91 research outputs found

    Learning Nonsingular Phylogenies and Hidden Markov Models

    Get PDF
    In this paper we study the problem of learning phylogenies and hidden Markov models. We call a Markov model nonsingular if all transition matrices have determinants bounded away from 0 (and 1). We highlight the role of the nonsingularity condition for the learning problem. Learning hidden Markov models without the nonsingularity condition is at least as hard as learning parity with noise, a well-known learning problem conjectured to be computationally hard. On the other hand, we give a polynomial-time algorithm for learning nonsingular phylogenies and hidden Markov models

    Learning loopy graphical models with latent variables: Efficient methods and guarantees

    Get PDF
    The problem of structure estimation in graphical models with latent variables is considered. We characterize conditions for tractable graph estimation and develop efficient methods with provable guarantees. We consider models where the underlying Markov graph is locally tree-like, and the model is in the regime of correlation decay. For the special case of the Ising model, the number of samples nn required for structural consistency of our method scales as n=Ω(θminδη(η+1)2logp)n=\Omega(\theta_{\min}^{-\delta\eta(\eta+1)-2}\log p), where p is the number of variables, θmin\theta_{\min} is the minimum edge potential, δ\delta is the depth (i.e., distance from a hidden node to the nearest observed nodes), and η\eta is a parameter which depends on the bounds on node and edge potentials in the Ising model. Necessary conditions for structural consistency under any algorithm are derived and our method nearly matches the lower bound on sample requirements. Further, the proposed method is practical to implement and provides flexibility to control the number of latent variables and the cycle lengths in the output graph.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1070 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Uniform Chernoff and Dvoretzky-Kiefer-Wolfowitz-type inequalities for Markov chains and related processes

    Full text link
    We observe that the technique of Markov contraction can be used to establish measure concentration for a broad class of non-contracting chains. In particular, geometric ergodicity provides a simple and versatile framework. This leads to a short, elementary proof of a general concentration inequality for Markov and hidden Markov chains (HMM), which supercedes some of the known results and easily extends to other processes such as Markov trees. As applications, we give a Dvoretzky-Kiefer-Wolfowitz-type inequality and a uniform Chernoff bound. All of our bounds are dimension-free and hold for countably infinite state spaces

    Learning Mixtures of Distributions over Large Discrete Domains

    Get PDF
    We discuss recent results giving algorithms for learning mixtures of unstructured distributions

    Identifiability and Unmixing of Latent Parse Trees

    Full text link
    This paper explores unsupervised learning of parsing models along two directions. First, which models are identifiable from infinite data? We use a general technique for numerically checking identifiability based on the rank of a Jacobian matrix, and apply it to several standard constituency and dependency parsing models. Second, for identifiable models, how do we estimate the parameters efficiently? EM suffers from local optima, while recent work using spectral methods cannot be directly applied since the topology of the parse tree varies across sentences. We develop a strategy, unmixing, which deals with this additional complexity for restricted classes of parsing models

    Alignment-free phylogenetic reconstruction: Sample complexity via a branching process analysis

    Get PDF
    We present an efficient phylogenetic reconstruction algorithm allowing insertions and deletions which provably achieves a sequence-length requirement (or sample complexity) growing polynomially in the number of taxa. Our algorithm is distance-based, that is, it relies on pairwise sequence comparisons. More importantly, our approach largely bypasses the difficult problem of multiple sequence alignment.Comment: Published in at http://dx.doi.org/10.1214/12-AAP852 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Spectral Algorithm for Learning Hidden Markov Models

    Get PDF
    Hidden Markov Models (HMMs) are one of the most fundamental and widely used statistical tools for modeling discrete time series. In general, learning HMMs from data is computationally hard (under cryptographic assumptions), and practitioners typically resort to search heuristics which suffer from the usual local optima issues. We prove that under a natural separation condition (bounds on the smallest singular value of the HMM parameters), there is an efficient and provably correct algorithm for learning HMMs. The sample complexity of the algorithm does not explicitly depend on the number of distinct (discrete) observations---it implicitly depends on this quantity through spectral properties of the underlying HMM. This makes the algorithm particularly applicable to settings with a large number of observations, such as those in natural language processing where the space of observation is sometimes the words in a language. The algorithm is also simple, employing only a singular value decomposition and matrix multiplications.Comment: Published in JCSS Special Issue "Learning Theory 2009

    Spectral Sequence Motif Discovery

    Full text link
    Sequence discovery tools play a central role in several fields of computational biology. In the framework of Transcription Factor binding studies, motif finding algorithms of increasingly high performance are required to process the big datasets produced by new high-throughput sequencing technologies. Most existing algorithms are computationally demanding and often cannot support the large size of new experimental data. We present a new motif discovery algorithm that is built on a recent machine learning technique, referred to as Method of Moments. Based on spectral decompositions, this method is robust under model misspecification and is not prone to locally optimal solutions. We obtain an algorithm that is extremely fast and designed for the analysis of big sequencing data. In a few minutes, we can process datasets of hundreds of thousand sequences and extract motif profiles that match those computed by various state-of-the-art algorithms.Comment: 20 pages, 3 figures, 1 tabl

    Geometric Learning of Hidden Markov Models via a Method of Moments Algorithm

    Full text link
    We present a novel algorithm for learning the parameters of hidden Markov models (HMMs) in a geometric setting where the observations take values in Riemannian manifolds. In particular, we elevate a recent second-order method of moments algorithm that incorporates non-consecutive correlations to a more general setting where observations take place in a Riemannian symmetric space of non-positive curvature and the observation likelihoods are Riemannian Gaussians. The resulting algorithm decouples into a Riemannian Gaussian mixture model estimation algorithm followed by a sequence of convex optimization procedures. We demonstrate through examples that the learner can result in significantly improved speed and numerical accuracy compared to existing learners
    corecore