6,672 research outputs found

    Neural Contractive Dynamical Systems

    Full text link
    Stability guarantees are crucial when ensuring a fully autonomous robot does not take undesirable or potentially harmful actions. Unfortunately, global stability guarantees are hard to provide in dynamical systems learned from data, especially when the learned dynamics are governed by neural networks. We propose a novel methodology to learn neural contractive dynamical systems, where our neural architecture ensures contraction, and hence, global stability. To efficiently scale the method to high-dimensional dynamical systems, we develop a variant of the variational autoencoder that learns dynamics in a low-dimensional latent representation space while retaining contractive stability after decoding. We further extend our approach to learning contractive systems on the Lie group of rotations to account for full-pose end-effector dynamic motions. The result is the first highly flexible learning architecture that provides contractive stability guarantees with capability to perform obstacle avoidance. Empirically, we demonstrate that our approach encodes the desired dynamics more accurately than the current state-of-the-art, which provides less strong stability guarantees

    Learning Stable Robotic Skills on Riemannian Manifolds

    Full text link
    In this paper, we propose an approach to learn stable dynamical systems evolving on Riemannian manifolds. The approach leverages a data-efficient procedure to learn a diffeomorphic transformation that maps simple stable dynamical systems onto complex robotic skills. By exploiting mathematical tools from differential geometry, the method ensures that the learned skills fulfill the geometric constraints imposed by the underlying manifolds, such as unit quaternion (UQ) for orientation and symmetric positive definite (SPD) matrices for impedance, while preserving the convergence to a given target. The proposed approach is firstly tested in simulation on a public benchmark, obtained by projecting Cartesian data into UQ and SPD manifolds, and compared with existing approaches. Apart from evaluating the approach on a public benchmark, several experiments were performed on a real robot performing bottle stacking in different conditions and a drilling task in cooperation with a human operator. The evaluation shows promising results in terms of learning accuracy and task adaptation capabilities.Comment: 16 pages, 10 figures, journa

    Geometry-aware Manipulability Learning, Tracking and Transfer

    Full text link
    Body posture influences human and robots performance in manipulation tasks, as appropriate poses facilitate motion or force exertion along different axes. In robotics, manipulability ellipsoids arise as a powerful descriptor to analyze, control and design the robot dexterity as a function of the articulatory joint configuration. This descriptor can be designed according to different task requirements, such as tracking a desired position or apply a specific force. In this context, this paper presents a novel \emph{manipulability transfer} framework, a method that allows robots to learn and reproduce manipulability ellipsoids from expert demonstrations. The proposed learning scheme is built on a tensor-based formulation of a Gaussian mixture model that takes into account that manipulability ellipsoids lie on the manifold of symmetric positive definite matrices. Learning is coupled with a geometry-aware tracking controller allowing robots to follow a desired profile of manipulability ellipsoids. Extensive evaluations in simulation with redundant manipulators, a robotic hand and humanoids agents, as well as an experiment with two real dual-arm systems validate the feasibility of the approach.Comment: Accepted for publication in the Intl. Journal of Robotics Research (IJRR). Website: https://sites.google.com/view/manipulability. Code: https://github.com/NoemieJaquier/Manipulability. 24 pages, 20 figures, 3 tables, 4 appendice

    Learning Riemannian Stable Dynamical Systems via Diffeomorphisms

    Get PDF
    Dexterous and autonomous robots should be capable of executing elaborated dynamical motions skillfully. Learning techniques may be leveraged to build models of such dynamic skills. To accomplish this, the learning model needs to encode a stable vector field that resembles the desired motion dynamics. This is challenging as the robot state does not evolve on a Euclidean space, and therefore the stability guarantees and vector field encoding need to account for the geometry arising from, for example, the orientation representation. To tackle this problem, we propose learning Riemannian stable dynamical systems (RSDS) from demonstrations, allowing us to account for different geometric constraints resulting from the dynamical system state representation. Our approach provides Lyapunov-stability guarantees on Riemannian manifolds that are enforced on the desired motion dynamics via diffeomorphisms built on neural manifold ODEs. We show that our Riemannian approach makes it possible to learn stable dynamical systems displaying complicated vector fields on both illustrative examples and real-world manipulation tasks, where Euclidean approximations fail.Comment: To appear at CoRL 202

    Negotiating Large Obstacles with a Humanoid Robot via Multi-Contact Motion Planning

    Get PDF
    Incremental progress in humanoid robot locomotion over the years has achieved essential capabilities such as navigation over at or uneven terrain, stepping over small obstacles and imbing stairls. However, the locomotion research has mostly been limited to using only bipedal gait and only foot contacts with the environment, using the upper body for balancing without considering additional external contacts. As a result, challenging locomotion tasks like climbing over large obstacles relative to the size of the robot have remained unsolved. In this paper, we address this class of open problems with an approach based on multi-contact motion planning, guided by physical human demonstrations. Our goal is to make humanoid locomotion problem more tractable by taking advantage of objects in the surrounding environment instead of avoiding them. We propose a multi-contact motion planning algorithm for humanoid robot locomotion which exploits the multi-contacts at the upper and lower body limbs. We propose a contact stability measure, which simplies the contact search from demonstration and contact transition motion generation for the multi-contact motion planning algorithm. The algorithm uses the whole-body motions generated via Quadratic Programming (QP) based solver methods. The multi-contact motion planning algorithm is applied for a challenging task of climbing over a relatively larger obstacle compared to the robot. We validate our planning approach with simulations and experiments for climbing over a large wooden obstacle with COMAN, which is a complaint humanoid robot with 23 degrees of freedom (DOF). We also propose a generalization method, the \Policy-Contraction Learning Method" to extend the algorithm for generating new multi-contact plans for our multi-contact motion planner, that can adapt to changes in the environment. The method learns a general policy and the multi-contact behavior from the human demonstrations, for generating new multi-contact plans for the obstacle-negotiation

    Deep Metric Imitation Learning for Stable Motion Primitives

    Full text link
    Imitation Learning (IL) is a powerful technique for intuitive robotic programming. However, ensuring the reliability of learned behaviors remains a challenge. In the context of reaching motions, a robot should consistently reach its goal, regardless of its initial conditions. To meet this requirement, IL methods often employ specialized function approximators that guarantee this property by construction. Although effective, these approaches come with a set of limitations: 1) they are unable to fully exploit the capabilities of modern Deep Neural Network (DNN) architectures, 2) some are restricted in the family of motions they can model, resulting in suboptimal IL capabilities, and 3) they require explicit extensions to account for the geometry of motions that consider orientations. To address these challenges, we introduce a novel stability loss function, drawing inspiration from the triplet loss used in the deep metric learning literature. This loss does not constrain the DNN's architecture and enables learning policies that yield accurate results. Furthermore, it is easily adaptable to the geometry of the robot's state space. We provide a proof of the stability properties induced by this loss and empirically validate our method in various settings. These settings include Euclidean and non-Euclidean state spaces, as well as first-order and second-order motions, both in simulation and with real robots. More details about the experimental results can be found at: https://youtu.be/ZWKLGntCI6w.Comment: 21 pages, 15 figures, 4 table
    • …
    corecore