (and u, v)

such that (iv, u, v) ∈ ϕind1 but (iv, u, v) /∈ T . Recall that in Sec. 4.3, T is

encoded using the α function from samples using the same atomic predicates

that compose ϕind1. We are therefore able to claim that

T ⇐ ϕind1

The logic minimization algorithm [34] guarantees that T is logically equivalent

to ϕ1. We can therefore conclude that ϕind1 ⇒ ϕ1, from which it is obvious

that

ψ1 ⇒ ψind1

Now we combine the above 2-stage proofs and obtain,

(ψ1 ⇒ ψind1) ∧

(ψ2 ⇒ ψind2)

As a result,

ψ ⇒ ψind
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(The above conclusions essentially claim that our learning algorithm rejects any

Boolean assignment to the atomic predicates in ψ that are not observed or incon-

sistent with the samples.)

Because we assumed that ψind is the strongest inductive invariant in Spec(Ω, f)

and ψ is at least an invariant for the f function learnt by Algorithm 4, ψ is then

an inductive invariant as well. However, this contradicts our assumption that Γf 6`
fix ( fun f → λx. e) : specType(Γf , f, ψ) (recall that we assume the underlying

solver is complete). So there must exist a value of n, under which Ψ(n) holds, i.e.,

there exists a test input to f , which can unfold the f ’s recursion n times and then

produce at least one unseen program sample σ, for which ψ(σ) does not hold (we can

find such a value of n by the validation procedure from [76] based on bounded model

checking or the relatively complete test generation approach in [75]).

(B). We now prove that, if Γf ` fix ( fun f → λx. e) : specType(Γf , f, ψ) holds,

then ψ is the strongest inductive invariant for f in Spec(Ω, f).

In this case, because ψ which is inferred by Algorithm 4 is already an invariant,

we can then reuse our proof above (Proof part A) to conclude that, if ψind is the

strongest inductive invariant in Spec(Ω, f),

ψ ⇒ ψind

Trivially, ψ must be the strongest inductive invariant in Spec(Ω, f).

Our proof completes by incorporating proof part A and proof part B.

The key idea of the above proof is that our learning algorithm ensures that ψ will

never produce an invariant that is true for all possible function input/output pairs,

but which is not inductive. This is a fundamental property, since an invariant that

is true which fails to be inductive (i.e., fails type checking) cannot be invalidated by

adding tests, since the true invariant is guaranteed to be satisfied in every test run.

Without such a property, we might never find a typable specification.
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Consider the flat function in Fig. 5.1. If our only goal was to use the smallest

number of atomic predicates from the hypothesis domain to construct a specification

(satisfied by all the samples of flat ), we obtain the following result:(
∀u v , ν : u → v ⇒  (t 99K u ∧ accu 99K v) ∨

(t 99K u ∧ t 99K v) ∨ (accu 99K u ∧ accu 99K v)


Compared to the specification (5.2), the above specification is simpler (comprising

fewer atomic predicates) and is always true for the program above. But it is not an

inductive invariant, and cannot be verified using our type checking rules, especially

the Function rule in Fig. 5.12. In particular, the failure stems from the predicate

(t 99K u ∧ t 99K v) in the last line of the specification, which is too over-approximative.

It does not specify an order between u and v if they both come from t, which is

necessary to discharge the subtype constraint in the Function rule. Adding more

tests would not refine the resulting specification, since it is a true invariant, albeit

not an inductive one.

Our learning algorithm rules out this problem by guaranteeing that any candidate

specification rejects a Boolean assignment to the selected atomic predicates that are

not observed or inconsistent with the samples. This means that for any two elements

u, v from t, if u occurs before v in the output list (ν), any learnt specification must

ensure that u and v respect the in-order property of t, since such a property would

be observed in every sample. More generally, for any two elements u, v from t that do

not respect the in-order of t, they are classified into the U(nsat) samples of ν : u → v .

5.4 Extensions

Previous sections focused on list and tree data structures to illustrate our tech-

nique. But, as we elaborate below, DOrder supports complex functional data struc-

tures beyond lists and trees, including nested and composite structures.

We also discuss the extension of our algorithm to synthesize specifications relating

data constraints to values contained within inductive data structures. Surprisingly,
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the expressive power of our learning procedure is not constrained by the underlying

hypothesis domain on which it is parameterized. In this sense, we claim that DOrder

defines a general framework to perform specification synthesis.

5.4.1 Arbitrary User-defined Inductive Data Structures

The language in Fig. 2.1 supports arbitrary user-defined inductive data types D

at the type level. And we use C to represent data type constructors. To simplify

the presentation, Fig. 2.1 only considers polymorphic inductive data type definitions,

and requires all type variables (’a) to appear before all the data types in constructor

expressions.

Atomic Predicates. Our technique discovers “templates” of atomic-predicates on

a per-data-structure basis. We are able to discover customized ordering predicates for

nested datatypes, and composite datatypes that have significantly different structure

than the predicates discovered for simple trees and lists (e.g., multiway-trees).

We first present the general definitions for ordering and containment predicates.

For a data structure Ch〈~x, ~d〉, its containment predicate (Ch〈~x, ~d〉 99K u) simply states

that value u can be found in the data structure, and can be defined generically as

follows:

Ch〈~x, ~d〉 99K u ≡
|~x|∨
i=1

xi = u ∨
|~d|∨
j=1

dj 99K u

where |~d| (resp. |~x|) denotes number of inductive data type (resp. base type or type

variable) valued arguments of the constructor Ch. This definition, when applied to a

list or tree data type, renders the definitions shown in Sec. 5.1.

The definition of predicates that expose ordering relations must take into account:

(i) the constructor of the data structure, and (ii) which arguments of the constructor

need to be considered. All these arguments are provided in the generic version of

the order predicate; we express it using the notation Ch〈~x, ~d〉 : u@n
C−→ v@m. This

predicate asserts that, in the data structure Ch〈~x, ~d〉, there exists an ordering relation

between the values u and v in a substructure of the data structure (including itself),
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l : u → v l : u@1
Cons−−→ v@2

t : u ↘ v t : u@1
Node−−→ v@3

t : u ↙ v t : u@1
Node−−→ v@2

t : u xv t : u@2
Node−−→ v@3

Figure 5.13.: Definitions of shape predicates for list and tree.

constructed from the C constructor, and u and v relate to the nth and mth arguments

of C. Formally, the predicate is satisfied in two cases: (a) if Ch is C and the nth

argument on the application of C is of a base type, then it must equal u, otherwise,

if it is of an inductive data type, it must contain the value u, and similarly for the

mth argument, using value v ; (b) or is recursively established in the substructures of

d. The full recursive definition is given below.

Ch〈~x, ~d〉 : u@n
C−→ v@m ≡

( |~d|∨
j=1

dj : u@n
C−→ v@m

)
∨



xn = u ∧ xm = v if Ch = C and n,m ≤ |~x|
xn = u ∧ dm−|~x| 99K v if Ch = C and n ≤ |~x|

dn−|~x| 99K u ∧ dm−|~x| 99K v if Ch = C
false otherwise

Recall that we assume that all variables in ~x are of base type, and all the ones in

~d are of inductive data types in constructors. Then, the first disjunct represents

the recursive definition to the substructures of d, and the other cases correspond

to the description given above. Our approach considers all constructors and their

arguments of a data type definition to export all such order predicates. With this

generic definition we can de-sugar the definitions we provided in Sec. 5.1 as shown

in Fig. 5.13.

Refinement Type System. The type refinements of each constructor are returned

by the ty function. Specifically, the type refinements of a constructor Ci are conjunc-

tive aggregations of its ordering and containment relation definitions. To help us pre-
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cisely define the ψτ
Contain and ψτ

Ord relations, as illustrated in the bottom of Fig. 2.3,

we assume the presence of a globally-defined finite map (Ord) that maps data types

τ to all possible tuples of its constructors and their arguments indices, i.e. (C, n,m)

in which C is a data type constructor of τ , and n,m are the indices (place) of the

arguments to the constructor C (starting from 1). Obviously, we require n,m to be

no less than 1 and no greater than the total size of the arguments of C. For example,

(Node , 2, 3) is a triple in Ord(tree ) using the Node constructor, and the left and

right subtrees indices.

The definitions ψτ
Contain and ψτ

Ord essentially unfold the inductive definitions of

ordering and containment predicates. The unfolding is in line with the general defini-

tions discussed in Sec. 5.4.1. Notably, through the call to Ord, the definitions exhaust

all the possible ordering relations from the constructors of the data type of v.

For instance, considering the list case with constructors Nil and Cons . We

have,

ty(Cons ) = x : ’a → y : ’a list → {ν : ’a list | ψc}

ty(Nil ) = {ν : ’a list | ψn}

where the type refinement ψn for the Nil constructor is

ψn = (∀u v , ν : u → v ⇐⇒ false

∧ ∀u, ν 99K u ⇐⇒ false)

and the type refinement ψc for the Cons constructor (recall that x and y are bound

by Cons ) is

ψc = (∀u, ν 99K u ⇐⇒ (u = x ∨ y 99K u)

∧ ∀u v , ν : u → v ⇐⇒

((u = x ∧ y 99K v) ∨ y : u → v))

Note that the ordering and containment predicates are encoded as uninterpreted

relations in the refinement logic. For any arbitrary values, their ordering and contain-

ment relations with respect to a data structure are guaranteed, by the construction
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T-Match

Γ ` v : Pv τ ≡ ‖Pv‖ ≡ µt Σi Ci〈 ~’a, ~Di〉
∀i. Γ ` Ci : ~xi : ~’a → ~di : ~Di → {ν : τ | ψτ Contain(ν, Ci〈~xi, ~di〉) ∧ ψτ

Ord(ν, Ci〈~xi, ~di〉)}
Γ ` P ∀i. Γi = ~xi : ~’a; ~di : ~Di; [v/ν](ψτ

Contain(ν, Ci〈~xi, ~di〉) ∧ ψτ
Ord(ν, Ci〈~xi, ~di〉))

∀i. Γ, Γi ` ei : P

Γ ` match v with
∣∣
i
Ci〈~xi, ~di〉 → ei : P

T-Constructor

Γ ` Ch : ~x : ~’a → ~d : ~D → {ν : τ | ψτ Contain(ν, Ch〈~x, ~d〉) ∧ ψτ
Ord(ν, Ch〈~x, ~d〉)}

‖Γ‖ 
 ~x : ~’a ‖Γ‖ 
 ~d : ~D

Γ ` Ch〈~x, ~d〉 :
{
ν : τ

∣∣ ψτ Contain(ν, Ch〈~x, ~d〉) ∧ ψτ
Ord(ν, Ch〈~x, ~d〉)

}

ψτ
Ord(ν, Ci〈~xi, ~di〉) =

∧
C, n,m ∈ Ord(τ)

∀u v , ν : u@n
C−→ v@m ⇐⇒

(( li∨
q=1

diq : u@n
C−→ v@m

)
∨



xin = u ∧ xim = v if Ci = C
∧ n ≤ ki
∧ m ≤ ki

xin = u ∧ dim−ki 99K v if Ci = C
∧ n ≤ ki

din−ki 99K u ∧ dim−ki 99K v if Ci = C
false otherwise



)

where ki = |~xi| and li = |~di|

ψτ
Contain(ν, Ci〈~xi, ~di〉) =

(
∀u, ν 99K u ⇐⇒

ki∨
p=1

xip = u ∨
li∨
q=1

diq 99K u

)
where ki = |~xi| and li = |~di|

Figure 5.14.: Refinement typing rules for shape specifications.
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in Sec. 5.4.1, decidable and therefore we can soundly use them as uninterpreted re-

lations in the refinement logic. Also notice that we can define multiple ordering and

containment relations for a data type and we can simply conjoin the relational terms

for each relation when refining each data type constructor.

The T-Match rule stipulates that the entire expression has type P if and only if

P is well-formed in the type environment, and that, for each case expression ei of the

match, ei must also have type P in the type environment extended with the guard

predicate that captures the relation between the ordering and containment definition

of the matched expression and the variables bound by the matched pattern.

We can reduce the T-Match rule to the following form, tailored for the list case.

T-List-Match

Γ ` v : Pv τ ≡ ‖Pv‖ ≡ ’a list

Γ ` Nil : {ν : τ | ψn} Γ ` Cons : x : ’a → y : ’a list → {ν : τ | ψc}
Γ ` P Γc = x : ’a; y : ’a list; [v/ν]ψc

Γn = [v/ν]ψn Γ; Γc ` e1 : P Γ; Γn ` e2 : P

Γ ` match v with Cons (x, y) → e1 | Nil → e2 : P

It is apparent that the above rule can be further simplified to the List Match rule

defined in Fig. 5.12. Observe that the T-List-Match rule type checks each branch

of the match expression under an environment that records the corresponding branch

condition. Additionally, the type environment for the Cons branch is also extended

with the types of matched pattern variables (x and y). The branch condition for the

Cons case is obtained by substituting the test value (v) for the bound variable (ν)

in the type refinement of Cons . Intuitively, the branch condition of Cons captures

the fact that the value v was obtained by applying the constructor Cons ; therefore,

it should satisfy the invariant of Cons . The Nil case is similar.

The typing rule for T-Constructor follows the same idea as the rule for T-

Match in the type of the consequent. It describes how inductively constructed data

structures should be type checked. Notice that for each possible ordering and con-

tainment definition of the corresponding inductive data type, a predicate specifying
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the relation between the constructed expression and the variables bound by the con-

structor arguments is offered.

5.4.2 Specifications over Shapes and Data

We now enrich our inference algorithm to infer specifications relating data con-

straints (binary predicates) to values contained within inductive data structures. We

extend our hypothesis domain to include binary data predicates, which are restricted

to range over relational data ordering properties. Given a function f , the data domain

(denoted by Πdata), is constructed from the atomic predicates:

Πdata(f) = {u ≤ v , v ≤ u} ∪ {u ≤ x, x ≤ u | x ∈ θB(f)}

While the domain Πdata is small in the number of permissible predicates, our exper-

iments show that it is sufficient to synthesize sophisticated properties such as BST,

heap- and list-sortedness, etc. Recall that we also admit the following set of of pred-

icates over the shapes of the data structures:

Πshape(f) ={d 99K u, d 99K v , d : u → v ,

d : u ↙ v , d : u ↘ v , d : u xv | d ∈ θD(f)}

where only well-typed predicates are considered (depending on the type of d). To

learn shape-data properties, for a given set of samples Vf of f we use Algorithm 5 to

compute:

∀u v , Learn (V b
f , Πdata(f), Πshape(f))

where V b
f is evaluated from Vf using the α abstraction function defined in Sec. 5.2.3

based on the predicates from Πdata(f) ∪ Πshape(f).

To discharge the candidate specifications produced by this domain, following [64,

77], we encode binary predicates in Πdata as ordering relations, and feed the resulting

formula to an SMT solver, which permits multiple relation symbols.
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Πdata

 Π0 ≡ u ≤ v Π1 ≡ v ≤ u

Π2 ≡ u ≤ x Π3 ≡ x ≤ u

Πshape


Π4 ≡ t : u ↙ v Π5 ≡ t : u ↘ v Π6 ≡ t : u xv

Π7 ≡ ν : u ↙ v Π8 ≡ ν : u ↘ v Π9 ≡ ν : u xv

Π10 ≡ t 99K u Π11 ≡ ν 99K u

Figure 5.15.: Hypothesis domain for synthesizing shape and data specifications.

Consider the binary search tree insert function in Fig. 5.9. Fig. 5.15 shows the

atomic predicates in the hypothesis domain that allows the inference of shape and

data invariants.

With this extended hypothesis domain, we derive the following specification for

the insert function:

(∀u v , t : u ↙ v ⇒ (¬u ≤ v)) ∧ (∀u v , t : u ↘ v ⇒ (¬v ≤ u))

essentially specifying that t is a BST, abbreviated as BST(t). This specification over

the input t, in conjunction with the specification learnt over the output variable ν,

makes it possible to infer the following refinement type for insert :

x : ’a→ t : {ν : ’a tree | BST(ν)} → {ν : ’a tree | BST(ν)}

5.4.3 Specifications over Numeric Properties

Another important class of data structure invariants uses common measures of

data types, which maps a data structure to a numeric value, such as the length of a list

or height of a tree. Such measures are needed, for instance, to prove that a binary tree

respects a tree balance specification. DOrder integrates measure definitions used
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in the source code into a hypothesis domain that can be leveraged by the learning

algorithm to enrich data structure specifications. For instance, consider the following

code snippet adapted from a recursive tree balance function bal l v r = ν from

the Vec library implementation (Sec. 5.5).

l et rec bal l v r =

l et hl = ht l in

let hr = ht r in

i f hl > hr + 2 then

... /* call bal on subtrees of l and r */

else i f hr > hl + 2 then

... /* call bal on subtrees of r and l */

else Node (v, l, r)

Here, two input trees l and r with arbitrary heights and a single value v are merged

into one output balanced tree ν. Observe the function uses a ht measure, which

returns the height of a tree. The definition of ht is standard and elided, but would

presumably be provided as a useful measure that should appear in specifications.

To simplify the presentation, assume that a certain function f manipulates only

one data structure, and furthermore that a single measure m is associated with that

data structure. We consider the hypothesis domain for numeric properties over the

hypothesis domain which we denote by Ωnum:

Ωnum(f) =
{
±m(x)±m(y) ≤ l

∣∣ x, y ∈ θD(f) ∧

0 ≤ l ≤ C where C is the maximum constant in f
}

Predicates drawn from this domain allow us, for example, to compare the height of

different input subtrees or sublists or compare the height of an input tree with an

output tree, or the length of an input list with the length of an output list. It suffices

to use Algorithm 5 to compute:

Learn(V b
f ,ΠI(Ωnum(f)),ΠO(Ωnum(f)))
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for synthesizing numeric input-output specifications for f (without generating quan-

tifiers) where V b
f is evaluated from a number of input-output samples of f using

predicates from Ωnum(f).

Because we allow integer constants in Ωnum(f), it is possible to synthesize specifi-

cations that are vacuous. For example, if m(x) −m(y) ≤ l1 is chosen as an output

predicate in the learning algorithm, we may synthesize a formula m(x)−m(y) ≤ l1 ⇒
m(x)−m(y) ≤ l2 where l1 ≤ l2; this formula, while logically true, is semantically use-

less. We detect such invariants using an SMT solver, and restart synthesis, filtering

m(x)−m(y) ≤ l2 out of the hypothesis domain.

Consider now how we might synthesize a specification for the recursive-balance

function. We show a subset of input predicates ΠI from Ωnum(bal ) for expository

purposes:

ht r ≤ ht l, ht r ≤ ht l + 2, ht l ≤ ht r + 2, · · ·

Similarly the output predicates ΠO contains:

ht l ≤ ht ν, ht ν ≤ 1 + ht l, ht ν ≤ 1 + ht r, · · ·

By applying Learn(V b
bal ,ΠI ,ΠO) where V b

bal is evaluated from a number of input-

output samples of bal using predicates from Ωnum(bal ), our technique automati-

cally synthesizes the following specification:

ht l ≤ ht ν ∧ ht r ≤ ht ν ∧
ht r ≤ ht l ⇒ ht ν ≤ 1 + ht l ∧

¬(ht r ≤ ht l) ⇒ ht ν ≤ 1 + ht r ∧
(ht r ≤ ht l + 2) ⇒ 1 + ht r ≤ ht ν ∧
(ht l ≤ ht r + 2) ⇒ 1 + ht l ≤ ht ν

which precisely specifies that the height of the returned tree is either max(ht l, ht r)

or max(ht l, ht r) + 1 and is always the latter when |ht l− ht r| ≤ 2. Handcrafting

this specification by the programmer is challenging. Yet, the specification turns out

to be key to proving that bal is guaranteed to return a balanced tree.
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5.5 Experiments

DOrder is an implementation of our learning procedure and type-based ver-

ification technique.6 We use the Z3 SMT solver [78] to discharge our verification

conditions. DOrder takes as input an inductive data structure program, written in

OCaml, and produces as output the list of specifications (as refinement types) for the

functions in the program.

Random Testing. While the progressive property of Theorem 5.3.2 guarantees

that the learning algorithm can be equipped with a directed and automated test

synthesis procedure, our implementation simply uses a lightweight random testing

strategy based on QuickCheck [31]. Concretely, DOrder synthesizes the speci-

fications for a data structure program using the test data obtained from executing

the program by a random sequence of method calls to the data structure’s interface

functions. In our experience, the length of such call sequences can be relatively small;

setting it to 100 suffices to yield desired specifications for the benchmarks we consider.

Benchmarks. Our benchmarks (shown in Fig. 5.16) are classified into four groups:

(a) Stack and Queue: implementations of Okasaki’s functional stack and queue.

(b) List: a list library, including list manipulating functions such as: delete, filter,

merge, reverse, etc.; a ListSet implementation of set interface represented as lists;

and, various classic list sorting algorithms. (c) Heap: various classic heap implemen-

tations and two implementations, Heap1 and Heap2, searched from GitHub. (d) Tree:

various implementations of realistic balanced tree data structures including Redblack

trees with support for both insertion and deletion, a library to convert arbitrary

Boolean formulae to NNF or CNF form (Proposition), a random access lists library

based on trees (Randaccesslist), and the full implementation of OCaml’s Set library.

6Our implementation and benchmarks are provided via the URL https://github.com/
rowangithub/DOrder.

https://github.com/rowangithub/DOrder
https://github.com/rowangithub/DOrder
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Program Loc H I LT T Inferred Spec

List Stack 29 54 8 1s 1s Ord

Lazy Queue 28 91 14 4s 4s Ord

List Lib 133 306 54 7s 10s Ord

List Set 51 96 50 11s 17s Ord, Set

Quicksort 19 49 25 1s 5s Ord, Sorted

Mergesort 30 32 11 1s 5s Ord, Sorted

Insertionsort 12 22 8 1s 1s Ord, Sorted

Selectionsort 22 32 11 1s 2s Ord, Sorted

Heap1 85 139 48 37s 133s Ord, Min, Heap

Heap2 77 70 24 5s 28s Ord, Min, Heap

Heapsort 37 81 28 9s 29s Ord, Sorted, Heap

Leftist Heap 43 106 32 12s 18s Ord, Min, Heap

Skew Heap 32 71 25 16s 22s Ord, Min, Heap

Splay Heap 58 98 44 9s 38s Ord, Min, BST

Pairing Heap 42 49 21 1s 7s Ord, Min, Heap

Binomial Heap 70 107 34 5s 26s Ord, Min, Heap

Treap 107 95 17 20s 39s Ord, BST

AVL Tree 176 127 39 27s 56s Ord, BST

Splay Tree 127 110 56 45s 170s Ord, BST

Braun Tree 75 111 42 19s 53s Ord, BST

Redblack Tree 228 260 81 53s 177s Ord, BST

OCaml Set 313 457 73 56s 134s Ord, BST, Min, Set

Proposition 58 94 8 2s 5s Ord

Randaccesslist 73 142 19 4s 7s Ord

Figure 5.16.: Experimental results on inferring shape specifications.

Results. In Fig. 5.16, Loc describes program size, H is the number of atomic predi-

cates in the hypothesis domain of all the functions in a data structure. I is the number
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of verified ordering specifications in terms of either input-output or shape-data rela-

tions. T is the total time taken (learning and verification), while LT is the time spent

solely on learning (including the time spent in sampling). Inferred Spec summarizes

the learnt and verified specifications by DOrder.

On the benchmarks, DOrder inferred the following specifications: (a) Ord:

specifications expressed using ordering and containment predicates. For instance,

the specification for a balanced tree insertion function ensures that the output tree

preserves the in-order of the input tree. For a sorted heap merge function, DOrder

discovers that the parent-child relations of the input heap are preserved in the output-

heap. Similarly the Ord property inferred for the Proposition benchmark ensures

functional correctness: “any logical relation (∧,∨) between two Boolean variables

in a given input Boolean formula is preserved in the output formula after a CNF

conversion”, (b) Set: verifies that the structure implements a set interface, that is,

the set operations: union , diff and intersect are semantically correct using

the containment and ordering hypothesis domain. For example, the specification for

the diff (t1, t2) function stipulates that diff returns a set whose elements must

come from t1 but must not be members of t2. The following properties are obtained

using the shape-data domain: (c) Sorted: the output list is sorted, (d) Min, the

findmin function returns the smallest element of a data structure, (e) Heap, the

output tree is heap-sorted, (f) BST, the output tree is a binary search tree.

Redblack tree is the most challenging benchmark in Fig. 5.16 given the complexity

of the delete operation. The benchmark contains several complex balance functions

that cooperate together to reestablish the balance property of the tree after a delete.

The OCaml Set implementations also has a large code base, but the invariants it

maintains are simpler.

Note that most of the running time is spent in verification, and that the learning

algorithm is efficient in comparison. Our technical report [79] provides detailed case

studies for several of these benchmarks with more complex specifications discovered.
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l et rec merge h1 h2 =

match h1, h2 with

| (Leaf, h2) -> h2

| (h1, Leaf) -> h1

| (Node(k1, l1, r1), Node(k2,l2,r2)) ->

i f (k1<=k2) then Node(k1,(merge r1 h),l1)

else Node(k2,(merge h1 r2),l2)

5

1

2

7

18

20 32

15

16

30 31

41

43 50

1

15

16

30 31

18

20 32

2

5 7

41

43 50

⌫

h1 h2

5

1

2

7

18

20 32

15

16

30 31

41

43 50

1

15

16

30 31

18

20 32

2

5 7

41

43 50

⌫

h1 h2

5

1

2

7

18

20 32

15

16

30 31

41

43 50

1

15

16

30 31

18

20 32

2

5 7

41

43 50

h1 h2

⌫

Figure 5.17.: Skew heap with input-output samples of merge .

Case study: Skew heap. A skew heap structure is a self-adjusting heap imple-

mented as a binary tree. Many varieties of balanced trees are specifically designed

to achieve efficiency by imposing tight balance constraints that must be maintained

during updates. By relaxing such tight balance constraints, a skew heap provides bet-

ter amortized running times. In particular, the left subtree of a skew heap is usually

deeper than the right subtree, illustrated in Fig. 5.17.

Two conditions must be satisfied in a skew heap: (a) the general heap sorted

order must be enforced (b) every operation (add, remove min) on a skew heap must be

done using a special skew heap merge. An implementation of the merge operation

of skew heap is given in Fig. 5.17. This operation merges two input skew heaps h1

and h2 into one output skew heap ν.

DOrder inferred the following functional specifications for the merge function

from the samples in Fig. 5.17, reflecting the functional behavior of merge :

(i) the output heap ν preserves the parent-child relations of h1 and h2 ; e.g., as

shown in Fig. 5.17, 16 is a child of 15 in h2 , and remains a child of 15 in ν, and
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(ii) for any two nodes, one from h1 and the other from h2 (or vice-versa): they

are either related by a left branch of the final tree ν (ν : u ↙ v), e.g. 18

and 41 belong to h1 and h2 respectively and they are related according to left

branches in the output heap ν; or they are in different sub-branches (ν : u xv),

e.g. 15 (in h2 ) and 2 (in h1 ) are located in different sub-branches of ν.

Importantly, they are not related over the right branch (ν : u ↘ v).

The inferred and verified (partial) specification formalizes (i) and (ii):

merge : h1 : ’a tree → h2 : ’a tree →
{
ν : ’a tree

∣∣(
∀u, ν 99K u ⇐⇒ (h1 99K u ∨ h2 99K u)

)
∧

(
∀u v , ν : u ↙ v ⇒


h1 : u ↙ v ∨ h1 : u ↘ v ∨
h2 : u ↙ v ∨ h2 : u ↘ v ∨
(h1 99K u ∧ h2 99K v) ∨
(h2 99K u ∧ h1 99K v)


)
∧

(
∀u v , ν : u ↘ v ⇒

 h1 : u ↙ v ∨ h1 : u ↘ v ∨
h2 : u ↙ v ∨ h2 : u ↘ v

) ∧

(
∀u v , ν : u xv ⇒


h1 : u xv ∨ h1 : v xu ∨
h2 : u xv ∨ h2 : v xu ∨

(h1 99K u ∧ h2 99K v) ∨
(h2 99K u ∧ h1 99K v)


) }

The specification reflects the fact that elements from h1 and those from h2 are only

merged into the left subtree, demonstrating the intuition that the left subtree is more

complex than the right subtree.

Numeric Data Structure Properties. As described earlier, DOrder can also

infer measure-based specifications. To assess its effectiveness in this space, we con-

sidered benchmarks evaluated in LiquidTypes [8] and compare the specifications

discovered by DOrder with those inferred by [8]. The benchmark suites include re-

alistic data structure implementations such as Bdd, a binary decision diagram library,

and Vec, a dynamic functional array library.
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Program Loc I LT T Properties LiqTyAn

AVL Tree 99 32 4s 14s Bal,Sz,Ht 9

Braun Tree 49 13 2s 4s Bal,Sz 3

Redblack Tree 201 27 3s 10s Bal,Ht 9

OCaml Set 110 24 5s 10s Bal,Ht 10

Randaccesslist 102 15 1s 2s Sz, Bal 6

Bdd Lib 144 22 2s 8s VOrder 14

Vec Lib 211 56 46s 59s Bal,Len,Ht 39

Figure 5.18.: Experimental results on inferring numeric specifications.

To evaluate the quality of synthesized specifications, we use them to verify known

data structure properties such as: Sz or Ht, functions used to alter the number of ele-

ments in a list or tree, or the height of trees; Bal, a property on trees that asserts they

are recursively balanced (the definitions of balance in different tree implementations

varies); VOrder, a binary decision diagram (Bdd) maintains a variable order prop-

erty; Len, the access indices of vector operations are bounded by vector length. The

results are collected in Fig. 5.18, whose column interpretation is identical to Fig. 5.16.

Properties summarizes the properties that are verified by DOrder. LiqTyAn is the

number of annotations required by LiquidTypes in order to prove the properties,

which are now inferred by DOrder.

DOrder inferred and verified a number of measure based specifications in these

programs, reflected in column I in Fig. 5.18, obviating the need for user-supplied

invariants. The LiquidTypes checker in contrast relies on the user to manually an-

notate function specifications in order to help verify these numeric properties. The

previous work [67] can also verify these benchmarks but requires user-provided as-

sertions and a complex symbolic execution algorithm to drive so-called bad program

states.
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Limitations. The expressivity of our approach is limited by the need to ensure

decidability. We cannot express and reason about ordering specifications that require

interdependent shape and arithmetic constraints over data structure indices. For ex-

ample, given a function f (xs, low, high) that returns only the set of elements

from index low to high of a list xs , our technique will not be able to find a valid

specification that discovers that the returned elements of f precisely correspond to

those indexed from low to high in the input list; this is because of limitations in

the theories supported by the underlying BSR solver.

5.6 Related Work

Learning Based Invariant Inference. Compared to earlier sampling-based ap-

proaches [80–83] which learn invariants using existing abstract interpretation trans-

formers, our primary focus is a new specification inference technique inspired by recent

advances in data-driven program analysis. These data-driven approaches can be clas-

sified into two broad categories: (1) Tools such as Daikon [59] and [61,65,84–86] infer

invariants by summarizing properties from test data, but the structure of the con-

structed invariants is limited to a bounded number of disjunctions, making them un-

likely to discover patterns between relations like in-order or forward-order, because it

is not clear how syntax-derived templates could capture the semantics of ordering rela-

tions implicit in the construction of data structures; (2) Other tools learn unrestricted

invariants but either require user-annotated post-conditions [44, 46, 47, 66, 67, 87] (in

order to rule out program states not seen in normal executions) or non-commutativity

conditions [88] to drive the collection of “bad samples”. The quality of synthesized

invariants in these systems is limited by the precision and availability of such condi-

tions. Moreover, these approaches learn invariants to prove given assertions, which

must separate all “good” from all “bad” samples. They are not suitable for learning

input-output specifications, because (1) learning fails if a sample cannot be separated

by any classifier, even though a good specification might exist (e.g. Fig. 5.11); and
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(2) they only find approximate classifiers, not necessarily the strongest one needed

to prove assertions. We use classification-techniques in a novel way to discover the

strongest specification in a hypothesis-domain (Theorem 5.3.2). Thus, DOrder is

the first annotation-free learning technique that infers high-quality (c.f. strongest)

inductive shape specifications comprising unrestricted disjunctions, that can be effec-

tively applied on realistic and complex functional data structures.

Relational Data Structure Verification. Our technique is closely related to

[64, 77], which also use BSR logic to prove functional specifications for linked list

structures, by relating the order of list elements and defining ordering properties on

the whole memory. In contrast, our technique infers fine-grained and inductive shape

predicates over concrete data structure instances. Shape specifications in terms of

user-defined ordering relations are also considered in [63]. Because these systems are

not equipped with an inference mechanism, they require programmers to manually

write down potentially complicated and subtle program specifications. The idea of

using relations to capture inductive properties of data structure programs has also

been explored in [89–94]. These non-learning based techniques differ substantially

from ours, owing to the nature of pointer manipulations in their imperative program

model.

Static Analysis. There exists a number of deductive verification tools for data

structure programs, which support reasoning of recursive definitions over the set of

elements in the heaplets of a data structure. These systems require modular contracts

to be supplied with the developed code, using pre/post-conditions, loop invariants and

even proof lemmas [3,8,17,18,71,72,95–104]. Our approach complements these tools

with an inference procedure that can learn specifications for fully automatic data

structure verification.

Following the Houdini approach [35], the LiquidTypes system [8,62,105] blends

type inference for data structures with predicate abstraction, and infers refinement

types from conjunctions of programmer-annotated predicates. To infer more ex-
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pressive invariants, [106] infers quantified invariants for arrays and lists, limited

to programmer-provided templates. To get rid of templates, automatic procedures,

which can infer the Boolean structure of candidate invariants, have been proposed for

linked list programs [44,107–109]. They either require the programmer to provide non-

trivial post-conditions [44,108,109] or lack a notion of progress (c.f. Sec. 5.3.2) [107].

Unlike other static synthesis techniques that perform shape analyses on the source

code [110–115], DOrder discovers shape specifications entirely from tests.
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6 CONCLUSIONS AND FUTURE WORK

In Chapter 3, we present a compositional inter-procedural verification technique for

functional programs. We use refinement type checking rules to generate refinement

type templates for local expressions inside a procedure. Refinement subtyping rules

are then used to generate verification conditions. From an unprovable verification con-

dition, we can construct a counterexample path to infer refinement types for procedure

arguments and results, and to propagate inferred specifications between procedures

and call-sites where they are applied. Thus, our technique effectively leverages a va-

riety of strategies used in the verification of first-order imperative programs within a

higher-order setting.

In future work, we plan to incorporate more first-order verification techniques into

our framework.

Chapter 4 presentes a new CEGAR based framework that integrates testing with a

refinement type system to automatically infer and verify specifications of higher-order

functional programs using a lightweight learning algorithm as an effective intermedi-

ary. Our experiments demonstrate that this integration is efficient.

In future work, we plan to integrate our idea into more expressive type systems.

The work of [116] shows that a refinement type system can verify the type safety

of higher-order dynamic languages like Javascript. However, it does not give an

inference algorithm. It would be particularly useful to adapt the learning based

inference techniques shown here to the type system for dynamic languages, relieving

the annotation burden for non-trivial specifications and proof terms.

Chapter 5 presents a new specification inference framework that integrates testing

with a sound type-based verification system to automatically synthesize and verify

shape specifications for arbitrary inductive data structure programs. Given an ar-

bitrary user defined inductive data structure program, our tool DOrder applies a
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systematic analysis on the program’s data type definitions, and extracts atomic pred-

icates stating general ordering properties about data structure values with respect

to data structure shapes. These predicates are then fed to an expressive learning

algorithm, which postulates potentially complex shape specifications satisfying input-

output behaviors of data structure functions. The learning algorithm interacts with

the verification system to ensure discovery of the strongest inductive invariant in the

solution space. Our experiments demonstrate that the approach is effective and effi-

cient over a large class of real-world data structure programs. Using just a few number

of tests, DOrder can synthesize sophisticated and high quality shape specifications

for versatile data structure manipulating functions with reasonable cost.

For future work, we would like to extend DOrder for specification synthesis

for software defined networking programs (SDN). In DOrder, we investigate

reachability (i.e., ordering) relations between data structure elements. It is possibly

to infer reachability relation between network hosts with DOrder. We can synthesize

specification like “a network host A can receive a packet from a network host B only

if A sent some packets to B previously.” Specifications of suck kind are the key to

prove functional correctness of SDN programs.

We also propose to build a refinement session type system for complex dis-

tributed systems, which should precisely prescribe the communication behaviors

between concurrent message-passing processes. The type system should also soundly

verify session protocols when spawning new processes is allowed. Accurately blaming

undesired actions in these systems via the refinement type system is an important

challenge.

It is also important to generalize our technique for checking security proper-

ties and source-sink specifications. An instantiation of DOrder to synthesize

information-flow properties from concrete executions would possibly scale to complex

iOS, Android and Java software systems.

Automatically synthesized specifications are unable to prove user-supplied prop-

erties if programs are indeed buggy. It is possible to identify a few locations closely
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related to verification failures using Max-SMT solvers [78]. We can leverage program

synthesis techniques for possible bug-fixes in these locations and exploit synthe-

sized specifications in the context of these locations to help the synthesizers. Our

strategy is able to combine the specification synthesis technique proposed here with

state-of-the-art program synthesis techniques.

We are very interested in applying more advanced machine learning techniques to

improve software systems’ robustness. Software source code is usually accompanied

with software documents. While we showed that high-quality specifications can be

discovered from code, it is possible to learn language models from documents, using

natural language processing (NLP) or information retrieval (IR) techniques. We can

then measure the consistency between specification models (from code) and language

models (from documents), in order to verify whether software code is compliant with

software documents.
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