41,113 research outputs found

    CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison

    Full text link
    Large, labeled datasets have driven deep learning methods to achieve expert-level performance on a variety of medical imaging tasks. We present CheXpert, a large dataset that contains 224,316 chest radiographs of 65,240 patients. We design a labeler to automatically detect the presence of 14 observations in radiology reports, capturing uncertainties inherent in radiograph interpretation. We investigate different approaches to using the uncertainty labels for training convolutional neural networks that output the probability of these observations given the available frontal and lateral radiographs. On a validation set of 200 chest radiographic studies which were manually annotated by 3 board-certified radiologists, we find that different uncertainty approaches are useful for different pathologies. We then evaluate our best model on a test set composed of 500 chest radiographic studies annotated by a consensus of 5 board-certified radiologists, and compare the performance of our model to that of 3 additional radiologists in the detection of 5 selected pathologies. On Cardiomegaly, Edema, and Pleural Effusion, the model ROC and PR curves lie above all 3 radiologist operating points. We release the dataset to the public as a standard benchmark to evaluate performance of chest radiograph interpretation models. The dataset is freely available at https://stanfordmlgroup.github.io/competitions/chexpert .Comment: Published in AAAI 201

    A Heuristic Neural Network Structure Relying on Fuzzy Logic for Images Scoring

    Get PDF
    Traditional deep learning methods are sub-optimal in classifying ambiguity features, which often arise in noisy and hard to predict categories, especially, to distinguish semantic scoring. Semantic scoring, depending on semantic logic to implement evaluation, inevitably contains fuzzy description and misses some concepts, for example, the ambiguous relationship between normal and probably normal always presents unclear boundaries (normal − more likely normal - probably normal). Thus, human error is common when annotating images. Differing from existing methods that focus on modifying kernel structure of neural networks, this study proposes a dominant fuzzy fully connected layer (FFCL) for Breast Imaging Reporting and Data System (BI-RADS) scoring and validates the universality of this proposed structure. This proposed model aims to develop complementary properties of scoring for semantic paradigms, while constructing fuzzy rules based on analyzing human thought patterns, and to particularly reduce the influence of semantic conglutination. Specifically, this semantic-sensitive defuzzier layer projects features occupied by relative categories into semantic space, and a fuzzy decoder modifies probabilities of the last output layer referring to the global trend. Moreover, the ambiguous semantic space between two relative categories shrinks during the learning phases, as the positive and negative growth trends of one category appearing among its relatives were considered. We first used the Euclidean Distance (ED) to zoom in the distance between the real scores and the predicted scores, and then employed two sample t test method to evidence the advantage of the FFCL architecture. Extensive experimental results performed on the CBIS-DDSM dataset show that our FFCL structure can achieve superior performances for both triple and multiclass classification in BI-RADS scoring, outperforming the state-of-the-art methods

    Channels’ Confirmation and Predictions’ Confirmation: From the Medical Test to the Raven Paradox

    Get PDF
    After long arguments between positivism and falsificationism, the verification of universal hypotheses was replaced with the confirmation of uncertain major premises. Unfortunately, Hemple proposed the Raven Paradox. Then, Carnap used the increment of logical probability as the confirmation measure. So far, many confirmation measures have been proposed. Measure F proposed by Kemeny and Oppenheim among them possesses symmetries and asymmetries proposed by Elles and Fitelson, monotonicity proposed by Greco et al., and normalizing property suggested by many researchers. Based on the semantic information theory, a measure b* similar to F is derived from the medical test. Like the likelihood ratio, measures b* and F can only indicate the quality of channels or the testing means instead of the quality of probability predictions. Furthermore, it is still not easy to use b*, F, or another measure to clarify the Raven Paradox. For this reason, measure c* similar to the correct rate is derived. Measure c* supports the Nicod Criterion and undermines the Equivalence Condition, and hence, can be used to eliminate the Raven Paradox. An example indicates that measures F and b* are helpful for diagnosing the infection of Novel Coronavirus, whereas most popular confirmation measures are not. Another example reveals that all popular confirmation measures cannot be used to explain that a black raven can confirm “Ravens are black” more strongly than a piece of chalk. Measures F, b*, and c* indicate that the existence of fewer counterexamples is more important than more positive examples’ existence, and hence, are compatible with Popper’s falsification thought

    Types of cost in inductive concept learning

    Get PDF
    Inductive concept learning is the task of learning to assign cases to a discrete set of classes. In real-world applications of concept learning, there are many different types of cost involved. The majority of the machine learning literature ignores all types of cost (unless accuracy is interpreted as a type of cost measure). A few papers have investigated the cost of misclassification errors. Very few papers have examined the many other types of cost. In this paper, we attempt to create a taxonomy of the different types of cost that are involved in inductive concept learning. This taxonomy may help to organize the literature on cost-sensitive learning. We hope that it will inspire researchers to investigate all types of cost in inductive concept learning in more depth

    Passively mode-locked laser using an entirely centred erbium-doped fiber

    Get PDF
    This paper describes the setup and experimental results for an entirely centred erbium-doped fiber laser with passively mode-locked output. The gain medium of the ring laser cavity configuration comprises a 3 m length of two-core optical fiber, wherein an undoped outer core region of 9.38 μm diameter surrounds a 4.00 μm diameter central core region doped with erbium ions at 400 ppm concentration. The generated stable soliton mode-locking output has a central wavelength of 1533 nm and pulses that yield an average output power of 0.33 mW with a pulse energy of 31.8 pJ. The pulse duration is 0.7 ps and the measured output repetition rate of 10.37 MHz corresponds to a 96.4 ns pulse spacing in the pulse train

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains
    corecore