33 research outputs found

    Minimax lower bounds for function estimation on graphs

    Get PDF
    We study minimax lower bounds for function estimation problems on large graph when the target function is smoothly varying over the graph. We derive minimax rates in the context of regression and classification problems on graphs that satisfy an asymptotic shape assumption and with a smoothness condition on the target function, both formulated in terms of the graph Laplacian

    A Neural Network for Semi-Supervised Learning on Manifolds

    Full text link
    Semi-supervised learning algorithms typically construct a weighted graph of data points to represent a manifold. However, an explicit graph representation is problematic for neural networks operating in the online setting. Here, we propose a feed-forward neural network capable of semi-supervised learning on manifolds without using an explicit graph representation. Our algorithm uses channels that represent localities on the manifold such that correlations between channels represent manifold structure. The proposed neural network has two layers. The first layer learns to build a representation of low-dimensional manifolds in the input data as proposed recently in [8]. The second learns to classify data using both occasional supervision and similarity of the manifold representation of the data. The channel carrying label information for the second layer is assumed to be "silent" most of the time. Learning in both layers is Hebbian, making our network design biologically plausible. We experimentally demonstrate the effect of semi-supervised learning on non-trivial manifolds.Comment: 12 pages, 4 figures, accepted in ICANN 201

    Efficient network-guided multi-locus association mapping with graph cuts

    Get PDF
    As an increasing number of genome-wide association studies reveal the limitations of attempting to explain phenotypic heritability by single genetic loci, there is growing interest for associating complex phenotypes with sets of genetic loci. While several methods for multi-locus mapping have been proposed, it is often unclear how to relate the detected loci to the growing knowledge about gene pathways and networks. The few methods that take biological pathways or networks into account are either restricted to investigating a limited number of predetermined sets of loci, or do not scale to genome-wide settings. We present SConES, a new efficient method to discover sets of genetic loci that are maximally associated with a phenotype, while being connected in an underlying network. Our approach is based on a minimum cut reformulation of the problem of selecting features under sparsity and connectivity constraints that can be solved exactly and rapidly. SConES outperforms state-of-the-art competitors in terms of runtime, scales to hundreds of thousands of genetic loci, and exhibits higher power in detecting causal SNPs in simulation studies than existing methods. On flowering time phenotypes and genotypes from Arabidopsis thaliana, SConES detects loci that enable accurate phenotype prediction and that are supported by the literature. Matlab code for SConES is available at http://webdav.tuebingen.mpg.de/u/karsten/Forschung/scones/Comment: 20 pages, 6 figures, accepted at ISMB (International Conference on Intelligent Systems for Molecular Biology) 201
    corecore