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Abstract

Incremental progress in humanoid robot locomotion over the years has achieved essential

capabilities such as navigation over flat or uneven terrain, stepping over small obstacles and

climbing stairs. However, the locomotion research has mostly been limited to using only

bipedal gait and only foot contacts with the environment, using the upper body for balancing

without considering additional external contacts. As a result, challenging locomotion tasks like

climbing over large obstacles relative to the size of the robot have remained unsolved. In this

paper, we address this class of open problems with an approach based on multi-contact motion

planning, guided by physical human demonstrations. Our goal is to make humanoid locomotion

problem more tractable by taking advantage of objects in the surrounding environment instead

of avoiding them. We propose a multi-contact motion planning algorithm for humanoid robot

locomotion which exploits the multi-contacts at the upper and lower body limbs. We propose

a contact stability measure, which simplifies the contact search from demonstration and

contact transition motion generation for the multi-contact motion planning algorithm. The

algorithm uses the whole-body motions generated via Quadratic Programming (QP) based

solver methods. The multi-contact motion planning algorithm is applied for a challenging

task of climbing over a relatively larger obstacle compared to the robot. We validate our

planning approach with simulations and experiments for climbing over a large wooden obstacle

with COMAN, which is a complaint humanoid robot with 23 degrees of freedom (DOF). We

also propose a generalization method, the “Policy-Contraction Learning Method” to extend

the algorithm for generating new multi-contact plans for our multi-contact motion planner,

that can adapt to changes in the environment. The method learns a general policy and the

multi-contact behavior from the human demonstrations, for generating new multi-contact

plans for the obstacle-negotiation.
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CHAPTER 1

Introduction

Humanoid robots can perform human-like locomotion and manipulation tasks to assist humans.

The goal of this thesis is to develop advanced planning algorithms to improve the multi-contact

motion planning for locomotion of humanoid robots in challenging environments.

1.1 Motivation

Every night when I get out of bed in the dark, I use my arms to quickly feel the walls to

support myself and walk towards the refrigerator to fetch myself a glass of water. We make

numerous such supporting contacts during our day-to-day tasks with the surrounding objects

in our environment without even thinking about the process. For instance, when we trip and

lose balance during walking we make a few more supporting contacts with our arms to quickly

grab on to any near-by objects to avoid potential falls. We regularly see that by making

additional contacts, humans manage to move around their surrounding environment with

safety at least most of the times.

Having robotic systems that can precisely display such advanced levels of contact planning,

would be an essential milestone in bringing the humanoid robots to every home. Like for

example, when a humanoid robot trips while walking we would expect it to prevent the fall

by planning to and making additional contacts with its arms to balance itself in the process.

Another good example of such planning for multiple contacts is usually seen on a crowded

bus for transport at an airport, where numerous people who are standing in the bus take the

support of the handrails or hand-straps in the bus to stabilize themselves against any driving

disturbances. Similarly, in wall climbing sports, people make support contacts with their

arms and feet on the climbing holds to accomplish the climbing task. We can see that the

same ability helps us in rock climbing or any sort of adventurous sports as in Figure 1.1. In
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disaster sites, where stable footholds are not present, it is essential for the humanoids to have

the capability to plan for multiple contacts for locomotion in such environments. Human

beings take due advantage of living in the familiar environment by making use of the objects

in our surroundings while planning for the movements around them.

Fig. 1.1: A person climbing a rocky mountain without any gears is shown on left side. Another person is
shown clinging on to the church wall decorations in the right picture.

Imagine if the robots could also do the same with all the comparable human capabilities

it now has. With the advancements in technology, the present humanoid robots’ sensing

and actuating capabilities are comparable to that of humans, yet they do not portray the

same levels of multiple contact planning and motion behaviors. I wish that robots could one

day achieve similar degrees of multi-contact behaviors, and plan for motions in challenging

environments, eventually allowing these robots to be incorporated into human-centered

environments seamlessly, from their usual restrictive lab settings.

Devising a planning algorithm that can accomplish a sophisticated level of Multi-Contact

Motion Planning for humanoid robots, as described above, is complex and nontrivial. For

decades, the research in locomotion for humanoid robots has mainly focused on motion pattern

generators for bipedal walking gaits (Nagasaka et al. (1999), Kajita et al. (2003a), Kryczka

et al. (2015)). Using state-of-the-art bipedal motion pattern generators, humanoid robots can

navigate across complex scenarios, including obstacle negotiation mainly through stepping-over

methods or avoiding obstacles altogether by circumnavigating around them and also climbing

stairs. However, these approaches avoid any additional contact with the surrounding objects

in the environment and the motion planners for humanoid robots explicitly generate planned

paths that incorporate safety distance margins to avoid such collisions. Due to this, the

humanoid robots tend to fall short of the many prerequisites needed to execute tasks as well

as humans do.
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1.2 Objectives and Approach

This thesis aims at developing a multi-contact motion planning algorithm to generate multi-

contact plans that can adapt its behavior to changing scenarios. Specifically, our aim is

to develop an all-encompassing multi-contact motion planning algorithm that fulfills the

following desiderata: 1) It should be easy to specify a goal, 2) It must be able to adapt the

contact-plans to the environment changes, 3) It must be able to incorporate new contact

plans and must select an optimal plan for the given scenario, 4) It must be able to make use

of the static objects via multi-contacts in the environment.

The first criterion is essential as it provides an easy and intuitive means to provide goals

for the robots. In addition, it enables the system to generate motions that mimic human

behavior (and also look natural for human interaction). The other two criteria help the

planner to adapt the planning scheme conceived in the initial stage, according to the changes

in the environment and finally optimizes it to the robot. The final criteria is central to our

multi-contact approach, i.e. making use of the surrounding objects effectively to aid humanoid

locomotion. This brings us to our hypothesis:

Hypothesis: Humanoid robots can negotiate large obstacles by planning for multiple

contacts on the obstacles. These multi-contacts can increase the overall support

region for the humanoid robot thereby improving its ability to navigate in challenging

environments.

The main scope of this thesis is to develop a planning algorithm that fulfills the objective

of multi-contact motion planning for a humanoid robot, especially for the case of negotiating

larger obstacles in its surrounding environment. Eventually to improve the state-of-the-art in

locomotion by allowing multiple contacts not only limited at feet but also over elbows, hands,

and knees of the humanoid robot. We also show an extended application of the multi-contact

motion planning algorithm. The objectives of this thesis are the following:

1. Obtain an initial solution for negotiating obstacle with multi-contacts which captures

the requirements and challenges of the task.

2. Develop a multi-contact motion planning method using this initial solution and adapting

the solution to demonstrate the negotiation of a large obstacle via multi-contact on a

humanoid robot.

3. Generalize the multi-contact motion plans through the “Policy Contraction Learning”

method and adapting the contact plans to different experimental scenarios.

4. Generate new multi-contact plans through the “Multi-contact Replanning” algorithm for

generating new contact-plans for changes in the dimension of the obstacle.
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1.3 Chapter Summary

This thesis is organized as follows:

Chapter 2: Background and Research

In this chapter, we provide a brief introduction to the state-of-the-art robots. We discuss

the challenges faced by the humanoids robot at the DARPA robotics challenge and how this

thesis addresses some of those problems with the multi-contacts planning approach. We also

review the state-of-the-art planning algorithms, whole-body control and multi-contacts for

the humanoid robots.

Chapter 3: Initial Solutions for Negotiating Obstacles

In this chapter, we introduce the research problem addressed by this thesis. We discuss the

reasons for obtaining an initial solution for the problem. Several methods like kinesthetic

teaching, tele-operation and sampling based planners were explored to get a preliminary

solution for the multi-contact motion task. We show that human demonstration is a good

way to obtain initial solution for humanoid robot for negotiating obstacle. We explore two

methods of obtaining the demonstration in the chapter, and select the best demonstrated

method.

Chapter 4: Multi-Contact Motion Planning

In this chapter, we present the multi-contact planning algorithm for humanoid robots from

the demonstrations of the task. We show that the planning algorithm can formulate the

multi-contact tasks directly from the human demonstration. We also introduce a contact

stability metric for the contact optimization and generation of the transition postures, to

simplify the multi-contact planning in humanoid locomotion. The motion planning algorithm

also addresses the collision-free planning for the humanoid robots. The multi-contact motion

planning is validated in both simulation and experiments for climbing over an obstacle task.

Chapter 5: Generalization of Multi-Contact Motion Planning

In this chapter, we present two methods to adapt and generalize the multi-contact plans

from the demonstrations. The first method, “Policy-Contraction Learning” method builds

a general policy from the contact plan of the demonstrations. It is shown that the learned

general policy can generate several multi-contact steps necessary for the task of overcoming an

obstacle. We also introduce notion of costs, to evaluate the general policy the multi-contact

task. We propose another method, “Mutli-Contact Replanning” method, which addresses the

multi-contact planning to generate new contact plan for changes in the obstacle dimensions.

Chapter 6: Conclusion

This chapter concludes the thesis by summarizing its technical contributions, discussing its

assumptions and limitations, and providing possible research extensions.
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1.4 Publications
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CHAPTER 2

Background and Research

Humanoid robots are designed based on the general structure of humans beings, enabling

such robots to walk on two legs and also have an upper body consisting of two arms and a

head with sensory inputs. Such advanced robots which are designed based on similar human

embodiments, are suitable for incorporation into our environments, since these have been

designed to facilitate our own mobility with flat floors, stairs or ramps, and corridors.

Fig. 2.1: Humanoid robot WABIAN-2R1 front picture (left). WABIAN-2R robot walks with heel-contact
toe-off motion (right).

Also, their dimensions are tailor-made to enable ease of human access to the environment.

The presence of similar human characteristics in the humanoid robots makes them better suited

for the human-centered environments. One of the earliest humanoid robots was prototyped by

Ichiro Kato et al. at the Waseda University. Their latest humanoid robot WABIAN-2R with

41 DOFs, which is 150 cm in height and 64 kg in weight is shown in Figure 2.1. By exploiting
1Courtesy of Atsuo Takanishi Lab., Waseda Univ., Tokyo, Japan.
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the research on the human gait analysis and redundancy in the foot mechanism, the robot

performs stretched-knee walking with heel-contact and toe-off motion, as shown in Figure 2.1.

The field of humanoid robotics was drastically changed when Honda Co. publicly revealed

their first humanoid robot P2 in 1996, that can walk on biped legs with sufficient stability.

Honda had then challenged the robotics community by performing these astonishing feats

on a full humanoid robot. Their latest humanoid robot ASIMO has 34 DOFs, is 48 kg in

weight and 130 cm in height, is shown in Figure 2.2. ASIMO can stably walk at speeds of

around 3 km per hour and also run, achieving speeds up-to 9 km per hour. ASIMO has also

demonstrated stair ascending and descending capabilities. It also can coordinate the upper

body movements to perform realistic gaits and balance during locomotion. Honda’s ASIMO

robot performing running and climbing stairs at a special presentation in Ontario Science

Centre are shown in the picture below.

Fig. 2.2: The humanoid robot ASIMO by Honda Co. is shown in running stance. On the right side the
robot ASIMO is climbing the stairs.

Research in humanoid robot locomotion has mainly focused on periodic walking pattern

generators for humanoid walking gaits. For dynamically stable humanoid robot walking, Zero

Moment Point (ZMP) is widely used to determine the stability (Vukobratovi et al. (1990)). It

guarantees stability when the computed ZMP is inside the support polygon. The advanced

approaches used for the realization of biped walking in humanoid robots are off-line pattern

generation with on-line feedback compensation or on-line pattern generation with on-line

feedback control (Kajita et al. (2003b)).

The off-line pattern generation with on-line feedback compensation does overcome the

stability and the robustness problems. This approach uses ZMP based walking patterns and

compensates them to keep the balance by feedback control. It can increase the walking stability
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of the robot by reducing the instability factors induced by un-modeled dynamics, ground

conditions, etc., controller, although the complexity of stable walking pattern generation still

remains. The enticing feature of the described methods, is that they use an oversimplified

linear inverted pendulum model, which allows for a dissociation of the ZMP along the various

axes. The inverted pendulum model is a simple model for generating walking gaits to mimic

the human walking gaits. In the on-line pattern generation, on-line feedback approach, the

walking pattern is obtained by kinematically generating the position commands for the joints

(Park et al. (2006)). It is constructed by observing the humans behavior, and the walking

stability is controlled by adapting the feedback controllers (Kajita et al. (2003a), Kagami

et al. (2002)).

Now, with the state-of-the-art bipedal motion pattern generators, it is possible to navigate

complex environment scenarios with obstacles, uneven terrains (rubbles) and stairs. The

humanoid robot can avoid the obstacles by either circumnavigating around them as shown

in (Stilman et al. (2006)) or by stepping over them up-to obstacle height of 15cm (Guan

et al. (2006), Verrelst et al. (2006)). Although there have been tremendous advancements in

pattern generators and ZMP controllers for navigating in environments for humanoid robots,

uncertainty in the environment can invalidate the assumption made for simplified controllers

causing instabilities in humanoid robot.

2.1 DARPA Robotics Challenge for Disaster Response

Humanoid robot locomotion has been challenging, but it is very relevant for performing

human-like tasks in human-centered environments. These include walking, climbing stairs,

stepping over obstacles and walking across uneven terrain without the constant fear of falling

over, especially in disaster-like situations, where human intervention is prohibitive due to

potentially hazardous and fatal reasons.

The Fukushima Daiichi nuclear disaster was caused primarily by the tsunami following

the Tōhoku earthquake on 11 March 2011. During the Fukushima nuclear plant meltdown,

even the most advanced military robots had difficulties intervening and failed to contain the

fallout from the nuclear disaster in a timely fashion, which grievously impacted thousands of

local residents and plant workers. In response, DARPA had called for a robotics challenge for

the disaster response by assimilating the similar conditions and challenges in the disaster.

Several tasks relevant to the disaster scenario were identified and many humanoid robots

from around the world took part in the finals challenge. The challenge objective was exploring

the robot’s ability to contain a contaminated nuclear reactor, where the robot would have to

conquer not only piles of rubble in the facility, but also be able to open doors, turn valves and

climb stairs. The graphic in Figure 2.3 demonstrates the tasks the robots must successfully

2Courtesy of IEEE Spectrum.
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Fig. 2.3: DARPA disaster response tasks description graphics2

perform in the disaster response challenge.

There were 8 tasks in total for the robots in the challenge: driving a utility vehicle from

the start area to the hazardous area, to egress from the vehicle, opening a door and entering

into the hazardous area, opening a valve, cutting a wall with a circular shape using a drill tool

that the robot had to grasp, a manipulation surprise task, passing over rubbles or debris area

to exit the hazardous area and finally climbing stairs. All these tasks were performed inside

the hazardous area with some degraded communication between the robot and the operator.

The robots were allowed to be semi-autonomously controlled over a wireless communication

network (i.e., human operators in the loop still do much of the control in the challenge). The

robots were able to successfully pass some impressive tests, including the driving task.

In door task, the robot has to open the door and enter the disaster site. Figure 2.4 on

the left shows the KAIST DRC-HUBO humanoid robot successfully performing the door

opening task. Here the robot performs the manipulation task for opening the door after

walking towards it. Few humanoid robots failed at the door task as shown in Figure 2.4 on

the right since they did not manage to balance the disturbances induced by the manipulation

motions. Planning for the whole body motions with multi-contacts as demonstrated by

KAIST DRC-HUBO could have handled these disturbances to provide stability during the

manipulation. These problems were frequently encountered in all the tasks which needed

manipulation in addition to the locomotion.
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Fig. 2.4: Team HRP2-Tokyo (left) failed in door opening task shown. KAIST DRC-HUBO (right) successfully
performs door opening task.

Fig. 2.5: MIT ATLAS (left) spills while performing the car egress task. KAIST DRC-HUBO (right)
successfully performs the egress task.
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In egress task, the robot has to move out of the vehicle after the driving task to a marked

region. This was probably the most difficult task in the entire challenge, because the robot

had to extricate itself from a complicated driving position all the while balancing itself and

the robot body movements without any collisions. Many robots had opted to be taken out

manually with the human assistance, while only few robots took up the challenge. The MIT

ATLAS humanoid robot failed to balance itself using only its feet and it lost its balance while

taking its first steps and took a spill, as shown in Figure 2.5 on the left. However, KAIST

DRC-HUBO robot was successful in the egress task, as shown in Figure 2.5 on the right.

The multi-contact planning approach helped the robot to execute the egress task successfully

without taking a spill. The robot was able to maintain its balance while being guided by

human operators with motion plans to use the arm grippers to grip on additional support

holds mounted on the vehicle.

Fig. 2.6: IHMC ATLAS (left) takes spill while performing uneven terrain task. MIT ATLAS (right)
successfully performs the uneven terrain crossing task.

In rubble task, there were both the uneven terrain crossing and debris removal tasks.

Robots could choose whether they wanted to deal with the uneven terrain or the debris

removal task. The MIT ATLAS robot was successful in completing the uneven terrain task

as shown in Figure 2.6 on right. Although, most of the robots which attempted the uneven

terrain task had taken spills while climbing on it, due to minute uncertainties in the cinder

blocks used as an uneven terrain. Figure 2.6 on the left shows the IHMC ATLAS robot

tasking a spill during the uneven terrain.

Although, we contend that a multi-contact approach with contacts on the adjacent wall

can increase the robot support and improve its balance leading to a successful execution of

the task. The probability of the humanoid robots falling increased since whole-body multi-

contact motions were not planned for the tasks. Eventually, this resulted in many humanoid

robots taking spills during the course of the challenge. Also, any additional contacts with
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the surrounding environment were strictly avoided during the process and motion planners

explicitly generated paths that incorporate safety distance margins to avoid such collisions.

Due to this, the humanoid robots did fall short of the many expectations to execute tasks as

well as humans, in a disaster like situations at the DARPA challenge.

We see that these humanoid robots with multiple DOFs were difficult to be semi-

autonomously controlled, even with human-in-the-loop for guidance throughout the course

of the task. Also, balancing with only the foot contacts for the robot was not enough to

keep the robot stable. We propose that the robot could have taken due advantage with

additional contacts over the surrounding objects in the environment to support itself during

the tasks. Also, due to multiple DOFs in a humanoid robot, the complexity of controlling

is increased and it is further compounded by the difficulty of planning for such high-DOF

systems involving external collisions and ground contacts. In all of the above experiments,

the planning for locomotion in humanoid robots was restricted to mostly footstep generation

on flat surfaces with minute disturbances.

2.2 Path Planning for Humanoid Robots

Path planning for locomotion of humanoid robots in human-centered environments consisting

of obstacles needs complex algorithms. Path planning is an essential primitive for autonomous

robots, and it lets the robots find the shortest distance or the optimal path between two

locations. This optimal path could be one that minimizes some path cost like the amount of

turning, braking or whatever the specific application requirements may be. Thus, the path

planning algorithms deal with the problem of searching these sequence of actions that will

cause the robot to achieve a goal state from its initial state (LaValle (2006)). This path may

contain discrete or continuous elements, such as point coordinates or curves, respectively. In

other words, path-planning finds a path that travels through the representation related to the

robot’s state in the environment.

Graph-based search algorithms are widely used for path planning in robots like A*

algorithm. A* algorithm finds optimal paths as long as an admissible cost-to-go heuristic is

selected for the algorithm. Particularly the planning problem for humanoid robot locomotion

was simplified by restricting the planning dimensions by only planning for the footstep

placements in the environment. A 2D map is used for the representation of the robot

environment.

Another graph-based algorithm like Anytime algorithm, which implies that the algorithm

can search quickly sub-optimal solutions and upon several runs refines that solution (Hansen

and Zhou (2007)). Such algorithm can allow for efficient re-planning in case of changes in the

environment or the initial solution. The algorithm modifies data in the search-tree instead

of performing a new search from scratch. This often leads to faster re-planning calculations
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when map information changes but the start and goal location remain the same. Anytime

algorithms that can be applied in the context of A* algorithms are called Anytime Repairing

A* algorithms. Footstep planning for the humanoid robot using Anytime Repairing A*

algorithm was applied for faster re-planning in changing environments (Hornung et al. (2012)).

A graph-search algorithm can be used to find a solution that is optimal with respect to

the graph model of the world, but that may not be optimal with respect to the real-world.

Graph-search based algorithms are currently the most common technique for robots operating

in three or fewer dimensions. Complete solutions are often unfeasible however, when the

possible state space is large. This is the case for robots with multiple degrees of freedom

such as humanoid robots. In practice, most algorithms are only resolution complete, i.e., only

complete if the resolution is fine-grained enough, as the state-space needs to be somewhat

discretized for them to operate (e.g., into a grid) and some solutions might be missed as a

function of the resolution of the discretization. The method of choice in more than three

dimensions is random-trees.

The configuration of a robot is a specification of position and orientation of the robot w.r.t

a fixed frame in the workspace. A set of all allowable configuration forms a configuration space

(C-space). Random-tree algorithms are used in complex C-spaces when other methods are

computationally prohibitive. Random trees perform graph construction simultaneously with

graph-search. New nodes, created by sampling continuous points in C-space, are linked to

old nodes using a predetermined procedure. Paths provided by random trees can be far from

optimal. However, they are often used for problems so complex that finding any solution is

considered an achievement. They can be implemented in many different frameworks, including

those described as ’Anytime’.

Fig. 2.7: Humanoid robot H6 performs full-body motions to retrieve an object3

Planning in configuration spaces is akin to the motion planning problem which is complex

in its general form (Reif (1979)). So, these planning algorithms have been limited to planning

problems in the lower dimensions problems of C-spaces. This has led to use of heuristic-

3Reprint by permission of authors: Kuffner et al. (2000).
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based algorithms, many of them employed randomization for searching the C-space e.g.,

(Barraquand and Latombe (1991), Amato and Wu (1996), Horsch et al. (1994), Bohlin and

Kavraki (2000), Hsu et al. (1997), Mazer et al. (1998), Boor et al. (1999), Kuffner and LaValle

(2000), LaValle and Kuffner (1999)). Although these planning algorithms have no guarantee

or completeness, with enough samples in high-dimensional configuration spaces many are

shown to find solutions.

Fig. 2.8: Navigation for humanoid robot in cluttered environment (left). Right image shows Footsteps
planned for the robot to reach the goal4

Rapidly-exploring random trees (RRTs) based RRT-Connect algorithm was used

to plan dynamically-stable motions for the humanoid robots in the C-space (Lavalle et al.

(2000), Steven M. LaValle and James J. Kuffner (2001)). The full-body motion planning for a

humanoid robot in the C-space to retrieve an object below a small table was demonstrated in

(Kuffner et al. (2000)) as shown in Figure 2.7. The RRT-Connect planning method utilizes the

Rapidly-exploring Random Trees to connect two search trees, one from an initial configuration

and the other from the goal configuration. The random point samples in C-space with single

or dual leg support configurations were used in the tree search exploration. In the second

phase, the collision checker was used in conjunction with a dynamics filter to generate a final

collision-free dynamically-stable trajectory. Footstep planning for the humanoid robot H6

with A* algorithm along with RRT-Connect algorithm to generate a collision-free statically

stable solution for locomotion was demonstrated by (Chestnutt et al. (2003)) as shown in

Figure 2.8.

The problem of footstep planning for humanoid robots, or searching for a list of step

locations to reach the desired goal, has been solved using two classes of techniques: discrete

searches and continuous optimizations. In general, discrete searches require some methods

to estimate the possible displacements from one step to the other (Eilering et al. (2014),

Bouyarmane and Kheddar (2012)). For instance, through approximations to the reachable
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space for the feet (Perrin et al. (2011)), or with a predefined set of possible footstep locations

(Kuffner et al. (2003)). The problem can also be formulated as an optimization problem on

the poses of the footsteps (Deits and Tedrake (2014), Herdt et al. (2010)), but also using

some sort of geometric approximation to the reachable regions for the footstep locations.

A randomized motion planner for a robot to avoid collision with moving obstacles under

kinematic, dynamic constraints and reach a specified goal state was presented by (Kindel et al.

(2000)). Here the planner samples the state space of a robot by selecting control inputs at

random in order to compute a roadmap that captures the connectivity of the space. Instead of

precomputing a roadmap as most PRM planners do (Kavraki et al. (1996)), for each planning

query, it generates on the fly, a small roadmap that connects the given initial and the goal

state.

Imitation Learning (also known as programming by demonstrations or learning from

demonstration) is one of the fundamental learning mechanisms in humans’ daily lives. In

robotics, imitation learning (IL) had started attracting attention at the beginning of the

1980s. Through the years, IL has been used as a powerful means to bootstrap robot learning

(Ijspeert et al. (2002)). IL provides an intuitive way to transmit skills to robots without

explicitly programming them. IL-based approaches have proved to be an exciting alternative

to classical control and planning methods in different applications such as learning tennis

swings (Ijspeert et al. (2002)), locomotion (Ratliff et al. (2007)) and control of acrobatic

helicopters (Coates et al. (2008)).

2.3 Whole-Body Control for Humanoid Robots

A new control methodology for whole-body control was put forward for controlling full-body

motions in humanoid robots. Whole-body control unlocks the full capability of controlling

humanoid robots to perform various human-like tasks and behaviors. A whole-body control

approach utilizing an optimization of contact forces in combination with Model Predictive

Control was used for balancing and posture stabilization of the humanoid robot TORO (Henze

et al. (2014)).

Another entirely different approach to whole-body control presented in (Sentis and Khatib

(2006), Sentis et al. (2010)), based on the prioritization of different tasks using the framework

of operational space control. The facets of the humanoid robot control with motions including

contacts, and constraints were unified with a full integration of task-space control and posture

control (Khatib et al. (2008), Sentis and Khatib (2005), Park and Khatib (2006b)). Whole-

body control was achieved through a development of a task consistent posture Jacobian and

a model for inducing the dynamic behavior in the posture space. There are many frameworks

including those based on Inverse Dynamics, implemented on top of a pure low-level torque

4Reprint by permission of authors: Chestnutt et al. (2003).
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control (Sentis et al. (2010)), it is difficult to find hardware platforms mature enough to

implement control schemes of such frameworks and up to now no complex tasks have been

experimentally demonstrated yet in humanoid bipedal robots. The control library called

OpenSoT implements the idea of decoupling task descriptions and solvers to execute multiple

Cartesian tasks to achieve complex motion behaviors for humanoid robots in position or

velocity space, which is realizable to demonstrate on most robot platforms (Rocchi et al.

(2015)).

A whole body motion trajectory can be generated for the humanoid bipedal robot based

on a decoupling task space which is solved using Quadratic Programming optimizations.

OpenSoT employs a QP solver (Ferreau et al. (2014)) to implement a cascade of Quadratic

Programming (QP) problems for a set of tasks and constraints in velocity space, in order

to solve a hierarchical inverse kinematics problem on a humanoid robot. We describe the

OpenSoT formulation in detail, which we use extensively in this thesis for generating the

whole body motions from a kinematic perspective. The robot can execute n tasks Ti and for

each of these tasks, an error function ei(q, t) describing the Cartesian error in the tasks is

provided. We can compute the derivative of the error w.r.t. time t as in (2.1), which can be

further deduced to be associated with the task Jacobians, Ji, as in (2.2).

ėi =
∂ei
∂q

q̇ +
∂ei
∂t

(2.1)

ėi = Jiq̇ +
∂ei
∂t

(2.2)

where q is joint positions and q̇ is joint velocities.

By representing the Cartesian error derivatives as Jacobians, we can obtain the equation

which combines the joint positions, velocities as the reference error changes. Rearranging the

terms of the equation in(2.2), we can force the task errors to converge to zero by applying an

exponential dynamic as

Jiq̇ −
∂ei
∂t

= −λei (2.3)

The whole-body IK solver uses QP optimization with the possibility to specify hard and

soft priorities between tasks as well as with linear constraints, Ac,n and bounds, bc,n. The

solver is based on a framework from LAAS (Mansard et al. (2009)). The Cartesian tasks

described by (2.3) are formulated in a QP form to solve for the solutions as

q̇1 = arg min
q̇

‖Jiq̇ − ė∗i ‖

s.t. Ac,1q̇ ≤ bc,1 (2.4)
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Since a humanoid robot is redundant with respect to task, secondary Cartesian tasks can

also be included in the equation without affecting the performance of a primary task, which

allows the robot to execute tasks by utilizing its whole-body motion capabilities. Therefore,

to generate whole-body motions, we can have a series of QP problems in cascade to be solved

(Kanoun et al. (2011)). This is a well known method to derive motions by executing tasks

adding bilateral linear constraints to the inverse kinematics problem (Escande et al. (2014)).

The formulation used in (2.4) for the constraints can be profitably used to express lower and

upper bounds for the variable value as well as equality constraints. In general, the nth task

will then be written as:

q̇d = arg min
q̇

‖Jnq̇ + λen +
∂en
∂t
‖

s.t. A1q̇ = A1q̇1

...

An−1q̇ =An−1q̇n−1 (2.5)

Ac,1q̇ ≤ bc,1
...

Ac,nq̇ ≤ bc,n

where q̇d is the desired velocity.

In (2.5) the previous solutions q̇i are taken into account with constraints of the type

A1q̇ = A1q̇1 i∀ < n; so that the optimality of all higher priority tasks is not changed by the

current solution. While in (2.5) the first task has a relationship of hard priority with respect

to the second, and so on, for each level of priority, a soft priority relationship between tasks

can be imposed introducing the relative weights βi, so that the augmented Jacobians and the

error vectors can be written as

Jaug = [β1J
T
1 . . . βnJ

T
n ]T

eaug = [β1e
T
1 . . . βne

T
n ]T (2.6)

where Jaug are augmented Jacobians, eaug is error vectors associated with it.

The soft priorities between tasks is altered by tuning the relative weights βi, with higher

priority tasks having larger βi. As already mentioned, in this case, the tasks can still influence

each other’s performance. Therefore, a combination of hard and soft priorities are needed

to describe a stack of tasks. The solution obtained can then be sent directly to a velocity
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controlled robot or integrated in a position controlled robot as

qd = q + q̇δt (2.7)

where δt is the control loop period, qd is the obtained joint solution.

2.4 Multi-Contacts for Humanoid Locomotion

Current approaches for the multi-contacts in humanoid systems address the contact planning

through user-defined plans/hints, global graph-search methods and other planning methods

discussed in Section 2.2. In contrast, our multi-contact motion planner uses a demonstration of

the tasks, to obtain the sets of contacts, which is used for initializing the contact optimization.

Our planner uses a QP solver for IK, i.e., searching the C-space, and also incorporating

self-collision, unintended collision avoidance along with task prioritization for the supporting

contacts of the goal.

In comparison, Escande et al. (2013) used adapted best first planning (BFP) with potential

functions defined over C-space using the CoM and target goal position, along with the user-

defined rough key-postures describing the task and user-selected contact points on the robot.

The BFP planning process searched for witness postures attesting to the feasibility of a set

of contacts. The witness posture is constructed using a set of contact tasks, which satisfies

the joint limits, auto-collision, collision constraints to builds a set of C-space. The BFP

planning approach is applied for scenarios involving multiple surfaces, and contact candidates

are searched with good coverage of the surface area. A total of 497 nodes were generated

for the case of table scenario experiment with multi-contacts. In contrast, our generalized

contact planner introduced in Chapter 5, learns a general policy from the demonstrated task,

to map the candidate contacts and select only a subset of contact actions for the multi-contact

behavior using the robot environment state information.

Mordatch et al. (2012) presented a motion synthesis based on Contact Invariant Opti-

mization(CIO) framework for producing a wide variety multi-contact behaviors similar to

human behaviors such as getting up, crawling, climbing, etc. The methods exploited the

set of active contacts which remain invariant movements phases of multi-contact motion.

It was necessary for their approach to predefine the contact patches on the robot. Similar

to our multi-contact motion planning approach they optimize the contact positions using

the Limited-memory BFGS (L-BFGS) method. However, the contact sequences are neither

defined nor obtained with any motion capture tools. In contrast to our approach of using

stability costs for contact optimization, they formulate the contact optimization costs as an

error violation cost with contact position, angle, and velocity, along with auxiliary variables

which allow for activating the contacts during optimization. Also the costs for dynamics,
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ZMP and task goal were added in optimization. The task goals were encoded at a higher level

by specifying the target position and velocities of the movement. Besides, it was necessary to

define the number of movement phases essential for the task in the optimization step, whereas

our generalized contact planner can find the necessary movement phases/key-frames with the

help of a running cost-to-go metric.

Lengagne et al. (2013) generated whole-body motions in multi-contact motions for HRP-2

using semi-infinite programming formulation. The motion planning formulation considered the

balancing constraints for contact forces, which is minimized using B-spline parameterization to

contour the dynamics effects, along with collision constraints for unintended external collisions.

Experimental validation of a sitting motion with HRP-2 was shown, where user-defined contact

positions i.e., alternating contacts with both the left and right hand and feet contacts were

specified.

Englsberger et al. (2014) presented a multi-contact passivity-based controller for climbing

stairs with the humanoid robot TORO using the handrails as support contacts. Their proposed

planner uses different methods for footsteps and hand contacts. A complete pipeline was

used to generate quasi-static motions from either perception input using graph-based search

approach for footstep planning. A Constrained Rapidly-exploring Random Trees (CBiRRT) for

the planning hand contacts along with gradient-based optimization to obtain IK for the robot.

Climbing stairs at the height of 0.05m, while using a handrail was used to experimentally

validate their approach. Chung and Khatib (2015) presented a Contact-consistent Elastic

Strips (CES) framework for humanoid locomotion in unstructured environments, where the

environment scene was scanned for contacts to choose candidate support regions. In their

approach, a global planner was used to guide the initial solution for the contact planning

framework. Here also they restrict the multi-body contact with the environment to only

wrists and feet to increase support during locomotion, whereas we try not to limit the contact

to only a few robot body parts.

A multi-contact approach for ladder climbing was presented in (Vaillant et al. (2016)). This

approach makes use of both a multi-contact planner along with multi-objective closed-loop

control formulated as a QP. The set of contacts to climb the ladder was planned off-line by the

user. The planning approach used a greedy search behavior to seeks for all possible contacts.

The controller provided the desired states in terms of joint accelerations and contact forces to

be tracked by the low-level motor controllers.

Advanced techniques for multi-contact humanoid locomotion in unstructured environments

using support hiking poles was solved in the SupraPed framework, which builds on a whole-

body framework by adding the friction constraints (Khatib and Chung (2014)). The supporting

forces and moments are obtained by mapping the contact forces using a contact force grasp

matrix (Ott et al. (2011)) and moments using the virtual linkage model for balancing the

internal forces (Sentis et al. (2009)). The robot design incorporates a pair of actuated smart
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poles with vision and force sensing that transforms the biped humanoids into tripeds or

quadrupeds. The multi-contacts are handled with a contact-consistent Jacobian to ensure

that the tasks will not interfere the contact states of the robot by projecting the tasks to

the null space of contacts (Park and Khatib (2006a)). The multi-contacts presented were

confined to the robot feet and external support poles grasped with hands. In comparison, our

work in this thesis extends this variable number of point contacts in the obstacle negotiating

task, using bipedal, quadrupedal or tripedal stances but critically it also uses the limbs of the

robot (hands, arms, legs, feet) to execute the task.

2.5 Conclusion

In this Chapter, we discussed the challenges faced by humanoid robots at the DARPA robotics

challenge and how they could have prevented spills during the tasks. We also reviewed the

state-of-the-art planning algorithms for the humanoid robots like graph-based algorithms

such as A*, Anytime Repairing ARA* and sampling-based algorithms such as RRT-connect

and PRM methods. RRT-connect algorithms are used for planning humanoid robot motions

in the C-space while making use of the whole-body, and A* or graph-based search algorithms

can give an optimal path for navigating in the environment. We also reviewed the capabilities

of imitation learning in humanoid robots. We also discussed the state-of-the-art whole-body

control methods for humanoid robots. The approaches used were model predictive control,

task prioritization in operational space control, inverse dynamics, etc. We described OpenSOT

for generating whole-body motions based on a decoupling task space which is solved using QP.

We also discussed the current approaches used for planning the multi-contacts in humanoid

systems using the adapted BFP method, CIO method, semi-infinite programming, CBiRRT

planning, CES framework, SupraPed framework, etc.
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CHAPTER 3

Initial Solutions for Negotiating

Obstacles

Tasks for humanoid robot systems have traditionally been hand-designed by human experts

by specifying the goal plans explicitly. Research in humanoid robots is challenging due to the

numerous degrees of freedom in the system, that makes it harder to specify the task goals.

Finding initial solutions for the task provides critical insights into the problem often leading

to optimal solutions. Identifying such initial solutions can determine the limitations of the

system and the task variables necessary for successful execution of the task. To begin with,

we start with the problem statement of the thesis which builds on the hypothesis.

Problem statement: Enable humanoid robots to climb large over obstacles with multiple

contacts over the obstacle. The robot must use the obstacle to support itself during the process

of negotiating the obstacle.

We make a few assumptions for the problem of negotiating i.e., either climbing or overcoming

the obstacle, regarding the shape of the obstacle used or the type of the contacts allowed in

the simulations and experiments. We list the assumptions for the problem as follows:

1. A simple cuboid is used for the obstacle.

2. Unilateral contacts are allowed.

3. Obstacle height does not exceed the robot’s reach.

4. Any robot body link can be in contact with the obstacle.

We consider a simple cuboid as an obstacle for the negotiating task, as shown in Figure 3.1.

The robot can only make unilateral contacts with the obstacle, i.e., the robot can support at
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Fig. 3.1: The humanoid robot COMAN for negotiating over a large wooden obstacle via multi-contact
motion planning is shown. The virtual world and simulations are in the Gazebo simulator environment.

contacts by by solely pushing against them. The obstacle height selected for the task must

not be too high for the robot and it should be physically able to climb on the obstacle. Also,

we allow any robot body parts to be in contact with the obstacle during the execution of the

task.

The humanoid robot COMAN (shown in Figure 3.2) is used in our experiments. COMAN

has 23 degrees of freedom (DOFs) and is a medium-sized robot that roughly approximates

the dimensions of a 4-year-old child. The height of the humanoid robot COMAN from the

foot to the center of the neck is 945 mm. The total weight of the humanoid robot is 31.2 kg,

with the legs and the waist module weighing 18.5 kg and the torso and the arms weighing

12.7 kg. One unique feature of the robot COMAN is its passive compliance in the legs and

arms, which makes it more robust but also more difficult to control. Special care needs to be

taken to adapt the conventional ZMP-based walking pattern generator for the compliance

in the legs (Kryczka et al. (2013)). Initial solution for the obstacle negotiating problem can

determine the limitations and the task variables necessary for successful execution of the task

as follows:

1. Feasibility of the task

2. Size of obstacle possible to negotiate

3. Strategy needed for the task

4. Static or dynamic motion

The goal here is to obtain a good initial solution in the simulation environment. Most

state-of-the-art algorithms use simulation as a first step in the experimental phase. Here we
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Fig. 3.2: The humanoid robot COMAN used for the experiments.

also resort to simulations, before experiment on the actual robotic system. The goal here is to

obtain a good initial solution in simulation to start with, then to analyze the core challenges

at each stage of the problem before further experimentation on the robot.

For simulation purposes, we use the Gazebo robot simulator. A virtual world is set up with

a large wooden obstacle relative to the size of the robot in the environment. The obstacle

is set as a static object with certain frictional and other material properties. A Unified

Robot Description Format (urdf) model of COMAN is added to the scene for simulation. A

combination of both Yarp and ROS middle-ware is used to send control signals and collect

data from the simulations, while the same middleware can be readily used to control the

actual robotic system (Metta et al. (2006), Quigley et al. (2009)). We use Yarp-Gazebo

plugins to enable sensing encoders, IMU and control the simulated joints of the robot in the

Gazebo simulator (Mingo Hoffman et al. (2014)).

3.1 Explored Methods for Initial Solution

Identifying the necessary task variables enables us to design a suitable obstacle in the

simulation environment for the multi-contact task. We explore several methods to obtain an

initial solution for the task.

3.1.1 Kinesthetic Teaching Method

The kinesthetic teaching approach provides demonstrations to a robot whereby a human

guides a robot physically to perform a skill. The robots trajectory are recorded during the
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kinesthetic teaching process from start to end. This provides an easy way to enable the

programming of a robot with the skills by showing successful examples. Kinesthetic teaching

have been very successful in robot arms with 6/7 DOFs to collect skill demonstrations, while

the robot arm is in gravity compensated zero torque mode. Although, in humanoid robots, it

is necessary to have active balancing controllers enabled to counter the disturbances during

such interactions. For example, a humanoid robot was taught to complete a board cleaning

task, during quiet standing, through kinesthetic demonstration of the task as presented in

(Kormushev et al. (2011)).

Although for the case of overcoming an obstacle with contacts, it is not possible to have

an active controller since with every new contacts, the balancing constraints for the robot

changes. Also, the high DOFs in the system makes it difficult to teach the robot. Hence,

kinesthetic teaching methods are not a feasible means of demonstrating a climbing task using

a humanoid robot.

3.1.2 Teleoperation Methods

Teleoperation methods are used to control the robots in a semi-autonomous mode from

a distance. Usually, the mobile robots are easy to control in semi-autonomous modes for

navigation due to the fewer DOFs in the system. Here we try to make use of a pseudo

teleoperation method i.e., to control the robot in simulation, to get insight into the obstacle

negotiation problem. Initially, we set up a virtual environment consisting of an obstacle

(cuboid shaped) along with simulation version of COMAN in Gazebo simulator, as shown in

Figure 3.1. The robot is operated in a joint position PID controlled mode.

Fig. 3.3: RVIZ visualization of the robot with interactive markers are shown on left-side of images and on
right of images is the Gazebo simulation environment with the robot and obstacle. In image 1, the robot falls
backwards due to instability induced due to high joint velocities during the psuedo teleoperation. Image 2
shows the robot configuration with elbows in contact and right knee almost in contact with the obstacle.

We use the ROS visualization (RVIZ) tools to visualize the robot and provide interactive

control inputs to the robot in the simulator. 6D interactive markers are employed in RVIZ, to

provide the interaction inputs to control the robot in semi-autonomous mode. These markers
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allow us to set the position and orientation references for the desired robot links, selected

to be controlled in semi-autonomous mode. COMAN has 23 DOFs distributed across its

five kinematic chains i.e., right leg, left leg, left arm, right arm, and the torso. We assign

Cartesian tasks for the robot links such as the left foot, right foot, right elbow and left elbow

using their associated Jacobians and assign each of these tasks with an interactive marker in

RVIZ, as shown in Figure 3.3 (see 1). Now, we can interactively control these 6D markers

in RVIZ, which sends the desired position/orientation for the Cartesian tasks to control the

humanoid robot motions.

We reduce the max velocity of the position controllers to avoid the robot from falling down

due to the disturbances induced by the dynamic motions. Initially, we try to move the elbows

closer to the obstacle. We were able to reach the obstacle surface with the current set height

of 0.40m for the obstacle. After successfully moving both the elbow contacts over the obstacle,

we send position command for the left leg such that the left knee can make contacts with the

obstacle surface as shown in the Figure 3.3 (see 2).

At this point the obstacle height was too high and it was necessary to reduce the obstacle’s

height until the knee contact can occur on the obstacle surface. After reaching the robot

configuration as shown in the figure, it was not possible to figure out the next viable movements

for the tasks or which joints had to be actuated for the robot to climb on the obstacle. Due

to the high DOF in the system, it was challenging to select the robot body links for the

contact planning, specify the desired contact positions for them and to generate whole body

coordinated motion behaviors, which were necessary for the multi-contact task.

3.1.3 Sampling-based Planning Methods

Most of the planning methods tend to avoid contacts with the obstacle in the planning process.

Here, we need an inverse approach to find possible contacts for the humanoid robot. We use

Gaussian sampling-based probabilistic roadmap methods (PRM) first proposed in (Boor et al.

(1999)), for planning the multi-contacts for the obstacle negotiation task. Here, instead of

randomly sampling the state space (Hsu et al. (1997)), we restrict the sampling space with a

Gaussian function for the contact position of the robot body links on the obstacle, as in (3.1).

G(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(3.1)

The Gaussian function, G(x) with parameters sigma, σ and mean, µ are defined such

that the contacts are sampled only in the reachable region for the particular robot link. For

example, we show a sample set of possible contact positions for the left foot of COMAN.

These samples are further filtered to eliminate the contacts penetrating the obstacle surface.
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Fig. 3.4: The foothold configurations for the humanoid robot are shown with rectangles generated by
probabilistic sampling of the reachable for space for the robot foot.

The resulting samples found for the foot contacts are shown in Figure 3.4. We see that

there are many possible configurations for the contact positions at the left foot of robot along

with different orientations. Moreover, if the task needs multiple contacts points at different

robot link bodies, the search space of the samples increases. Along the problem of selecting

which robot links to choose from for the contacts. Therefore, the contact planning problem

with multiple contacts grows with the number of contacts needed for the task. Also, since

only a stable posture must be searched in the planning process, the PRM methods will take a

considerable amount of time to find a feasible solution depending on the complexity of the

problem. The algorithms such as RRT, PRM methods require many heuristics and constraints

to be defined for guiding the contact search efficiently. Thus, the problem to search a feasible

solution for a multi-contact task cannot be computed in a finite time.

3.2 Initial Solution from Demonstrations

After several trials with the different contact planning methodologies, we use the motion

capture system to directly obtain the solution in the motion space.

3.2.1 Motion Capture Suits for Demonstration

We use the Xsens MVN motion capture suit to directly record the demonstration for the task

of overcoming an obstacle. A table is used as an obstacle to demonstrate the climbing task.

The Xsens motion capture system is set up by providing human measurements, followed by

sensor initialization routines for accurately recording the movements during the task. The

Xsens movement data acquisition rate is set at 100 Hz. To perform the human demonstration

of the obstacle-climbing task, we select the table with height h = 0.35m, such that the

person can make contacts with the table obstacle using both the arms and legs in the process,

illustrating that usage of additional body contacts can help in climbing large obstacles for
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a humanoid robot. Here the height of the table is a crucial determining factor such that

both the arms and legs can reach it, as is the distance of the person in front of the obstacle.

We then record the human demonstration of the climbing task with a motion capture Xsens

capture suit. The demonstration begins with the person standing in front of the table obstacle

and performing the climbing task as shown in Figure 3.5.

1 2 3 4

Fig. 3.5: The Xsens motion capture suit for recording the demonstrations of the climbing task. A
demonstrator show the movements necessary to climb on the table obstacle for the multi-contact climbing
task.

Motion mapping from suit to the robot: Xsens MVN motion capture suit consists

of 18 inertial and magnetic sensor modules, each measuring 3 degrees-of-freedom at each

body-based linkage spread over the motion capture suit. To transfer the recorded movements

from the demonstrations to the humanoid robot COMAN we need to map by solving the

joints correspondence problem. X-sens capture suit has 54 DOFs to capture the movement of

the person wearing the suit; whereas the humanoid COMAN has only 23 DOF. We therefore

have to significantly reduce the DOF of the motions to map the movements of the person to

the humanoid robot.

For mapping, the Xsens motion data from the capture suit to the COMAN requires a

reduction in the number of DOFs recorded, to 23 DOFs only. We ignore the 12 DOFs related

to the hand because the robot only has support ends. We also ignore the 3 DOFs associated

with the neck joint. Since we have a single 3 DOF joint in the pelvis, we reduce the 6 DOFs

in the upper body to 3 DOFs at the pelvis joint, which reduces the number of DOFs to

30. We can ignore the additional DOFs in the capture suit at which the robot lacks DOFs

over particular body regions, to reduce the total DOFs from 54 to 23. As a final step of the

mapping, we constrain the motions to be within the robot joint motion limits as in (3.2). In

addition to this, we have to compensate for the differences in the reference frames between

the capture suit and the robot. Following this, we can directly map to transfer the motions
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recorded, to humanoid robot motions, in order to reproduce similar movements as in (3.3).

[θmin, θmax] (3.2)

θXsens → θCOMAN (3.3)

Motion playback in simulations: We use the direct mapping of demonstrated move-

ments for the humanoid robot given by (3.3) to playback the climbing task movements in

the simulation environment. The environment consists of an obstacle (wooden cuboid) along

with a simulation version of COMAN as shown in Figure 3.1. The robot is operated in a joint

position controlled mode. The mapped joint positions from the demonstration are applied as

joint position references to the joints of the humanoid robot. We see that the robot performs

similar movements as demonstrated during the climbing task, although it fails to complete

the task.

Fig. 3.6: Direct playback of the mapped movements from a human demonstration onto humanoid robot
COMAN to perform the climb task over wooden obstacle in Gazebo simulation. The robot fails to complete
the climbing task.

The differences in the physical size between the robot and the demonstrator causes the

motion playback to fail. Thus, we adjusted the obstacle’s height and robot’s position in front

of the obstacle, to make sure that both the robot arms and legs could make contact with it

during the playback of movements. We tried to adjust these parameters several times during

the playback of movements from the recorded motions to complete the climbing task on the
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robot in the simulation.

The robot nearly completes the task and manages to put one of its knees on top of the

obstacle as shown in Figure 3.6. Although the robot nearly completes the task, there is

instability, and the robot fails to finish the climbing just by playback of the human movements

as shown in snapshot 6 of Figure 3.6. The playback gives crucial information, i.e., the obstacle

height feasible for the climbing task, along with the distance at which the robot could be

positioned from the obstacle.

Fig. 3.7: During the direct playback of mapped movements from demonstration in Gazebo simulation, the
robot falls on the ground, even failing to get any part of the robot on the obstacle.

Also, the outcome of each trail is slightly different from that of every other trial, resulting

in separate results as shown in Figure 3.7. We see that there is instability at the beginning

of the motion, with which the robot falls on the obstacle and causes impacts at the knees

and hands of the robot. Although we see that the motion capture suit was able to capture

the whole-body behavior with the recorded movements, the necessary contact interactions

are not reproduced in the simulations. Hence, we have different contact interactions during

each playback in the simulation, which results in different actions. We hereby propose the

use of optical markers with an Opti-Track system, to better capture the contact interactions

reliably, which is necessary for the multi-contact task during the demonstrations.
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3.2.2 Optical Markers Tracking for Demonstration

Fig. 3.8: Optical marker placements are indicated by red circles, which are used to track the marked limb
positions such as both the left and right hands (with optical markers on the gloves), elbows and knees and
also one on the table. The markers are tracked with an Opti-Track motion system.

We use optical markers along with an Opti-Track motion tracking system for recording the

task demonstrations. These tracked markers can record the contact positions more accurately

to capture the interactions with the obstacle. These markers are placed close to both the left

and right knees, hands (using gloves with optical markers), elbows and one is also placed on

the obstacle to mark the relative reference for the positions recorded, as shown in Figure 3.8.

3.2.3 Demonstrations for the Climbing Task

We record the task demonstrations with a human subject, to obtain a contact strategy for

climbing an obstacle task. Here we show a demonstration involving a table used as an obstacle

for the climbing task. The dimensions of the table, l = 3.8m, b = 0.8m,h = 0.65m are such

that the person can easily use both their arms and legs to climb on it. A demonstrator

illustrates the climbing task to be performed by the humanoid robot, as shown in Figure 3.9.

The Opti-Track system tracks the marker motions at a fixed interval of 10ms, and it saves

both the position and orientation information for all the markers. The demonstration starts

with the person standing in front of the obstacle, then makes 2 contacts with hands (in
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Fig. 3.9: The demonstration of climbing on a table obstacle at different contact stages. The demonstrator
shows enough intermediate steps to accomplish the task.

pictures 1 to 3), then 4 contacts at both left and right elbows and hands (in pictures 4 to 6),

then 5 contacts and later 6 contacts at both left and right hands, elbows, and knees with the

obstacle. The recorded dataset are tagged off-line to indicate the contact states transpired

during the task demonstration. This process of tagging the data allows us to discretize the

recorded movements into different contact stages precisely as shown in the series of snapshots

contained in Figure. 3.9. The contact sequences resulting from the data tagging enables us

to devise a multi-contact strategy for a climbing task with full-body motions for humanoid

robot. We use both the tracked position and orientation data of the contacts to represent

the contact reference positions for the task. These contact reference positions are used to

initialize our multi-contact motion planning algorithm to generate optimized contact positions

for COMAN to complete the demonstrated climbing task.

3.3 Conclusion

We introduced the problem statement of our thesis in this chapter. We described the

assumption for the multi-contact task of negotiating over the obstacle. Planning for humanoid

robots with DOFs might take an unacceptably long time to solve. Although sampling-based

path planners can drastically reduce the search space needed to find some solution, they are

not optimal and struggle with specific situations such as contacts because, since in general, all
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planners tend to avoid obstacles as a default norm in their planning process. However, we are

considering the planning process for the multi-contacts in a humanoid robot. We discovered

that finding an initial solution for the multi-contact task does provide insight into parameters

and the feasibility of the task itself. We explored pseudo teleoperation and sampling-based

planning methods to obtain a suitable solution, although the outcomes did not give any initial

solution. Human demonstrations through a motion capture suit provided the initial solution

through which we were able to assess the task feasibility, although the solution was not good

enough and did not suitably capture the contact interaction with an obstacle. Therefore, we

used optical markers to track the movement of the contacts during the demonstration of the

task. A demonstration for obstacle-climbing task was obtained using the optical markers with

an Opti-Track motion system.
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CHAPTER 4

Multi-Contact Motion Planning

Humanoid robots research on multi-contacts based on non-periodic locomotion has advanced

relatively slowly in the past decade. However, in recent years the state-of-the-art has improved

mainly through research on movement synthesis and character animation for the performance

of various human-like actions, such as getting up, running, doing handstands etc. (Mordatch

et al. (2012)), and motion planning through analysis of various multi-contact strategies

like traditional forward facing, backward or sideways facing ladder climbing with hand grip

contacts on the support rails (Vaillant et al. (2014)). The ability to plan for multi-contacts

with the surrounding objects in the environment is crucial for humanoid robots to successfully

egress from a car and climbing stairs, as demonstrated in the DARPA Robotics Challenge

(Fallon et al. (2014), Johnson et al. (2015), Atkeson et al. (2015)).

Negotiating challenging environment needs better locomotion strategies like making use

of obstacles as support points via multiple contacts, to get through inaccessible regions of

the environment. In our proposed multi-contact motion planning, the humanoid robot is

not restricted to only using its feet for support, but can also use other robot body parts like

hands, elbows, and knees as supporting contacts. Furthermore, the availability of multiple

degrees of freedom in the humanoid robots can be advantageous if exploited well to overcome

the obstacle effectively. Essentially the humanoid robot can make transitions from 2 contact

points at the feet, to 4 or 6 contacts at the hands and elbows of its arms, which may increase

the overall robot stability and allow movements that are not possible.

In this chapter, we present a case of non-periodic locomotion where the COMAN climbs

onto a large wooden obstacle with multiple contacts at various locations over the obstacle

during the process of climbing it. The support polygon of the robot increases with every

additional contact at robot foot, hand or any another body part of the kinematic chain that

with the surrounding object. In such multi-contact tasks, the advantage is that the center of
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mass of the robot can move freely with the event of new contacts.

Generally, global planners such as A* search algorithm along with heuristics, RRT planning

algorithms and PRM algorithms are employed for the multi-contact planning (Englsberger

et al. (2014), Chung and Khatib (2015)). Due to the shortcoming of these global planners

for the multi-contact motion planning as explored in the previous chapter, our multi-contact

motion planner is initialized with a human demonstration of the task in the real world. The

task demonstration gives us a proper strategy for the multi-contact planning and provides a

clear way of specifying the goal for the climbing task. The planner uses the demonstrated

contact plan to train with, as an initial set of contacts for the humanoid robot to interact

with the obstacle for the multi-contact task.

4.1 Multi-Contact Planning Algorithm

We propose a multi-contact motion planner based on the whole-body control approach, which

can directly work with the analyzed human demonstration data to formulate and guide the

multi-contact search towards an optimal solution, while adapting the task demonstrations

to the humanoid robot. The multi-contact motion planning algorithm exploits both the

multi-contacts and the whole-body motions using both the upper and lower body of the

robot in the task. The multi-contact approach allows any robot body surface to be in contact

with the obstacle, as illustrated with a task demonstration for the robot. An overview of the

multi-contact motion planner is shown in Figure 4.1.

Fig. 4.1: Overview of Multi-Contact Motion Planner

The data collected from the Human Demo gives a contact plan for the multi-contact

motion planner with an initial reference Contact Positions for the contact optimization. The
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multi-contact planner consists of two function blocks i.e., one is to formulate a Multi-Contact

Task which solves for the IK solutions given the contact plan of the task and another is

Contact Optimization which optimizes the reference contact position based on the contact

stability costs to generate optimized solution postures. The Transition Postures generates

the necessary contact transition postures between the optimized solution postures. Then a

Motion Planner generates a collision-free trajectory i.e., the final optimized solutions for the

multi-contact task. The steps involved in the multi-contact motion planning algorithm are

listed below.

Input: Contact sequences Ci and initial solutions Qi: (C0,Q0), (C1,Q1), . . . , (Cn,Qn) and

contact positions.

Output: Optimized solutions (C1,Q∗1), (C2,Q∗2), . . . , (Cn,Q∗n) and contact positions.

1. Pick the next contacts and positions from the contact sequence, (Ci+1,Qi+1).

2. Formulate the multi-contact task to get IK solution for the next contacts, Ci+1.

3. Optimize the contact positions over stability costs, contact constraints and collision

constraints to find optimum contact positions and solution, Q∗i+1.

4. Update all the contact positions in the contact sequence by repeating steps 1 to 3.

5. Generate contact transition postures and plan collision-free motions.

Each time the algorithm is called with the next set of contact positions from the contact

sequence as in step 1. After formulating the multi-contact task in step 2, an update process

optimizes the contact reference positions while minimizing the stability costs and satisfying

the contact constraints (i.e., to maintain contact positions on the obstacle) whereas collision

constraints to avoid robot inter-body collisions. After repeating the process of optimization

for all contact sequence, in step 5, it generates a final collision-free trajectory for the contact

transition postures.

Next, we describe in depth the functionality of each block starting from the Multi-Contact

Task block to the final output generated from the Motion Planner block. We present an

application involving multi-contact locomotion, i.e., climbing over a large obstacle task, to

describe our multi-contact motion planner. Finally, we show the simulation outputs followed

by the experimental results obtained from the multi-contact motion planner.
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4.2 Formulation of Multi-Contact Task

The multi-contact tasks are defined by the desired contact reference positions of the respective

robot body links as demonstrated. The COMAN has multiple kinematic chains over the

whole body such as legs and arms which also share the torso chain in the upper body. Hence,

describing a multi-contact task in a humanoid robot requires multiple Cartesian tasks to be

formulated and solved together to generate a whole-body solution. These multi-contact tasks

are built with the whole-body control framework first presented in (Khatib et al. (2008)).

The whole-body solutions for humanoid robot can be solved using Quadratic Programming

QP-based solvers (Rocchi et al. (2015)). We use OpenSoT control library which employs

stacks of such tasks to be solved, to generate whole-body inverse kinematic solutions for the

robot.

We assign a Cartesian task Ti for each contact task, defined with their associated Jacobians

Ji and the reference error functions ei represented as in (4.1). Then, these Cartesian contact

tasks are formulated in a QP form and optimized by minimizing the reference errors with the

desired Cartesian reference positions and orientations to obtain the joint solutions for the

humanoid robot.

Ti = (Ji, ei) (4.1)

We propose a multi-contact objective with QP optimization to generate a whole-body

solution for the task as in (4.2). The multi-contact objectives represent the collection of

Cartesian tasks for the contact points. The objective of the multi-contact is met by minimizing

the task errors while being subject to bounds and constraints defined in (4.3). The multi-

contact objectives are subject to joint limit bounds such that the joint solutions are bounded

with the joint limits for the robot. Whereas constraints are enforced on the resulting contact

positions for collision avoidance. Also objectives can be subjected to task prioritization with

either soft or hard priorities.

min
q

∑
multi-contact objectives (4.2)

subject to


joint limits

task priorities

internal collisions

(4.3)

The formulation of Multi-Contact Task consists of combining multiple tasks for the robot

and then solve for desired contact inputs to generate the whole body solutions for humanoid

robot. We select the multi-contact tasks for the respective robot body links, shown in the
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contact sequences (1 to 8 of Figure ??) from the demonstrations. To explain the multi-contact

task formulation in our algorithm, first we list a few contact sequence/sets denoted as Cn,

with their contact states from the demonstrations as follows:

1. C0 = {LFoot, RFoot}

2. C2 = {LFoot, RFoot, LHand, RHand }

3. C4 = {LFoot, RFoot, LHand, RHand, LElbow, RElbow}

4. C7 = {RFoot, LHand, RHand, LElbow, RElbow, LKnee}

5. C8 = {LHand, RHand, LElbow, RElbow, LKnee, RKnee}

Common Supporting Contacts

New 
Contacts

Fig. 4.2: The demonstrated contact sequence for climbing a table obstacle: initial state (left) and 2nd contact
sequence (right).

Now, we need to identify the multi-contact tasks required to be defined from the contact

sequences. The contact sequences representing the initial state and the next contact sequence

are shown in Figure 4.2. The inter-connecting support links between the adjacent contact

sequences are necessary for generating the transition phase and also feasible motions. The

common supporting links, denoted as Csup, can be found using intersection of the two contact

sets C1 and C2 as in (4.4).

Csup = C1 ∩ C2 (4.4)
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The common supporting links between the contact sequences in Figure 4.2 are given by

their contact sets intersection, Csup = {LFoot, RFoot}. We can select any link li from the

supporting links (i.e., li ∈ Csup) as a reference frame link to express the remaining contact

positions w.r.t. to it. For instance, if we select RFoot as the reference frame link li, the

Cartesian contact tasks Ct to be formulated for the next contact sequence is given as in (4.5)

and the resulting contact tasks are Ct = {LFoot, RHand, LHand}. Thus, we have the desired

contact positions at the left foot (LFoot), right hand (RHand) and left hand (LHand), and we

denote the corresponding contact tasks as TLFoot, TRHand and TLHand. The Cartesian contact

tasks Ct are defined using their associated Jacobians described in the RFoot reference frame

with the corresponding error vectors ei as in (4.6), (4.7) and (4.8).

Ct = C2 − li (4.5)

TLFoot =

(
JLFoot

RFoot, e1

)
(4.6)

TRHand =

(
JRHand

RFoot , e2

)
(4.7)

TLHand =

(
JLHand

RFoot , e3

)
(4.8)

4.2.1 Combining the Multi-Contact Tasks

To formulate the multi-contact task, we need to combine the multiple tasks given by Ct in

a meaningful way. Here, although some of the tasks are part of the unconnected kinematic

chains which can be solved independently, it is necessary to have inter-dependencies in the

task formulation to be defined between them, to enable searching whole-body solutions. Some

of the tasks can be easily combined, such as the arms and the legs task. This is due to their

symmetrical aspects and their strong inter-kinematic relationship. We combine the left and

right hand tasks with a combination task as Tcomb in (4.9) with the concatenation of the

corresponding task Jacobians and error vectors as in (4.10).

Tcomb = (Jcomb, ecomb) (4.9)

Jcomb =

[
JLHand

RFoot JRHand
RFoot

]
, ecomb = [e3 e2] (4.10)

In addition to this, the Cartesian tasks can be combined using prioritization in two different

ways namely, hard priority and soft priority. On the other-side, we can create an individual
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task for the left foot to be solved independently as in (4.6). Since, the common supporting

links, Csup indicates that the legs support the person as verified in Figure 4.2, while including

the leg task in the multi-task formulation, we assign it a higher priority than the hand tasks.

Here, by selecting hard task prioritization to combine the leg task and hand tasks, with

high priority for the leg task, we can force the solver to guarantee that the positions of the

supporting leg contacts must be strictly satisfied. Similarly we can define priority tables as

the new contacts occur during the task demonstration by computing their common support

links Csup as in (4.4). The resulting priority tables for new contacts occurring at the 4th, 7th

and 8th contact sequences shown in Figures 4.3, 4.4 and 4.5 are listed in Tables 4.1, 4.2 and

4.3.

Fig. 4.3: Climbing a table obstacle, 3th contact sequence (left)
and 4th contact sequence (right)

Table 4.1: Priority table for 4th con-
tact sequence

Task Priority

LFoot, RFoot High

LElbow, RElbow Low

Fig. 4.4: Climbing a table obstacle, 6th contact sequence (left)
and 7th contact sequence (right)

Table 4.2: Priority table for 7th con-
tact sequence

Task Priority

LElbow, RLelbow, RFoot High

LKnee Low
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Fig. 4.5: Climbing a table obstacle, 7th contact sequence (left)
and 8th contact sequence (right)

Table 4.3: Priority table for 8th con-
tact sequence

Task Priority

LElbow, RElbow, LKnee High

RKnee Low

We see that the top priority for the tasks moves from the feet to the elbows in the arms

at the 7th contact stage of climbing on the obstacle as demonstrated. This is because the

arms start to support the robot as it climbs on the obstacle. The higher priority for the tasks

are assigned by the computing the common support links Csup and lower to the remaining

contact links. Finally, at the 8th contact stage shown in Figure 4.6, all the robot body links

in contact have the high priority except for the RKnee given by Table. 4.3.

Multiple contacts in the same kinematic chain:

Multiple contacts at
kinematic chain 

Fig. 4.6: Multiple contacts occurring at the elbows and hands of the same kinematic chain arm for the 4th

contact sequence in the demonstration.
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We can have instances of multiple contacts in the same kinematic chain. For example,

in the 4th demonstrated contact stage shown in Figure 4.6, we have contacts at both the

elbow and hand which are parts of the same kinematic chain arm, i.e., both the left and right

arms. If these multiple contact tasks in the same kinematic chain tasks are combined by

concatenating their associated Jacobians to be solved as in (4.11), this forces the IK solver to

satisfy both the references simultaneously. However, it is not possible for most of the cases to

find such solutions.

In such cases, we identify the robot body link in the kinematic chain which plays a

significant role in supporting the shoulder mass (i.e., for the arm kinematic chains). So to

ensure that at least one of the contact tasks is satisfied, a higher priority must be assigned

to it. However, assigning hard priorities for the contact tasks in the same kinematic chain

results in a poorly formulated QP problem. Instead of combining the contact tasks with hard

priorities, we can combine them with soft priorities. This can be achieved by weighting their

task Jacobians according to the defined priority. The multi-contact tasks with soft priorities

can be solved together as in (4.12).

Jcomb = [J1 J2] (4.11)

JA =
[
W1J

T
1 W2J

T
2

]
(4.12)

where W1 and W2 are diagonal weighting matrices through which soft priorities can be

assigned to the tasks, by setting their diagonal elements to a positive value. The Jacobians

for the elbow and hand contacts are represented as J1 and J2 respectively.

Our algorithm automatically chooses priorities for tasks in QP form to get the IK solutions.

The key idea is that in general, the higher up in the kinematic chain we have a contact (i.e., if

the contacts are closer to the waist/pelvis region of the robot), the more support exclusively

falls under the contact link closer to the pelvis joint. We define a precedence which establishes

the rules to assign soft priorities to the task when multiple robot body links of the same

chains are in contact as in Table. 4.4.

Table 4.4: Precedence table for Kinematic chain

Precedence Low High

Kinematic Chains

Arms Hands Elbows Shoulders
Legs Feet Knees Hips

We call the contacts with the highest precedence as a dominant contacts, since its position
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is essential for stability. In general, weighting coefficients for the elbow W1 and wrist W2

contact case can be set according to priority order as in (4.13).

W1 > W2 > 0 (4.13)

Particularly due to the off-line nature of contact planning used, we use fixed weighting

coefficients for the tasks. We set the diagonal elements to 1.0 for the contacts at the elbows

and to 0.1 for the contacts at the hands.

Postural task: Infinite solutions exist in hyper-redundant robots like the humanoid robots

with more than 6 degrees of freedom. Although, robots with more degrees of freedom (> 6

DOFs) has many advantages, but the most troubling disadvantage is the certainty of having

infinite solutions to choose from. This uncertainty in finding an apt solution can impinge on

robustness necessary for searching meaningful and consistent solutions for a humanoid robot.

Here, we can use the observed motion data from the Xsens motion capture suit to be applied

as a posture hint in the multi-contact task formulation. This also enables the robot to mimic

some of the observed human movements during the demonstration. The posture task uses

the mapped joint angles from the motion suit as a joint reference and forces the optimizer to

find solutions close to it.

Tposture = (I, q̇posture +Kq(qposture − q)) (4.14)

Fig. 4.7: In left, the postural task is applied for the multi-contacts at the hands with hints from motion
capture data. The resulting new contacts at the left and right hands are stable and supports the shoulder
masses completely. However, right picture shows with no postural task for the multi-contact tasks. The two
contacts at the left and right hand are unstable and robot may fall in the direction shown.

A posture task helps to keep the IK solutions, q, generated for contact position references

to stay close to the desired posture qposture. The posture task, Tposture is defined with a

proportional gain, Kq and identity Jacobian, I as in (4.14). The postural task is incorporated
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into the multi-contact task formulation as a lower priority task. The postural task at low

priority allows the solver to find unique solutions while staying close to the desired postures

(hints from motion capture), while also satisfying the multi-contact task reference goal

requirements.

4.2.2 Internal Collision Avoidance

Internal collision avoidance for the humanoid robots is vital for avoiding any unwanted internal

collisions of the robot with itself. We approximate the humanoid robot COMAN body links

with simple geometrical shapes like squares, cylinders, and spheres. Efficient approaches to

limit the collision checking to only a few robot body links by pruning irrelevant pairs was

first presented in (Kuffner et al. (2002)). To allow efficient internal collision avoidance, we

select only a few robot link bodies as in Figure 4.8 for collision checking between

1. Identical robot link bodies in the left and right arms like elbows, forearms, upper arms.

2. Identical robot link bodies in the left and right legs like feet, knees and lower thighs.

3. Elbows and knees of arms and legs, respectively.

δi

δs

d

Robot Body
Link 1

Robot Body
 Link 2

Fig. 4.8: Selected robot body links (right) in the arms: elbows, forearms are shaded as green and in the
legs: feet, knee and thigh are shaded as blue. In left image, we depict the parameters necessary for collision
avoidance between robot link body 1 shaded blue and robot link body 2 shaded red. The region of width δi
(shaded light blue) close to robot body 2 is the region where the collision avoidance mechanism is initiated.
However, the restricted region of width δs when the collision can occur at robot body is shaded as light red.

We use the off-the-shelf Flexible Collision Library (FCL) to detect collisions between two

geometrical bodies. FCL is used for collision checking which outputs the closest points on the

bodies against which collision checking takes place (Pan et al. (2012)). The collision checking

between two robot link body shapes, detects for collisions between the closest points cp1, cp2
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on these objects. We can measure the distance d between those closest points on the robot

bodies as

d = ||cp1 − cp2|| (4.15)

Consider the collision between the robot body link 1 and the robot body link 2 as in

Figure 4.8 with d as the distance between the two bodies. The relative velocity of the one link

with respect to the other is constrained along a direction connecting the closest points on the

two robot body links, which is called velocity damping for the collision avoidance mechanism.

We enforce a position constraint on the relative velocity along this direction vector ~n as

~n (Jcp1 − Jcp2) q̇ < ε
δi − δs

∆t
(4.16)

where Jcp1 and Jcp2 are the Jacobians of the nearest points cp1 and cp2 on respective the

robot body link 1 and robot body link 2. δs is the critical distance at which collision can

occur and δi is distance at which the collision avoidance mechanism starts to oppose the

collision. ε is the gain used to reduce the relative approaching velocity.

A low value of gains would jeopardize the robot’s structural integrity, while a larger one

could overly constrain its motion, which would reduce the task execution time and have an

adverse effect on the negotiation of the different obstacles. The gains are tuned accordingly, to

facilitate to smoothly reduce the relative approaching velocity at which the threshold distance

is reached. We define position constraints for all the robot body pairs listed before, to enforce

internal collision avoidance for the IK solution obtained.

The complete set of rules for the Multi-Contact task formulation from the contact sequence

used by our multi-contact motion planning algorithm can be listed as follows:

1. Identify the tasks from the contact sequence given by Ct in (4.5), after selecting a

common reference in Csup.

2. Impose whole-body behavior through the task Jacobians expressed in the common

reference frame.

3. Combine the tasks at the same symmetrical level using (4.9): i.e. tasks in the arm chain

or tasks in the leg chain can be combined.

4. Prioritize the tasks given by the common support links, Csup using hard priority.

5. If multiple tasks are present in the same kinematic chain, we can assign soft priorities

according to Table. 4.4

6. Add the postural task with solution hints obtained from the motions recorded.
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