2,520 research outputs found

    Bayesian neural network learning for repeat purchase modelling in direct marketing.

    Get PDF
    We focus on purchase incidence modelling for a European direct mail company. Response models based on statistical and neural network techniques are contrasted. The evidence framework of MacKay is used as an example implementation of Bayesian neural network learning, a method that is fairly robust with respect to problems typically encountered when implementing neural networks. The automatic relevance determination (ARD) method, an integrated feature of this framework, allows to assess the relative importance of the inputs. The basic response models use operationalisations of the traditionally discussed Recency, Frequency and Monetary (RFM) predictor categories. In a second experiment, the RFM response framework is enriched by the inclusion of other (non-RFM) customer profiling predictors. We contribute to the literature by providing experimental evidence that: (1) Bayesian neural networks offer a viable alternative for purchase incidence modelling; (2) a combined use of all three RFM predictor categories is advocated by the ARD method; (3) the inclusion of non-RFM variables allows to significantly augment the predictive power of the constructed RFM classifiers; (4) this rise is mainly attributed to the inclusion of customer\slash company interaction variables and a variable measuring whether a customer uses the credit facilities of the direct mailing company.Marketing; Companies; Models; Model; Problems; Neural networks; Networks; Variables; Credit;

    Neural Networks

    Get PDF
    We present an overview of current research on artificial neural networks, emphasizing a statistical perspective. We view neural networks as parameterized graphs that make probabilistic assumptions about data, and view learning algorithms as methods for finding parameter values that look probable in the light of the data. We discuss basic issues in representation and learning, and treat some of the practical issues that arise in fitting networks to data. We also discuss links between neural networks and the general formalism of graphical models

    On the determination of probability density functions by using Neural Networks

    Get PDF
    It is well known that the output of a Neural Network trained to disentangle between two classes has a probabilistic interpretation in terms of the a-posteriori Bayesian probability, provided that a unary representation is taken for the output patterns. This fact is used to make Neural Networks approximate probability density functions from examples in an unbinned way, giving a better performace than ``standard binned procedures''. In addition, the mapped p.d.f. has an analytical expression.Comment: 13 pages including 3 eps figures. Submitted to Comput. Phys. Commu

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture
    corecore