
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1562 March 12, 1996
C.B.C.L. Memo No. 131

Neural Networks

Michael I. Jordan and Christopher M. Bishop
This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

We present an overview of current research on arti�cial neural networks, emphasizing a statistical per-
spective. We view neural networks as parameterized graphs that make probabilistic assumptions about
data, and view learning algorithms as methods for �nding parameter values that look probable in the light
of the data. We discuss basic issues in representation and learning, and treat some of the practical issues
that arise in �tting networks to data. We also discuss links between neural networks and the general
formalism of graphical models.

Copyright c Massachusetts Institute of Technology, 1996

In press: A. Tucker, (Ed.), CRC Handbook of Computer Science, CRC Press, Boca Raton, FL. This report describes research
done at the Dept. of Brain and Cognitive Sciences, the Center for Biological and Computational Learning, and the Arti�cial
Intelligence Laboratory of the Massachusetts Institute of Technology. Support for CBCL is provided in part by a grant from the
NSF (ASC{9217041). Support for the laboratory's arti�cial intelligence research is provided in part by the Advanced Research
Projects Agency of the Dept. of Defense. The authors were supported by a grant from the McDonnell-Pew Foundation, by a
grant from Siemens Corporation, by a grant from Daimler-Benz Systems Technology Research, and by a grant from the O�ce
of Naval Research. Michael I. Jordan is a NSF Presidential Young Investigator.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4384181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Within the broad scope of the study of arti�cial intelli-
gence, research in neural networks is characterized by a
particular focus on pattern recognition and pattern gen-
eration. Many neural network methods can be viewed as
generalizations of classical pattern-oriented techniques in
statistics and the engineering areas of signal processing,
system identi�cation and control theory. As in these
parent disciplines, the notion of \pattern" in neural net-
work research is essentially probabilistic and numerical.
Neural network methods have had their greatest impact
in problems where statistical issues dominate and where
data are easily obtained.

A neural network is �rst and foremost a graph, with
patterns represented in terms of numerical values at-
tached to the nodes of the graph, and transformations
between patterns achieved via simple message-passing
algorithms. Many neural network architectures, how-
ever, are also statistical processors, characterized by
making particular probabilistic assumptions about data.
As we will see, this conjunction of graphical algorithms
and probability theory is not unique to neural networks,
but characterizes a wider family of probabilistic systems
in the form of chains, trees, and networks that are cur-
rently being studied throughout AI [Spiegelhalter, et al.,
1993].

Neural networks have found a wide range of applica-
tions, the majority of which are associated with problems
in pattern recognition and control theory. In this con-
text, neural networks can best be viewed as a class of al-
gorithms for statistical modeling and prediction. Based
on a source of training data, the aim is to produce a
statistical model of the process from which the data are
generated, so as to allow the best predictions to be made
for new data. We shall �nd it convenient to distinguish
three broad types of statistical modeling problem, which
we shall call density estimation, classi�cation and regres-

sion.
For density estimation problems (also referred to as

unsupervised learning problems), the goal is to model
the unconditional distribution of data described by some
vector x. A practical example of the application of den-
sity estimation involves the interpretation of X-ray im-
ages (mammograms) used for breast cancer screening
[Tarassenko, 1995]. In this case the training vectors x
form a sample taken from normal (non-cancerous) im-
ages, and a network model is used to build a representa-
tion of the density p(x). When a new input vector x0 is
presented to the system, a high value for p(x0) indicates
a normal image while a low value indicates a novel input
which might be characteristic of an abnormality. This
is used to label regions of images which are unusual, for
further examination by an experienced clinician.

For classi�cation and regression problems (often re-
ferred to as supervised learning problems), we need to
distinguish between input variables, which we again de-
note by x, and target variables which we denote by the
vector t. Classi�cation problems require that each input
vector x be assigned to one of C classes C1; : : : ; CC , in
which case the target variables represent class labels. As
an example, consider the problem of recognizing hand-

written digits [LeCun, et al., 1989]. In this case the input
vector would be some (pre-processed) image of the digit,
and the network would have ten outputs, one for each
digit, which can be used to assign input vectors to the
appropriate class (as discussed in Section 2).

Regression problems involve estimating the values of
continuous variables. For example, neural networks have
been used as part of the control system for adaptive op-
tics telescopes [Sandler, et al., 1991]. The network input
x consists of one in-focus and one de-focused image of
a star and the output t consists of a set of coe�cients
that describe the phase distortion due to atmospheric
turbulence. These output values are then used to make
real-time adjustments of the multiple mirror segments to
cancel the atmospheric distortion.

Classi�cation and regression problems can also be
viewed as special cases of density estimation. The most
general and complete description of the data is given by
the probability distribution function p(x; t) in the joint
input-target space. However, the usual goal is to be able
to make good predictions for the target variables when
presented with new values of the inputs. In this case it
is convenient to decompose the joint distribution in the
form:

p(x; t) = p(tjx)p(x) (1)

and to consider only the conditional distribution p(tjx),
in other words the distribution of t given the value of x.
Thus classi�cation and regression involve the estimation
of conditional densities, a problem which has its own
idiosyncracies.

The organization of the chapter is as follows. In Sec-
tion 2 we present examples of network representations
of unconditional and conditional densities. In Section 3
we discuss the problem of adjusting the parameters of
these networks to �t them to data. This problem has
a number of practical aspects, including the choice of
optimization procedure and the method used to control
network complexity. We then discuss a broader perspec-
tive on probabilistic network models in Section 4. The
�nal section presents further information and pointers to
the literature.

2 Representation

In this section we describe a selection of neural network
architectures that have been proposed as representations
for unconditional and conditional densities. After a brief
discussion of density estimation, we discuss classi�ca-
tion and regression, beginning with simple models that
illustrate the fundamental ideas and then progressing to
more complex architectures. We focus here on represen-
tational issues, postponing the problem of learning from
data until the following section.

2.1 Density estimation

We begin with a brief discussion of density estimation,
utilizing the Gaussian mixture model as an illustrative
model. We return to more complex density estimation
techniques later in the chapter.

Although density estimation can be the main goal of a
learning system, as in the diagnosis example mentioned

1

in the introduction, density estimationmodels arise more
often as components of the solution to a more general
classi�cation or regression problem. To return to Eq. 1,
note that the joint density is composed of p(tjx), to be
handled by classi�cation or regression models, and p(x),
the (unconditional) input density. There are several rea-
sons for wanting to form an explicit model of the input
density. First, real-life data sets often have missing com-
ponents in the input vector. Having a model of the den-
sity allows the missing components to be \�lled in" in an
intelligent way. This can be useful both for training and
for prediction [cf. Bishop, 1995]. Second, as we see in
Eq. 1, a model of p(x) makes possible an estimate of the
joint probability p(x; t). Thus in turn provides us with
the necessary information to estimate the \inverse" con-
ditional density p(xjt). The calculation of such inverses
is important for applications in control and optimization.

A general and exible approach to density estimation
is to treat the density as being composed of a set of M
simpler densities. This approach involves modeling the
observed data as a sample from a mixture density:

p(xjw) =

MX
i=1

�ip(xji;wi); (2)

where the �i are constants known as mixing proportions,
and the p(xji;wi) are the component densities, gener-
ally taken to be from a simple parametric family. A
common choice of component density is the multivari-
ate Gaussian, in which case the parameters wi are the
means and covariance matrices of each of the compo-
nents. By varying the means and covariances to place
and orient the Gaussians appropriately, a wide variety
of high-dimensional, multi-modal data can be modeled.
This approach to density estimation is essentially a prob-
abilistic form of clustering.

Gaussian mixtures have a representation as a network
diagram as shown in Figure 1. The utility of such net-
work representations will become clearer as we proceed;
for now, it su�ces to note that not only mixture models,
but also a wide variety of other classical statistical mod-
els for density estimation are representable as simple net-
works with one or more layers of adaptive weights. These
methods include principal component analysis, canonical
correlation analysis, kernel density estimation and factor
analysis [Anderson, 1984].

2.2 Linear regression and linear discriminants

Regression models and classi�cation models both focus
on the conditional density p(tjx). They di�er in that
in regression the target vector t is a real-valued vector,
whereas in classi�cation t takes its values from a discrete
set representing the class labels.

The simplest probabilistic model for regression is one
in which t is viewed as the sum of an underlying deter-
ministic function f(x) and a Gaussian random variable
�:

t = f(x) + �: (3)

If � has zero mean, as is commonly assumed, f(x) then
becomes the conditional mean E(tjx). It is this function
that is the focus of most regression modeling. Of course,

1x nx

P x |()1 MP x |()

Mππ1

P x)(

µ1 µM

Figure 1: A network representation of a Gaussian mix-
ture distribution. The input pattern x is represented
by numerical values associated with the input nodes in
the lower level. Each link has a weight �ij, which is the

j
th component of the mean vector for the ith Gaussian.
The ith intermediate node contains the covariance ma-
trix �i and calculates the Gaussian conditional proba-
bility p(xji;�i;�i). These probabilities are weighted by
the mixing proportions �i and the output node calculates
the weighted sum p(x) =

P
i �ip(xji;�i;�i).

the conditional mean describes only the �rst moment
of the conditional distribution, and, as we discuss in a
later section, a good regression model will also generally
report information about the second moment.

In a linear regression model the conditional mean is a
linear function of x: E(tjx) = Wx, for a �xed matrixW .
Linear regression has a straightforward representation as
a network diagram in which the jth input unit represents
the jth component of the input vector xj, each output
unit i takes the weighted sum of the input values, and
the weight wij is placed on the link between the j

th input

unit and the ith output unit.
The conditional mean is also an important function in

classi�cation problems, but most of the focus in classi�-
cation is on a di�erent function known as a discriminant

function. To see how this function arises and to relate it
to the conditional mean, we consider a simple two-class
problem in which the target is a simple binary scalar
that we now denote by t. The conditional mean E(tjx)
is equal to the probability that t equals one, and this
latter probability can be expanded via Bayes rule:

p(t = 1jx) =
p(xjt = 1)p(t = 1)

p(x)
(4)

The density p(tjx) in this equation is referred to as the
posterior probability of the class given the input, and the
density p(xjt) is referred to as the the class-conditional

density. Continuing the derivation, we expand the de-
nominator and (with some foresight) introduce an expo-

2

nential:

p(t = 1jx) =
p(xjt = 1)p(t = 1)

p(xjt = 1)p(t = 1) + p(xjt = 0)p(t = 0)

=
1

1 + exp
n
� ln

h
p(xjt=1)

p(xjt=0)

i
� ln

h
p(t=1)

p(t=0)

io(5)
We see that the posterior probability can be written in
the form of the logistic function:

y =
1

1 + e�z
; (6)

where z is a function of the likelihood ratio p(xjt =
1)=p(xjt = 0), and the prior ratio p(t = 1)=p(t = 0).
This is a useful representation of the posterior probabil-
ity if z turns out to be simple.

It is easily veri�ed that if the class conditional densi-
ties are multivariate Gaussians with identical covariance
matrices, then z is a linear function of x: z = w

T
x+w0.

Moreover this representation is appropriate for any dis-
tribution in a broad class of densities known as the expo-
nential family (which includes the Gaussian, the Poisson,
the gamma, the binomial, and many other densities). All
of the densities in this family can be put in the following
form:

g(x; �; �) = expf(�Tx � b(�))=a(�) + c(x; �)g; (7)

where � is the location parameter, and � is the scale pa-
rameter. Substituting this general form in Eq. 5, where �
is allowed to vary between the classes and � is assumed to
be constant between classes, we see that z is in all cases
a linear function. Thus the choice of a linear-logistic
model is rather robust.

The geometry of the two-class problem is shown in
Figure 2, which shows Gaussian class-conditional densi-
ties, and suggests the logistic form of the posterior prob-
ability.

The function z in our analysis is an example of a dis-
criminant function. In general a discriminant function is
any function that can be used to decide on class member-
ship (Duda and Hart, 1972); our analysis has produced a
particular form of discriminant function that is an inter-
mediate step in the calculation of a posterior probability.
Note that if we set z = 0, from the form of the logistic
function we obtain a probability of 0.5, which shows that
z = 0 is a decision boundary between the two classes.

The discriminant function that we found for expo-
nential family densities is linear under the given con-
ditions on �. In more general situations, in which the
class-conditional densities are more complex than a sin-
gle exponential family density, the posterior probability
will not be well characterized by the linear-logistic form.
Nonetheless it is still useful to retain the logistic function
and focus on nonlinear representations for the function
z. This is the approach taken within the neural network
�eld.

To summarize, we have identi�ed two functions that
are important for regression and classi�cation, respec-
tively: the conditional mean and the discriminant func-
tion. These are the two functions that are of concern for
simple linear models and, as we now discuss, for more
complex nonlinear models as well.

0 1 2 3 4
0.0

0.5

1.0

Figure 2: This shows the Gaussian class-conditional den-
sities p(xjC1) (dashed curves) for a two-class problem
in one dimension, together with the corresponding pos-
terior probability p(C1jx) (solid curve) which takes the
form of a logistic sigmoid. The vertical line shows the
decision boundary for y = 0:5 which coincides with the
point at which the two density curves cross.

2.3 Nonlinear regression and nonlinear

classi�cation

The linear regression and linear discriminant functions
introduced in the previous section have the merit of sim-
plicity, but are severely restricted in their representa-
tional capabilities. A convenient way to see this is to
consider the geometrical interpretation of these models.
When viewed in the d-dimensional x-space, the linear re-
gression function wT

x+w0 is constant on hyper-planes
which are orthogonal to the vector w. For many practi-
cal applications we need to consider much more general
classes of function. We therefore seek representations for
nonlinear mappings which can approximate any given
mapping to arbitrary accuracy. One way to achieve this
is to transform the original x using a set of M nonlinear
functions �j(x) where j = 1; : : : ;M , and then to form a
linear combination of these functions, so that:

yk(x) =
X
j

wkj�j(x): (8)

For a su�ciently large value of M , and for a suitable
choice of the �j(x), such a model has the desired `uni-
versal approximation' properties. A familiar example,
for the case of 1-dimensional input spaces, is the simple
polynomial, for which the �j(x) are simply successive
powers of x and the w's are the polynomial coe�cients.
Models of the form in Eq. 8 have the property that they
can be expressed as network diagrams in which there is
a single layer of adaptive weights.

There are a variety of families of functions in one di-
mension that can approximate any continuous function
to arbitrary accuracy. There is, however, an important
issue which must be addressed, called the curse of di-

mensionality. If, for example, we consider an M
th-order

polynomial then the number of independent coe�cients
3

1x xd

Mz1z

1y cy

z0

x0

Output
Units

Hidden
Units

Input
Units

bias

bias

Figure 3: An example of a feed-forward network having
two layers of adaptive weights. The bias parameters in
the �rst layer are shown as weights from an extra input
having a �xed value of x0 = 1. Similarly, the bias param-
eters in the second layer are shown as weights from an
extra hidden unit, with activation again �xed at z0 = 1.

grows as dM [Bishop, 1995]. For a typical medium-scale
application with, say, 30 inputs a fourth-order polyno-
mial (which is still quite restricted in its representational
capability) would have over 46,000 adjustable parame-
ters. As we shall see in Section 3.3 in order to achieve
good generalization it is important to have more data
points than adaptive parameters in the model, and this
is a serious problem for methods that have a power law
or exponential growth in the number of parameters.

A solution to the problem lies in the fact that, for
most real-world data sets, there are strong (often non-
linear) correlations between the input variables such that
the data does not uniformly �ll the input space but is
e�ectively con�ned to a sub-space whose dimensionality
is called the intrinsic dimensionality of the data. We
can take advantage of this phenomenon by considering
again a model of the form in Eq. 8 but in which the ba-
sis functions �j(x) are adaptive so that they themselves
contain weight parameters whose values can be adjusted
in the light of the observed data set. Di�erent models
result from di�erent choices for the basis functions, and
here we consider the two most common examples. The
�rst of these is called the multilayer perceptron (MLP)
and is obtained by choosing the basis functions to be
given by linear-logistic functions (Eq. 6). This leads to
a multivariate nonlinear function that can be expressed
in the form:

yk(x) =

MX
j=1

wkjg

dX
i=1

wjixi +wj0

!
+wk0: (9)

Here wj0 and wk0 are bias parameters, and the basis
functions are called hidden units. The function g(�) is
the logistic sigmoid function of Eq. 6. This can also be
represented as a network diagram as in Figure 3. Such a
model is able to take account of the intrinsic dimension-
ality of the data because the �rst-layer weights wji can

adapt and hence orient the surfaces along which the basis
function response is constant. It has been demonstrated
that models of this form can approximate to arbitrary
accuracy any continuous function, de�ned on a compact
domain, provided the numberM of hidden units is su�-
ciently large. The MLP model can be extended by con-
sidering several successive layers of weights. Note that
the use of nonlinear activation functions is crucial, since
if g(�) in Eq. 9 were replaced by the identity, the network
would reduce to several successive linear transformations
which would itself be linear.

The second common network model is obtained by
choosing the basis functions �j(x) in Eq. 8 to be func-
tions of the radial variable x��j where �j is the center
of the jth basis function, which gives rise to the radial

basis function (RBF) network model. The most common
example uses Gaussians of the form:

�j(x) = exp

�
�
1

2
(x � �j)

T�
�1
j (x � �j)

�
: (10)

Here both the mean vector �j and the covariance matrix
�j are considered to be adaptive parameters. The curse
of dimensionality is alleviated because the basis func-
tions can be positioned and oriented in input space such
as to overlay the regions of high data density and hence
to capture the nonlinear correlations between input vari-
ables. Indeed, a common approach to training an RBF
network is to use a two-stage procedure [Bishop, 1995].
In the �rst stage the basis function parameters are de-
termined using the input data alone, which corresponds
to a density estimation problem using a mixture model
in which the component densities are given by the basis
functions �j(x). In the second stage the basis function
parameters are frozen and the second-layer weights wkj

are found by standard least-squares optimization proce-
dures.

2.4 Decision trees

MLP and RBF networks are often contrasted in terms
of the support of the basis functions that compose them.
MLP networks are often referred to as \global," given
that linear-logistic basis functions are bounded away
from zero over a signi�cant fraction of the input space.
Accordingly, in an MLP, each input vector generally
gives rise to a distributed pattern over the hidden units.
RBF networks, on the other hand, are referred to as
\local," due to the fact that their Gaussian basis func-
tions typically have support over a local region of the
input space. It is important to note, however, that lo-
cal support does not necessarily mean non-overlapping
support; indeed, there is nothing in the RBF model that
prefers basis functions that have non-overlapping sup-
port. A third class of model that does focus on basis
functions with non-overlapping support is the decision

tree model [Breiman, et al., 1984]. A decision tree is a
regression or classi�cation model that can be viewed as
asking a sequence of questions about the input vector.
Each question is implemented as a linear discriminant,
and a sequence of questions can be viewed as a recursive
partitioning of the input space. All inputs that arrive
at a particular leaf of the tree de�ne a polyhedral region

4

in the input space. The collection of such regions can
be viewed as a set of basis functions. Associated with
each basis function is an output value which (ideally) is
close to the average value of the conditional mean (for
regression) or discriminant function (for classi�cation; a
majority vote is also used). Thus the decision tree out-
put can be written as a weighted sum of basis functions
in the same manner as a layered network.

As this discussion suggests, decision trees and
MLP/RBF neural networks are best viewed as being
di�erent points along the continuum of models having
overlapping or non-overlapping basis functions. Indeed,
as we show in the following section, decision trees can
be treated probabilistically as mixture models, and in
the mixture approach the sharp discriminant function
boundaries of classical decision trees become smoothed,
yielding partially-overlapping basis functions.

There are tradeo�s associated with the continuum of
degree-of-overlap|in particular, non-overlapping basis
functions are generally viewed as being easier to inter-
pret, and better able to reject noisy input variables that
carry little information about the output. Overlapping
basis functions are often viewed as yielding lower vari-
ance predictions and as being more robust.

2.5 General mixture models

The use of mixture models is not restricted to density
estimation; rather, the mixture approach can be used
quite generally to build complex models out of simple
parts. To illustrate, let us consider using mixture mod-
els to model a conditional density in the context of a
regression or classi�cation problem. A mixture model
in this setting is referred to as a \mixtures of experts"
model [Jacobs, et al., 1991].

Suppose that we have at our disposal an elemental
conditional model p(tjx;w). Consider a situation in
which the conditional mean or discriminant exhibits vari-
ation on a local scale that is a good match to our elemen-
tal model, but the variation di�ers in di�erent regions of
the input space. We could use a more complex network
to try to capture this global variation; alternatively we
might wish to combine local variants of our elemental
models in some manner. This can be achieved by de�n-
ing the following probabilistic mixture:

p(tjx;w) =

MX
i=1

p(ijx;v)p(tjx; i;wi): (11)

Comparing this mixture to the unconditional mixture
de�ned earlier (Eq. 2), we see that both the mixing
proportions and the component densities are now con-
ditional densities dependent on the input vector x. The
former dependence is particularly important|we now
view the mixing proportion p(ijx;v) as providing a prob-
abilistic device for choosing di�erent elemental models
(\experts") in di�erent regions of the input space. A
learning algorithm that chooses values for the parame-
ters v as well as the values for the parameters wi can
be viewed as attempting to �nd both a good partition of
the input space and a good �t to the local models within
that partition.

This approach can be extended recursively by consid-
ering mixtures of models where each model may itself be
a mixture model [Jordan and Jacobs, 1994]. Such a re-
cursion can be viewed as providing a probabilistic inter-
pretation for the decision trees discussed in the previous
section. We view the decisions in the decision tree as
forming a recursive set of probabilistic selections among
a set of models. The total probability of a target t given
an input x is the sum across all paths down the tree:

p(tjx;w) =

MX
i=1

p(ijx;u)

MX
j=1

p(jjx; i;vi) � � �p(tjx; i; j; : : :;wij���);

(12)
where i and j are the decisions made at the �rst
level and second level of the tree, respectively, and
p(tjx; i; j; : : :;wij:::) is the elemental model at the leaf
of the tree de�ned by the sequence of decisions. This
probabilistic model is a conditional hierarchical mixture.
Finding parameter values u, vi, etc. to �t this model to
data can be viewed as �nding a nested set of partitions
of the input space and �tting a set of local models within
the partition.

The mixture model approach can be viewed as a spe-
cial case of a general methodology known as learning

by committee. Bishop [1995] provides a discussion of
committees; we will also meet them in the section on
Bayesian methods later in the chapter.

3 Learning from Data

The previous section has provided a selection of mod-
els to choose from; we now face the problem of match-
ing these models to data. In principle the problem is
straightforward: given a family of models of interest we
attempt to �nd out how probable each of these mod-
els is in the light of the data. We can then select the
most probable model (a selection rule known as maxi-

mum a posteriori or MAP estimation), or we can se-
lect some highly probable subset of models, weighted
by their probability (an approach that we discuss below
in the section on Bayesian methods). In practice there
are a number of problems to solve, beginning with the
speci�cation of the family of models of interest. In the
simplest case, in which the family can be described as a
�xed structure with varying parameters (e.g., the class of
feedforward MLP's with a �xed number of hidden units),
the learning problem is essentially one of parameter es-

timation. If on the other hand the family is not easily
viewed as a �xed parametric family (e.g., feedforward
MLP's with variable number of hidden units), then we
must solve the model selection problem.

In this section we discuss the parameter estimation
problem. The goal will be to �nd MAP estimates of the
parameters by maximizing the probability of the param-
eters given the data D. We compute this probability
using Bayes rule:

p(wjD) =
p(Djw)p(w)

p(D)
; (13)

where we see that to calculate MAP estimates we must
maximize the expression in the numerator (the denomi-

5

nator does not depend on w). Equivalently we can min-
imize the negative logarithm of the numerator. We thus
de�ne the following cost function J(w):

J(w) = � ln p(Djw)� lnp(w); (14)

which we wish to minimize with respect to the param-
eters w. The �rst term in this cost function is a (neg-
ative) log likelihood. If we assume that the elements in
the training set D are conditionally independent of each
other given the parameters, then the likelihood factorizes
into a product form. For density estimation we have:

p(Djw) =

NY
n=1

p(xnjw) (15)

and for classi�cation and regression we have:

p(Djw) =

NY
n=1

p(tnjxn;w): (16)

In both cases this yields a log likelihood which is the sum
of the log probabilities for each individual data point.
For the remainder of this section we will assume this
additive form; moreover, we will assume that the log
prior probability of the parameters is uniform across the
parameters and drop the second term. Thus we focus on
maximum likelihood (ML) estimation, where we choose
parameter values wML that maximize lnp(Djw).

3.1 Likelihood-based cost functions

Regression, classi�cation and density estimation make
di�erent probabilistic assumptions about the form of the
data and therefore require di�erent cost functions.

Eq. 3 de�nes a probabilistic model for regression. The
model is a conditional density for the targets t in which
the targets are distributed as Gaussian random variables
(assuming Gaussian errors �) with mean values f(x). We
now write the conditional mean as f(x;w) to make ex-
plicit the dependence on the parameters w. Given the
training set D = fxn; tng

N
n=1, and given our assumption

that the targets tn are sampled independently (given the
inputs xn and the parameters w), we obtain:

J(w) =
1

2

X
n

ktn � f(xn;w)k
2
; (17)

where we have assumed an identity covariance matrix
and dropped those terms that do not depend on the
parameters. This cost function is the standard least
squares cost function which is traditionally used in neu-
ral network training for real-valued targets. Minimiza-
tion of this cost function is typically achieved via some
form of gradient optimization, as we discuss in the fol-
lowing section.

Classi�cation problems di�er from regression prob-
lems in the use of discrete-valued targets, and the like-
lihood accordingly takes a di�erent form. For binary
classi�cation the Bernoulli probability model p(tjx;w) =
y
t(1�y)1�t is natural, where we use y to denote the prob-
ability p(t = 1jx;w). This model yields the following log
likelihood:

J(w) = �
X
n

[tn lnyn + (1� tn) ln(1� yn)] ; (18)

which is known as the cross entropy function. It can
be minimized using the same generic optimization pro-
cedures as are used for least squares.

For multi-way classi�cation problems in which there
are C categories, where C > 2, the multinomial distri-
bution is natural. De�ne tn such that its elements tn;i
are one or zero according to whether the nth data point
belongs to the ith category, and de�ne yn;i to be the net-
work's estimate of the posterior probability of category
i for data point n; i.e., yn;i � p(tn;i = 1jxn;w). Given
these de�nitions we obtain the following cost function:

J(w) = �
X
n

X
i

tn;i ln yn;i; (19)

which again has the form of a cross entropy.
We now turn to density estimation as exempli�ed by

Gaussian mixture modeling. The probabilistic model in
this case is that given in Eq. 2. Assuming Gaussian
component densities with arbitrary covariance matrices,
we obtain the following cost function:

J(w) = �
X
n

ln
X
i

�i
1

j�ij1=2
exp

�
�
1

2
(xn � �i)

T��1
i (xn � �i)

�
;

(20)
where the parameters w are the collection of mean vec-
tors �i, the covariance matrices�i, and the mixing pro-
portions �i. A similar cost function arises for the gener-
alized mixture models (cf. Eq. 12).

3.2 Gradients of the cost function

Once we have de�ned a probabilistic model, obtained a
cost function and found an e�cient procedure for calcu-
lating the gradient of the cost function, the problem can
be handed o� to an optimization routine. Before dis-
cussing optimization procedures, however, it is useful to
examine the form that the gradient takes for the exam-
ples that we have discussed in the previous two sections.

The ith output unit in a layered network is endowed
with a rule for combining the activations of units in ear-
lier layers, yielding a quantity that we denote by zi, and
a function that converts zi into the output yi. For regres-
sion problems, we assume linear output units such that
yi = zi. For binary classi�cation problems, our earlier
discussion showed that a natural output function is the
logistic: yi = 1=(1 + e

�zi). For multi-way classi�cation,
it is possible to generalize the derivation of the logistic
function to obtain an analogous representation for the
multi-way posterior probabilities known as the softmax

function [cf. Bishop, 1995]:

yi =
e
ziP
k e

zk
; (21)

where yi represents the posterior probability of category
i.

If we now consider the gradient of J(w) with respect
to zi, it turns out that we obtain a single canonical ex-
pression of the following form:

@J

@w
=
X
i

(ti � yi)
@zi

@w
: (22)

6

As discussed by [Rumelhart, et al. 1995], this form for
the gradient is predicted from the theory of Generalized
Linear Models [McCullagh and Nelder, 1983], where it is
shown that the linear, logistic, and softmax functions are
(inverse) canonical links for the Gaussian, Bernoulli, and
multinomial distributions, respectively. Canonical links
can be found for all of the distributions in the exponen-
tial family, thus providing a solid statistical foundation
for handling a wide variety of data formats at the output
layer of a network, including counts, time intervals and
rates.

The gradient of the cost function for mixture mod-
els has an interesting interpretation. Taking the partial
derivative of J(w) in Eq. 20 with respect to �i, we �nd:

@J

@�i
=
X
n

hn;i�i(xn � �i); (23)

where hn;i is de�ned as follows:

hn;i =
�ij�ij

�1=2 expf�1
2
(xn � �i)

T��1
i (xn � �i)gP

k �kj�kj�1=2 expf�
1
2
(xn � �k)

T�
�1
k (xn � �k)g

:

(24)
When summed over i, the quantity hn;i sums to one,
and is often viewed as the \responsibility" or \credit"
assigned to the i

th component for the n
th data point.

Indeed, interpreting Eq. 24 using Bayes rule shows that
hn;i is the posterior probability that the n

th data point

is generated by the ith component Gaussian. A learning
algorithm based on this gradient will move the ith mean
�i toward the data point xn, with the e�ective step size
proportional to hn;i.

The gradient for a mixture model will always take
the form of a weighted sum of the gradients associated
with the component models, where the weights are the
posterior probabilities associated with each of the com-
ponents. The key computational issue is whether these
posterior weights can be computed e�ciently. For Gaus-
sian mixture models, the calculation (Eq. 24) is clearly
e�cient. For decision trees there are a set of posterior
weights associated with each of the nodes in the tree,
and a recursion is available that computes the posterior
probabilities in an upward sweep [Jordan and Jacobs,
1994]. Mixture models in the form of a chain are known
as hidden Markov models, and the calculation of the rel-
evant posterior probabilities is performed via an e�cient
algorithm known as the Baum-Welch algorithm.

For general layered network structures, a generic al-
gorithm known as \backpropagation" is available to cal-
culate gradient vectors [Rumelhart, et al., 1986]. Back-
propagation is essentially the chain rule of calculus re-
alized as a graphical algorithm. As applied to layered
networks it provides a simple and e�cient method that
calculates a gradient in O(W) time per training pattern,
where W is the number of weights.

3.3 Optimization algorithms

By introducing the principle of maximum likelihood in
Section 1, we have expressed the problem of learning in
neural networks in terms of the minimization of a cost
function J(w) which depends on a vector w of adaptive
parameters. An important aspect of this problem is that

the gradient vector rwJ can be evaluated e�ciently
(for example by backpropagation). Gradient-based min-
imization is a standard problem in unconstrained non-
linear optimization, for which many powerful techniques
have been developed over the years. Such algorithms
generally start by making an initial guess for the param-
eter vector w and then iteratively updating the vector
in a sequence of steps:

w
(�+1) = w

(�) +�w(�) (25)

where � denotes the step number. The initial parameter
vector w(0) is often chosen at random, and the �nal vec-
tor represents a minimum of the cost function at which
the gradient vanishes. Due to the nonlinear nature of
neural network models, the cost function is generally a
highly complicated function of the parameters, and may
possess many such minima. Di�erent algorithms di�er
in how the update �w(�) is computed.

The simplest such algorithm is called gradient descent

and involves a parameter update which is proportional
to the negative of the cost function gradient � = ��rE
where � is a �xed constant called the learning rate. It
should be stressed that gradient descent is a particularly
ine�cient optimization algorithm. Various modi�cations
have been proposed, such as the inclusion of a momen-

tum term, to try to improve its performance. In fact
much more powerful algorithms are readily available, as
described in standard textbooks such as [Fletcher, 1987].
Two of the best known are called conjugate gradients

and quasi-Newton (or variable metric) methods. For the
particular case of a sum-of-squares cost function, the
Levenberg{Marquardt algorithm can also be very e�ec-
tive. Software implementations of these algorithms are
widely available.

The algorithms discussed so far are called batch since
they involve using the whole data set for each evalua-
tion of the cost function or its gradient. There is also a
stochastic or on-line version of gradient descent in which,
for each parameter update, the cost function gradient is
evaluated using just one of the training vectors at a time
(which are then cycled either in order or in a random
sequence). While this approach fails to make use of the
power of sophisticated methods such as conjugate gradi-
ents, it can prove e�ective for very large data sets, par-
ticularly if there is signi�cant redundancy in the data.

3.4 Hessian matrices, error bars and pruning

After a set of weights have been found for a neural net-
work using an optimization procedure, it is often useful
to examine second-order properties of the �tted network
as captured in the Hessian matrix H = @

2
J=@w@w

T .
E�cient algorithms have been developed to compute the
Hessian matrix in time O(W 2) [Bishop, 1995]. As in the
case of the calculation of the gradient by backpropaga-
tion, these algorithms are based on recursive message
passing in the network.

One important use of the Hessian matrix lies in
the calculation of error bars on the outputs of a net-
work. If we approximate the cost function locally as
a quadratic function of the weights (an approximation
which is equivalent to making a Gaussian approxima-
tion for the log likelihood), then the estimated variance

7

0.0 0.5 1.0
0.0

3.0
1M =

0.0 0.5 1.0
0.0

3.0
2M =

0.0 0.5 1.0
0.0

3.0
10M =

Figure 4: E�ects of model complexity illustrated by
modeling a mixture of two Gaussians (shown by the
dashed curves) using a mixture of M Gaussians (shown
by the solid curves). The results are obtained for 20
cycles of EM.

of the ith output yi can be shown to be:

�̂
2
yi
=

�
@yi

@w

�T
H

�1

�
@yi

@w

�
; (26)

where the gradient vector @yi=@w can be calculated via
backpropagation.

The Hessian matrix is also useful in pruning algo-
rithms. A pruning algorithm deletes weights from a �t-
ted network to yield a simpler network that may out-
perform a more complex, over�tted network (see below),
and may be easier to interpret. In this setting, the Hes-
sian is used to approximate the increase in the cost func-
tion due to the deletion of a weight. A variety of such
pruning algorithms are available [cf. Bishop, 1995].

3.5 Complexity control

In previous sections we have introduced a variety of mod-
els for representing probability distributions, we have
shown how the parameters of the models can be opti-
mized by maximizing the likelihood function, and we
have outlined a number of powerful algorithms for per-
forming this minimization. Before we can apply this
framework in practice there is one more issue we need
to address, which is that of model complexity. Consider
the case of a mixture model given by Eq. 2. The number
of input variables will be determined by the particular
problem at hand. However, the number M of compo-
nent densities has yet to be speci�ed. Clearly ifM is too
small the model will be insu�ciently exible and we will
obtain a poor representation of the true density. What
is not so obvious is that if M is too large we can also
obtain poor results. This e�ect is known as over�tting
and arises because we have a data set of �nite size. It
is illustrated using a simple example of mixture density
estimation in Figure 4. Here a set of 100 data points
in one dimension has been generated from a distribution
consisting of a mixture of two Gaussians (shown by the
dashed curves). This data set has then been �tted by

a mixture of M Gaussians by use of the EM algorithm.
We see that a model with 1 component (M = 1) gives a
poor representation of the true distribution from which
the data was generated, and in particular is unable to
capture the bimodal aspect. For M = 2 the model gives
a good �t, as we expect since the data was itself gener-
ated from a two-component Gaussian mixture. However,
increasing the number of components to M = 10 gives a
poorer �t, even though this model contains the simpler
models as special cases.

The problem is a very fundamental one and is associ-
ated with the fact that we are trying to infer an entire
distribution function from a �nite number of data points,
which is necessarily an ill-posed problem. In regression
for example there are in�nitely many functions which
will give a perfect �t to the �nite number of data points.
If the data are noisy, however, the best generalization
will be obtained for a function which does not �t the
data perfectly but which captures the underlying func-
tion from which the data were generated. By increasing
the exibility of the model we are able to obtain ever
better �ts to the training data, and this is reected in
a steadily increasing value for the likelihood function at
its maximum. Our goal is to model the true underly-
ing density function from which the data was generated
since this allows us to make the best predictions for new
data. We see that the best approximation to this density
occurs for an intermediate value of M .

The same issue arises in connection with nonlinear
regression and classi�cation problems. For example, the
number M of hidden units in an MLP network controls
the model complexity and must be optimized to give the
best generalization. In a practical application we can
train a variety of di�erent models having di�erent com-
plexity, and compare their generalization performance
using an independent validation set, and then select the
model with the best generalization. In fact the process
of optimizing the complexity using a validation set can
lead to some partial over�tting to the validation data it-
self, and so the �nal performance of the selected model
should be con�rmed using a third independent data set
called a test set.

Some theoretical insight into the problem of over�t-
ting can be obtained by decomposing the error into the
sum of bias and variance terms [Geman, et al., 1992]. A
model which is too inexible is unable to represent the
true structure in the underlying density function and this
gives rise to a high bias. Conversely a model which is
too exible becomes tuned to the speci�c details of the
particular data set and gives a high variance. The best
generalization is obtained from the optimum trade-o� of
bias against variance.

As we have already remarked, the problem of infer-
ring an entire distribution function from a �nite data set
is fundamentally ill-posed since there are in�nitely many
solutions. The problem only becomes well-posed when
some additional constraint is imposed. This constraint
might be that we model the data using a network having
a limited number of hidden units. Within the range of
functions which this model can represent there is then a
unique function which best �ts the data. Implicitly we

8

are assuming that the underlying density function from
which the data were drawn is relatively smooth. Instead
of limiting the number of parameters in the model, we
can encourage smoothness more directly using the tech-
nique of regularization. This involves adding a penalty
term
 to the original cost function J to give a total cost

function eJ of the form:eJ = J + �
 (27)

where � is called a regularization coe�cient. The net-

work parameters are determined by minimizing eJ , and
the value of � controls the degree of inuence of the
penalty term
. In practice
 is typically chosen to
encourage smooth functions. The simplest example is
called weight decay and consists of the sum of the squares
of all the adaptive parameters in the model:

 =
X
i

w
2
i (28)

Consider the e�ect of such a term on the MLP function
(Eq. 9). If the weights take very small values then the
network outputs become approximately linear functions
of the inputs (since the sigmoidal function is approx-
imately linear for small values of its argument). The
value of � in Eq. 27 controls the e�ective complexity of
the model, so that for large � the model is over-smoothed
(corresponding to high bias) while for small � the model
can over�t (corresponding to high variance). We can
therefore consider a network with a relatively large num-
ber of hidden units and control the e�ective complexity
by changing �. In practice, a suitable value for � can be
found by seeking the value which gives the best perfor-
mance on a validation set.

The weight decay regularizer (Eq. 28) is simple to im-
plement but su�ers from a number of limitations. Regu-
larizers used in practice may be more sophisticated and
may contain multiple regularization coe�cients [Neal,
1994].

Regularization methods can be justi�ed within a gen-
eral theoretical framework known as structural risk min-

imization [Vapnik, 1995]. Structural risk minimization
provides a quantitative measure of complexity known as
the VC dimension. The theory shows that the VC di-
mension predicts the di�erence between performance on
a training set and performance on a test set; thus, the
sum of log likelihood and (some function of) VC dimen-
sion provides a measure of generalization performance.
This motivates regularization methods (Eq. 27) and pro-
vides some insight into possible forms for the regularizer

.

3.6 Bayesian viewpoint

In earlier sections we discussed network training in terms
of the minimization of a cost function derived from the
principle of maximum a posteriori or maximum likeli-
hood estimation. This approach can be seen as a par-
ticular approximation to a more fundamental, and more
powerful, framework based on Bayesian statistics. In the
maximum likelihood approach the weights w are set to
a speci�c value wML determined by minimization of a

cost function. However, we know that there will typi-
cally be other minima of the cost function which might
give equally good results. Also, weight values close to
wML should give results which are not too di�erent from
those of the maximum likelihood weights themselves.

These e�ects are handled in a natural way in the
Bayesian viewpoint, which describes the weights not in
terms of a speci�c set of values, but in terms of a proba-
bility distribution over all possible values. As discussed
earlier (cf. Eq. 13), once we observe the training data set
D we can compute the corresponding posterior distribu-
tion using Bayes' theorem, based on a prior distribution
function p(w) (which will typically be very broad), and
a likelihood function p(Djw):

p(wjD) =
p(Djw)p(w)

p(D)
: (29)

The likelihood function will typically be very small ex-
cept for values of w for which the network function is
reasonably consistent with the data. Thus the posterior
distribution p(wjD) will be much more sharply peaked
than the prior distribution p(w) (and will typically have
multiple maxima). The quantity we are interested in is
the predicted distribution of target values t for a new
input vector x once we have observed the data set D.
This can be expressed as an integration over the poste-
rior distribution of weights of the form:

p(tjx;D) =

Z
p(tjx;w)p(wjD) dw (30)

where p(tjx;w) is the conditional probability model dis-
cussed in the introduction.

If we suppose that the posterior distribution p(wjD)
is sharply peaked around a single most-probable value
wMP, then we can write Eq. 30 in the form:

p(tjx;D) ' p(tjx;wMP)

Z
p(wjD) dw (31)

= p(tjx;wMP) (32)

and so predictions can be made by �xing the weights to
their most probable values. We can �nd the most proba-
ble weights by maximizing the posterior distribution, or
equivalently by minimizing its negative logarithm. Us-
ing Eq. 29, we see that wMP is determined by minimiz-
ing a regularized cost function of the form in Eq. 27 in
which the negative log of the prior � lnp(w) represents
the regularizer �
. For example, if the prior consists of
a zero-mean Gaussian with variance ��1 then we obtain
the weight-decay regularizer of Eq. 28.

The posterior distribution will become sharply peaked
when the size of the data set is large compared to the
number of parameters in the network. For data sets
of limited size, however, the posterior distribution has
a �nite width and this adds to the uncertainty in the
predictions for t which can be expressed in terms of er-
ror bars. Bayesian error bars can be evaluated using a
local Gaussian approximation to the posterior distribu-
tion [MacKay, 1992]. The presence of multiple maxima
in the posterior distribution also contributes to the un-
certainties in predictions. The capability to assess these

9

uncertainties can play a crucial role in practical applica-
tions.

The Bayesian approach can also deal with more gen-
eral problems in complexity control. This can be done
by considering the probabilities of a set of alternative
models, given the data set:

p(HijD) =
p(DjHi)p(Hi)

p(D)
: (33)

Here di�erent models can also be interpreted as di�erent
values of regularization parameters as these too control
model complexity. If the models are given the same prior
probabilities p(Hi) then they can be ranked by consider-
ing the evidence p(DjHi) which itself can be evaluated by
integration over the model parametersw. We can simply
select the model with the greatest probability. However,
a full Bayesian treatment requires that we form a linear
combination of the predictions of the models in which
the weighting coe�cients are given by the model proba-
bilities.

In general, the required integrations, such as that in
Eq. 30, are analytically intractable. One approach is
to approximate the posterior distribution by a Gaus-
sian centered on wMP and then to linearize p(tjx;w)
about wMP so that the integration can be performed an-
alytically [MacKay, 1992]. Alternatively, sophisticated
Monte Carlo methods can be employed to evaluate the
integrals numerically [Neal, 1994]. An important aspect
of the Bayesian approach is that there is no need to keep
data aside in a validation set as is required when using
maximum likelihood. In practical applications for which
the quantity of available data are limited, it is found
that a Bayesian treatment generally outperforms other
approaches.

3.7 Pre-processing, invariances and prior

knowledge

We have already seen that neural networks can approxi-
mate essentially arbitrary nonlinear functional mappings
between sets of variables. In principle we could therefore
use a single network to transform the raw input variables
into the required �nal outputs. However, in practice for
all but the simplest problems the results of such an ap-
proach can be improved upon considerably by incorpo-
rating various forms of pre-processing, for reasons which
we shall outline below.

One of the simplest and most common forms of pre-
processing consists of a simple normalization of the in-
put, and possibly also target, variables. This may take
the form of a linear rescaling of each input variable in-
dependently to give it zero mean and unit variance over
the training set. For some applications the original input
variables may span widely di�erent ranges. Although
a linear rescaling of the inputs is equivalent to a dif-
ferent choice of �rst-layer weights, in practice the opti-
mization algorithm may have considerable di�culty in
�nding a satisfactory solution when typical input values
are substantially di�erent. Similar rescaling can be ap-
plied to the output values in which case the inverse of
the transformation needs to be applied to the network
outputs when the network is presented with new inputs.

Pre-processing is also used to encode data in a suitable
form. For example, if we have categorical variables such
as `red', `green' and `blue', these may be encoded using
a 1-of-3 binary representation.

Another widely used form of pre-processing involves
reducing the dimensionality of the input space. Such
transformations may result in loss of information in the
data, but the overall e�ect can be a signi�cant improve-
ment in performance as a consequence of the curse of
dimensionality discussed in Section 3.5. The �nite data
set is better able to specify the required mapping in the
lower-dimensional space. Dimensionality reduction may
be accomplished by simply selecting a subset of the orig-
inal variables, but more typically involves the construc-
tion of new variables consisting of linear or nonlinear
combinations of the original variables called features. A
standard technique for dimensionality reduction is prin-
cipal component analysis [Anderson, 1984]. Such meth-
ods, however, make use only of the input data and ignore
the target values, and can sometimes be signi�cantly
sub-optimal.

Yet another form of pre-processing involves correcting
de�ciencies in the original data. A common occurrence
is that some of the input variables are missing for some
of the data points. Correction of this problem in a prin-
cipled way requires that the probability distribution p(x)
of input data be modeled.

One of the most important factors determining the
performance of real-world applications of neural net-
works is the use of prior knowledge which is information
additional to that present in the data. As an example,
consider the problem of classifying hand-written digits
discussed in Section 1. The most direct approach would
be to collect a large training set of digits and to train
a feedforward network to map from the input image to
a set of 10 output values representing posterior prob-
abilities for the 10 classes. However, we know that the
classi�cation of a digit should be independent of its posi-
tion within the input image. One way of achieving such
translation invariance is to make use of the technique
of shared weights. This involves a network architecure
having many hidden layers in which each unit takes in-
puts only from a small patch, called a receptive �eld, of
units in the previous layer. By a process of constrain-
ing neighboring units to have common weights, it can be
arranged that the output of the network is insensitive
to translations of the input image. A further bene�t of
weight sharing is that the number of independent param-
eters is much smaller than the number of weights, which
assists with the problem of model complexity. This ap-
proach is the basis for the highly successful US postal
code recognition system of [LeCun, et al., 1989]. An
alternative to shared weights is to enlargen the training
set arti�cially by generating \virtual examples" based on
applying translations and other transformations to the
original training set [Poggio and Vetter, 1992].

4 Graphical models

Neural networks express relationships between variables
by utilizing the representational language of graph the-
ory. Variables are associated with nodes in a graph

10

Xi Xj

Xk

Xl

Xi

Xj

Xk

(a) (b)

Figure 5: (a) An undirected graph in which Xi is inde-
pendent of Xj given Xk and Xl , and Xk is independent
ofXl givenXi and Xj . (b) A directed graph in whichXi

andXk are marginally independent but are conditionally
dependent given Xj .

and transformations of variables are based on algorithms
that propagate numerical messages along the links of the
graph. Moreover, the graphs are often accompanied by
probabilistic interpretations of the variables and their
interrelationships. As we have seen, such probabilistic
interpretations allow a neural network to be understood
as a form of probabilistic model, and reduce the prob-
lem of learning the weights of a network to a problem in
statistics.

Related graphical models have been studied through-
out statistics, engineering and AI in recent years. Hidden
Markov models, Kalman �lters, and path analysis mod-
els are all examples of graphical probabilistic models that
can be �tted to data and used to make inferences. The
relationship between these models and neural networks
is rather strong; indeed it is often possible to reduce one
kind of model to the other. In this section, we examine
these relationships in some detail and provide a broader
characterization of neural networks as members of a gen-
eral family of graphical probabilistic models.

Many interesting relationships have been discovered
between graphs and probability distributions [Spiegel-
halter, et al., 1993]; [Pearl, 1988]. These relationships
derive from the use of graphs to represent conditional in-
dependencies among random variables. In an undirected
graph, there is a direct correspondence between con-
ditional independence and graph separation|random
variables Xi and Xk are conditionally independent given
Xj if nodes Xi and Xk are separated by node Xj (we
use the symbol \Xi" to represent both a random vari-
able and a node in a graph). This statement remains
true for sets of nodes (see Figure 5(a)). Directed graphs
have a somewhat di�erent semantics, due to the abil-
ity of directed graphs to represent \induced dependen-
cies." An induced dependency is a situation in which two
nodes which are marginally independent become condi-
tionally dependent given the value of a third node (see
Figure 5(b)). Suppose, for example, that Xi and Xk

represent independent coin tosses, and Xj represents the
sum ofXi andXk. Then Xi andXk are marginally inde-
pendent but are conditionally dependent given Xj . The

(b)(a)

O1 O2 O3 O4

1H 3H 4H2H 1H 3H 4H2H

O1 O2 O3 O4

Figure 6: (a) A directed graph representation of an
HMM. Each horizontal link is associated with the tran-
sition matrix A, and each vertical link is associated with
the emission matrix B. (b) An HMM as a Boltzmann
machine. The parameters on the horizontal links are log-
arithms of the entries of the A matrix, and the parame-
ters on the vertical links are logarithms of the entries of
the B matrix. The two representations yield the same
joint probability distribution.

semantics of independence in directed graphs is captured
by a graphical criterion known as d-separation [Pearl,
1988], which di�ers from undirected separation only in
those cases in which paths have two arrows arriving at
the same node (as in Figure 5(b)).

Although the neural network architectures that we
have discussed until now have all been based on di-
rected graphs, undirected graphs also play an impor-
tant role in neural network research. Constraint sat-
isfaction architectures, including the Hop�eld network
[Hop�eld, 1982] and the Boltzmann machine [Hinton and
Sejnowski, 1986], are the most prominent examples. A
Boltzmann machine is an undirected probabilistic graph
that respects the conditional independency semantics de-
scribed above (cf. Figure 5(a)). Each node in a Boltz-
mann machine is a binary-valued random variable Xi

(or more generally a discrete-valued random variable).
A probability distribution on the 2N possible con�gura-
tions of such variables is de�ned via an energy function

E. Let Jij be the weight on the link between Xi and Xj,
let Jij = Jji, let � index the con�gurations, and de�ne
the energy of con�guration � as follows:

E� = �
X
i<j

JijX
�
i X

�
j : (34)

The probability of con�guration � is then de�ned via the
Boltzmann distribution:

P� =
e
�E�=TP
 e

�E=T
; (35)

where the temperature T provides a scale for the energy.

An example of a directed probabilistic graph is the
hidden Markov model (HMM). An HMM is de�ned by
a set of state variables Hi, where i is generally a time or
a space index, a set of output variables Oi, a probability

transition matrix A = p(HijHi�1), and an emission ma-

trix B = p(OijHi). The directed graph for an HMM is
shown in Figure 6(a). As can be seen from considering
the separatory properties of the graph, the conditional
independencies of the HMM are de�ned by the following

11

Markov conditions:

Hi ? fH1; O1; : : : ;Hi�2; Oi�2; Oi�1gjHi�1; 2 � i � N

(36)
and

Oi ? fH1; O1; : : : ;Hi�1; Oi�1gjHi; 2 � i � N;

(37)
where the symbol ? is used to denote independence.

Figure 6(b) shows that it is possible to treat an HMM
as a special case of a Boltzmann machine [Luttrell, 1989];
[Saul and Jordan, 1995]. The probabilistic structure of
the HMM can be captured by de�ning the weights on the
links as the logarithms of the corresponding transition
and emission probabilities. The Boltzmann distribution
(Eq. 35) then converts the additive energy into the prod-
uct form of the standard HMM probabilility distribution.
As we will see, this reduction of a directed graph to an
undirected graph is a recurring theme in the graphical
model formalism.

General mixture models are readily viewed as graph-
ical models [Buntine, 1994]. For example, the uncon-
ditional mixture model of Eq. 2 can be represented as
a graphical model with two nodes|a multinomial \hid-
den" node which represents the selected component, a
\visible" node representing x, and a directed link from
the hidden node to the visible node (see below for the
hidden/visible distinction). Conditional mixture models
[Jacobs, et al., 1991] simply require another visible node
with directed links to the hidden node and the visible
nodes. Hierarchical conditional mixture models [Jordan
and Jacobs, 1994] require a chain of hidden nodes, one
hidden node for each level of the tree.

Within the general framework of probabilistic graph-
ical models, it is possible to tackle general problems of
inference and learning. The key problem that arises in
this setting is the problem of computing the probabilities
of certain nodes, which we will refer to as hidden nodes,
given the observed values of other nodes, which we will
refer to as visible nodes. For example, in an HMM, the
variables Oi are generally treated as visible, and it is de-
sired to calculate a probability distribution on the hidden
states Hi. A similar inferential calculation is required in
the mixture models and the Boltzmann machine.

Generic algorithms have been developed to solve the
inferential problem of the calculation of posterior prob-
abilities in graphs. Although a variety of inference al-
gorithms have been developed, they can all be viewed
as essentially the same underlying algorithm [Shachter,
Andersen, and Szolovits, 1994]. Let us consider undi-
rected graphs. A special case of an undirected graph
is a triangulated graph [Spiegelhalter, et al., 1993], in
which any cycle having four or more nodes has a chord.
For example, the graph in Figure 5(a) is not triangu-
lated, but becomes triangulated when a link is added
between nodes Xi and Xj. In a triangulated graph, the
cliques of the graph can be arranged in the form of a
junction tree, which is a tree having the property that
any node that appears in two di�erent cliques in the tree
also appears in every clique on the path that links the
two cliques (the \running intersection property"). This
cannot be achieved in non-triangulated graphs. For ex-
ample, the cliques in Figure 5(a) are fXi; Xkg, fXk; Xjg,

(a) (b)

(c) (d)

Xi Xj

Xk Xl

Xm Xn

XiXjXk

XjXkXl

XlXk Xm

XmXl Xn

Figure 7: The basic structure of the junction tree algo-
rithm for undirected graphs. The graph in (a) is �rst
triangulated (b), then the cliques are identi�ed (c), and
arranged into a tree (d). Products of potential functions
on the nodes in (d) yield probability distributions on the
nodes in (a).

fXj; Xlg, and it is not possible to arrange these cliques
into a tree that obeys the running intersection property.
If a chord is added the resulting cliques are fXi; Xj; Xkg
and fXi; Xj; Xlg, and these cliques can be arranged as
a simple chain that trivially obeys the running intersec-
tion property. In general, it turns out that the proba-
bility distributions corresponding to triangulated graphs
can be characterized as decomposable, which implies that
they can be factorized into a product of local functions
(\potentials") associated with the cliques in the trian-
gulated graph.1 The calculation of posterior probabil-
ities in decomposable distributions is straightforward,
and can be achieved via a local message-passing algo-
rithm on the junction tree [Spiegelhalter, et al., 1993].

Graphs that are not triangulated can be turned into
triangulated graphs by the addition of links. If the po-
tentials on the new graph are de�ned suitably as prod-
ucts of potentials on the original graph, then the inde-
pendencies in the original graph are preserved. This im-
plies that the algorithms for triangulated graphs can be
used for all undirected graphs; an untriangulated graph
is �rst triangulated (see Figure 7). Moreover, it is possi-
ble to convert directed graphs to undirected graphs in a
manner that preserves the probabilistic structure of the
original graph [Spiegelhalter, et al., 1993]. This implies
that the junction tree algorithm is indeed generic; it can
be applied to any graphical model.

The problem of calculating posterior probabilities on
graphs is NP-hard; thus, a major issue in the use of
the inference algorithms is the identi�cation of cases
in which they are e�cient. Chain structures such as
HMM's yield e�cient algorithms, and indeed the clas-
sical forward-backward algorithm for HMM's is a spe-
cial, e�cient case of the junction tree algorithm [Smyth,
Heckerman, and Jordan, 1996]. Decision tree structures
such as the hierarchical mixture of experts yield e�cient

1An interesting example is a Boltzmann machine on a tri-
angulated graph. The potentials are products of exp(Jij)
factors, where the product is taken over all (i; j) pairs in a
particular clique. Given that the product across potentials
must be the joint probability, this implies that the partition
function (the denominator of Eq. 35) must be unity in this
case.

12

algorithms, and the recursive posterior probability cal-
culation of [Jordan and Jacobs, 1994] described earlier is
also a special case of the junction tree algorithm. All of
the simpler mixture model calculations described earlier
are therefore also special cases. Another interesting spe-
cial case is the state estimation algorithm of the Kalman
�lter [Shachter and Kenley, 1989]. Finally, there are a
variety of special cases of the Boltzmann machine which
are amenable to the exact calculations of the junction
tree algorithm [Saul and Jordan, 1995].

For graphs that are outside of the tractable categories
of trees and chains, the junction tree algorithmoften per-
forms surprisingly well, but for highly connected graphs
the algorithm can be too slow. In such cases, approx-
imate algorithms such as Gibbs sampling are utilized.
A virtue of the graphical framework is that Gibbs sam-
pling has a generic form, which is based on the notion
of a Markov boundary [Pearl, 1988]. A special case of
this generic form is the stochastic update rule for gen-
eral Boltzmann machines.

Our discussion has emphasized the unifying frame-
work of graphical models both for expressing probabilis-
tic dependencies in graphs and for describing algorithms
that perform the inferential step of calculating posterior
probabilities on these graphs. The uni�cation goes fur-
ther, however, when we consider learning. A generic
methodology known as the Expectation-Maximization
(EM) algorithm is available for MAP and Bayesian es-
timation in graphical models [Dempster, Laird, and Ru-
bin, 1977]. EM is an iterative method, based on two
alternating steps: an E step, in which the values of hid-
den variables are estimated, based on the current values
of the parameters and the values of visible variables, and
anM step, in which the parameters are updated based on
the estimated values obtained from the E step. Within
the framework of the EM algorithm, the junction tree al-
gorithm can readily be viewed as providing a generic E
step. Moreover, once the estimated values of the hidden
nodes are obtained from the E step, the graph can be
viewed as fully observed, and the M step is a standard
MAP or ML problem. The standard algorithms for all
of the tractable architectures described above (mixtures,
trees and chains) are in fact instances of this general
graphical EM algorithm, and the learning algorithm for
general Boltzmann machines is a special case of a gener-
alization of EM known as GEM [Dempster, et al., 1977].

What about the case of feedforward neural networks
such as the multilayer perceptron? It is in fact possible
to associate binary hidden values with the hidden units
of such a network (cf. our earlier discussion of the logis-
tic function; see also [Amari, 1995]) and apply the EM
algorithm directly. For N hidden units, however, there
are 2N patterns whose probabilities must be calculated
in the E step. For large N , this is an intractable compu-
tation, and recent research has therefore begun to focus
on fast methods for approximating these distributions
[Hinton, et al., 1995]; [Saul, et al., 1996].

Acknowledgements: We want to thank Peter Dayan
for helpful comments on the manuscript.

References

Amari, S. 1995. The EM algorithm and information ge-
ometry in neural network learning. Neural Compu-

tation, 7(1):13{18.

Anderson, T. W. 1984. An Introduction to Multivariate

Statistical Analysis. John Wiley, New York.

Bengio, Y. 1996. Neural Networks for Speech and Se-

quence Recognition. Thomson Computer Press,
London.

Bishop, C. M. 1995. Neural Networks for Pattern Recog-

nition. Oxford University Press.

Breiman, L., Friedman, J.H., Olshen, R.A., & Stone,
C.J. 1984. Classi�cation and Regression Trees.
Wadsworth International Group, Belmont, CA.

Buntine, W. 1994. Operations for learning with graph-
ical models. Journal of Arti�cial Intelligence Re-

search 2:159{225.

Dempster, A.P., Laird, N.M., and Rubin, D.B. 1977.
Maximum-likelihood from incomplete data via the
EM algorithm. J. of Royal Statistical Society,

B39:1{38.

Fletcher, R. 1987. Practical Methods of Optimization,
2nd ed. John Wiley, New York.

Geman, S., Bienenstock, E., and Doursat, R. 1992. Neu-
ral networks and the bias/variance dilema. Neural

Computation, 4:1{58.

Hertz, J., Krogh, A, and Palmer, R. G. 1991. In-

troduction to the Theory of Neural Computation.
Addison-Wesley, Redwood City, CA.

Hinton, G. E., Dayan, P., Frey, B., and Neal, R. 1995.
The wake-sleep algorithm for unsupervised neural
networks. Science, 268:1158{1161.

Hinton, G. E. and Sejnowski, T. 1986. Learning and
relearning in Boltzmann machines. In Parallel dis-

tributed processing: Volume 1, ed., D. E. Rumelhart
and J. L. McClelland, p. 282{317. MIT Press, Cam-
bridge, MA.

Hop�eld, J. J. 1982. Neural networks and physical sys-
tems with emergent collective computational abili-
ties. Proceedings of the National Academy of Sci-

ences, 79:2554{2558.

Jacobs, R.A., Jordan, M.I., Nowlan, S.J., and Hinton,
G.E. 1991. Adaptive mixtures of local experts.
Neural Computation, 3:79{87.

Jordan, M.I. and Jacobs, R.A. 1994. Hierarchical mix-
tures of experts and the EM algorithm. Neural

Computation, 6:181{214.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W. and Jackel, L. D. 1989.
Backpropagation applied to handwritten zip code
recognition. Neural Computation, 1(4):541{551.

Luttrell, S. 1989. The Gibbs machine applied to hidden
Markov model problems. Royal Signals and Radar

Establishment: SP Research Note 99, Malvern, UK.
13

MacKay, D. J. C. 1992. A practical Bayesian framework
for back-propagation networks. Neural Computa-

tion, 4:448{472.

McCullagh, P. and Nelder, J.A. 1983. Generalized Lin-

ear Models. Chapman and Hall, London.

Neal, R. M. 1994. Bayesian Learning for Neural Net-

works. Unpublished PhD thesis, Department of
Computer Science, University of Toronto, Canada.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-

tems. Morgan Kaufmann, San Mateo, CA.

Poggio, T. and Vetter, T. 1992. Recognition and

structure from one 2D model view: Observations

on prototypes, object classes and symmetries. AI
Memo 1347, Arti�cial Intelligence Laboratory, Mas-
sachusetts Institute of Technology.

Rabiner, L.R. 1989. A tutorial on Hidden Markov mod-
els and selected applications in speech recognition.
Proceedings of the IEEE, 77:257{286.

Rumelhart, D. E., Durbin, R., Golden, R., and Chau-
vin, Y. 1995. Backpropagation: The basic theory.
In Backpropagation: Theory, Architectures, and Ap-
plications, ed. Y. Chauvin, and D.E. Rumelhart, p.
1{35. Lawrence Erlbaum, Hillsdale, NJ.

Saul, L. K., Jaakkola, T., and Jordan, M. I. 1996. Mean
�eld learning theory for sigmoid belief networks.
Journal of Arti�cial Intelligence Research.

Saul, L. K. and Jordan, M. I. 1995. Boltzmann chains
and hidden Markov models. In Advances in Neural

Information Processing Systems 7, ed., G. Tesauro,
D. Touretzky, and T. Leen. Cambridge, MA, MIT
Press.

Sandler, D. G., Barrett, T. K., Palmer, D. A., Fugate,
R. Q., and Wild, W. J. 1991. Use of a neural net-
work to control an adaptive optics system for an
astronomical telescope, Nature, 351:300{302.

Shachter, R., Andersen, S., and Szolovits, P. 1994.
Global conditioning for probabilistic inference in be-
lief networks. In Uncertainty in Arti�cial Intelli-

gence: Proceedings of the Tenth Conference, p. 514{
522. Seattle, WA.

Shachter, R. and Kenley, C. 1989. Gaussian inuence
diagrams. Management Science, 35(5):527{550.

Smyth, P., Heckerman, D., and Jordan, M. I. 1996. Prob-
abilistic independence networks for hidden Markov

probability models. Tech. Rep. AIM 1565. Arti�cial
Intelligence Laboratory, Massachusetts Institute of
Technology.

Spiegelhalter, D., Dawid, A., Lauritzen, S., and Cow-
ell, R. 1993. Bayesian analysis in expert systems.
Statistical Science, 8(3):219{283.

Tarassenko, L. 1995. Novelty detection for the identi�ca-
tion of masses in mammograms. Proceedings Fourth
IEE International Conference on Arti�cial Neural

Networks, 4:442{447.

Vapnik, V. N. 1995. The Nature of Statistical Learning

Theory. Springer-Verlag, New York.

Further information

In this chapter we have emphasized the links between
neural networks and statistical pattern recognition. A
more extensive treatment from the same perspective can
be found in [Bishop, 1995]. For a view of recent research
in the �eld, the proceedings of the annual NIPS (Neural
InformationProcessing Systems; MIT Press) conferences
are highly recommended.

Neural computing is now a very broad �eld and there
are many topics which have not been discussed for lack
of space. Here we aim to provide a brief overview of some
of the more signi�cant omissions, and to give pointers to
the literature.

The resurgence of interest in neural networks during
the 1980's was due in large part to work on the statistical
mechanics of fully connected networks having symmetric
connections (i.e. if unit i sends a connection to unit j
then there is also a connection from unit j back to unit i
with the same weight value). We have briey discussed
such systems; a more extensive introduction to this area
can be found in [Hertz, et al., 1991].

The implementation of neural networks in specialist
VLSI hardware has been the focus of much research, al-
though by far the majority of work in neural computing
is undertaken using software implementations running
on standard platforms.

An implicit assumption throughout most of this chap-
ter is that the processes which give rise to the data are
stationary in time. The techniques discussed here can
readily be applied to problems such as time series fore-
casting, provided this stationarity assumption is valid.
If, however, the generator of the data is itself evolving
with time then more sophisticated techniques must be
used, and these are the focus of much current research
[see Bengio, 1996].

One of the original motivations for neural networks
was as models of information processing in biological sys-
tems such as the human brain. This remains the subject
of considerable research activity, and there is a continu-
ing ow of ideas between the �elds of neurobiology and
of arti�cial neural networks. Another historical spring-
board for neural network concepts was that of adaptive
control, and again this remains a subject of great inter-
est.

De�ning terms

Classi�cation A learning problem in which the goal
is to assign input vectors to one of a number of
(usually mutually exclusive) classes.

Boltzmann machine An undirected network of dis-
crete valued random variables, where an energy
function is associated with each of the links, and
for which a probability distribution is de�ned by
the Boltzmann distribution.

Cost function A function of the adaptive parameters
of a model whose minimum is used to de�ne suit-
able values for those parameters. It may consist of
a likelihood function and additional terms.

14

Decision tree A network that performs a sequence of
classi�catory decisions on an input vector and pro-
duces an output vector that is conditional on the
outcome of the decision sequence.

Density estimation The problem of modeling a prob-
ability distribution from a �nite set of examples
drawn from that distribution.

Discriminant function A function of the input vector
which can be used to assign inputs to classes in a
classi�cation problem.

Hidden Markov model A graphical
probabilistic model characterized by a state vec-
tor, an output vector, a state transition matrix, an
emission matrix and an initial state distribution.

Likelihood function The probability of observing a
particular data set under the assumption of a given
parametrized model, expressed as a function of the
adaptive parameters of the model.

Mixture model A probability model which consists of
a linear combination of simpler component proba-
bility models.

Multilayer perceptron The most common form of
neural network model, consisting of successive lin-
ear transformations followed by processing with
nonlinear activation functions.

Over�tting The problem in which a model which is too
complex captures too much of the noise in the data,
leading to poor generalization.

Radial basis function network A common network
model consisting of a linear combination of basis
functions each of which is a function of the di�er-
ence between the input vector and a center vector.

Regression A learning problem in which the goal is
to map each input vector to a real-valued output
vector.

Regularization A technique for controlling model
complexity and improving generalization by the ad-
dition of a penalty term to the cost function.

VC dimension A measure of the complexity of a
model. Knowledge of the VC dimension permits
an estimate to be made of the di�erence between
performance on the training set and performance
on a test set.

15

