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A Spectral Algorithm for Learning Hidden Markov Models

Abstract
Hidden Markov Models (HMMs) are one of the most fundamental and widely used statistical tools for
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local optima issues. We prove that under a natural separation condition (bounds on the smallest singular value
of the HMM parameters), there is an efficient and provably correct algorithm for learning HMMs. The sample
complexity of the algorithm does not explicitly depend on the number of distinct (discrete) observations—it
implicitly depends on this quantity through spectral properties of the underlying HMM. This makes the
algorithm particularly applicable to settings with a large number of observations, such as those in natural
language processing where the space of observation is sometimes the words in a language. The algorithm is
also simple, employing only a singular value decomposition and matrix multiplications.
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A Spectral Algorithm for Learning Hidden Markov Models

Daniel Hsu
UC San Diego

Sham M. Kakade
Toyota Technological Institute at Chicago

Tong Zhang
Rutgers University

Abstract

Hidden Markov Models (HMMs) are one of the most fundamental and widely used statistical tools for modeling
discrete time series. In general, learning HMMs from data is computationally hard (under cryptographic assumptions),
and practitioners typically resort to search heuristics which suffer from the usual local optima issues. We prove that
under a natural separation condition (bounds on the smallest singular value of the HMM parameters), there is an
efficient and provably correct algorithm for learning HMMs. The sample complexity of the algorithm does not
explicitly depend on the number of distinct (discrete) observations—it implicitly depends on this quantity through
spectral properties of the underlying HMM. This makes the algorithm particularly applicable to settings with a large
number of observations, such as those in natural language processing where the space of observation is sometimes
the words in a language. The algorithm is also simple: it employs only a singular value decomposition and matrix
multiplications.

1 Introduction

Hidden Markov Models (HMMs) [Baum and Eagon, 1967, Rabiner, 1989] are the workhorse statistical model for dis-
crete time series, with widely diverse applications including automatic speech recognition, natural language processing
(NLP), and genomic sequence modeling. In this model, a discrete hidden state evolves according to some Markovian
dynamics, and observations at particular time depend only on the hidden state at that time. The learning problem
is to estimate the model only with observation samples from the underlying distribution. Thus far, the predominant
learning algorithms have been local search heuristics, such as the Baum-Welch / EM algorithm [Baum et al., 1970,
Dempster et al., 1977].

It is not surprising that practical algorithms have resorted to heuristics, as the general learning problem has been
shown to be hard under cryptographic assumptions [Terwijn, 2002]. Fortunately, the hardness results are for HMMs
that seem divorced from those that we are likely to encounter in practical applications.

The situation is in many ways analogous to learning mixture distributions with samples from the underlying dis-
tribution. There, the general problem is believed to be hard. However, much recent progress has been made when
certain separation assumptions are made with respect to the component mixture distributions (e.g.[Dasgupta, 1999,
Dasgupta and Schulman, 2007, Vempala and Wang, 2002, Chaudhuri and Rao, 2008, Brubaker and Vempala, 2008]).
Roughly speaking, these separation assumptions imply that with high probability, given a point sampled from the
distribution, we can recover which component distribution generated this point. In fact, there is prevalent sentiment
that we are often only interested in clustering the data when such a separation condition holds. Much of the theoretical
work here has been on how small this separation need be in order to permit an efficient algorithm to recover the model.

We present a simple and efficient algorithm for learning HMMs under a certain natural separation condition.
We provide two results for learning. The first is that we can approximate the joint distribution over observation
sequences of lengtht (here, the quality of approximation is measured by total variation distance). Ast increases,
the approximation quality degrades polynomially. Our second result is on approximating theconditionaldistribution
over a future observation, conditioned on some history of observations. We show that this error is asymptotically
bounded—i.e.for any t, conditioned on the observations prior to timet, the error in predicting thet-th outcome is
controlled. Our algorithm can be thought of as ‘improperly’ learning an HMM in that we do not explicitly recover the
transition and observation models. However, our model does maintain a hidden state representation which is closely
(in fact, linearly) related to the HMM’s, and can be used for interpreting the hidden state.
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The separation condition we require is a spectral conditionon both the observation matrix and the transition matrix.
Roughly speaking, we require that the observation distributions arising from distinct hidden states be distinct (which
we formalize by singular value conditions on the observation matrix). This requirement can be thought of as being
weaker than the separation condition for clustering in thatthe observation distributions can overlap quite a bit—given
one observation, we do not necessarily have the informationto determine which hidden state it was generated from
(unlike in the clustering literature). We also have a spectral condition on the correlation between adjacent observations.
We believe both of these conditions to be quite reasonable inmany practical applications. Furthermore, given our
analysis, extensions to our algorithm which relax these assumptions should be possible.

The algorithm we present has both polynomial sample and computational complexity. Computationally, the algo-
rithm is quite simple—at its core is a singular value decomposition (SVD) of a correlation matrix between past and
future observations. This SVD can be viewed as a Canonical Correlation Analysis (CCA) [Hotelling, 1935] between
past and future observations. The sample complexity results we present do not explicitly depend on the number of dis-
tinct observations; rather, they implicitly depend on thisnumber through spectral properties of the HMM. This makes
the algorithm particularly applicable to settings with a large number of observations, such as those in NLP where the
space of observations is sometimes the words in a language.

1.1 Related Work

There are two ideas closely related to this work. The first comes from the subspace identification literature in control
theory [Ljung, 1987, Overschee and Moor, 1996, Katayama, 2005]. The second idea is that, rather than explicitly
modeling the hidden states, we can represent the probabilities of sequences of observations as products of matrix
observation operators, an idea which dates back to the literature on multiplicity automata [Schützenberger, 1961,
Carlyle and Paz, 1971, Fliess, 1974].

The subspace identification methods, used in control theory, use spectral approaches to discover the relationship
between hidden states and the observations. In this literature, the relationship is discovered for linear dynamical
systems such as Kalman filters. The basic idea is that the relationship between observations and hidden states can
often be discovered by spectral/SVD methods correlating the past and future observations (in particular, such methods
often do a CCA between the past and future observations). However, algorithms presented in the literature cannot
be directly used to learn HMMs because they assume additive noise models with noise distributions independent of
the underlying states, and such models are not suitable for HMMs (an exception is [Andersson et al., 2003]). In our
setting, we use this idea of performing a CCA between past andfuture observations to uncover information about the
observation process (this is done through an SVD on a correlation matrix between past and future observations). The
state-independent additive noise condition is avoided through the second idea.

The second idea is that we can represent the probability of sequences as products of matrix operators, as in the
literature on multiplicity automata [Schützenberger, 1961, Carlyle and Paz, 1971, Fliess, 1974] (see [Even-Dar et al.,
2005] for discussion of this relationship). This idea was re-used in both the Observable Operator Model of Jaeger
[2000] and the Predictive State Representations of Littmanet al. [2001], both of which are closely related and both of
which can model HMMs. In fact, the former work by Jaeger [2000] provides a non-iterative algorithm for learning
HMMs, with an asymptotic analysis. However, this algorithmassumed knowing a set of ‘characteristic events’, which
is a rather strong assumption that effectively reveals somerelationship between the hidden states and observations. In
our algorithm, this problem is avoided through the first idea.

Some of the techniques in the work in [Even-Dar et al., 2007] for tracking belief states in an HMM are used
here. As discussed earlier, we provide a result showing how the model’s conditional distributions over observations
(conditioned on a history) do not asymptotically diverge. This result was proven in [Even-Dar et al., 2007] when an
approximate model isalready known. Roughly speaking, the reason this error does not diverge isthat the previous ob-
servations are always revealing information about the nextobservation; so with some appropriate contraction property,
we would not expect our errors to diverge. Our work borrows from this contraction analysis.

Among recent efforts in various communities [Andersson et al., 2003, Vanluyten et al., 2007, Zhao and Jaeger,
2007, Cybenko and Crespi, 2008], the only previous efficientalgorithm shown to PAC-learn HMMs in a setting similar
to ours is due to Mossel and Roch [2006]. Their algorithm for HMMs is a specialization of a more general method
for learning phylogenetic trees from leaf observations. While both this algorithm and ours rely on the same rank
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condition and compute similar statistics, they differ in two significant regards. First, [Mossel and Roch, 2006] were
not concerned with large observation spaces, and thus theiralgorithm assumes the state and observation spaces to
have the same dimension. In addition, [Mossel and Roch, 2006] take the more ambitious approach of learning the
observation and transition matrices explicitly, which unfortunately results in a less stable and less sample-efficient
algorithm that injects noise to artificially spread apart the eigenspectrum of a probability matrix. Our algorithm
avoids recovering the observation and transition matrix explicitly 1, and instead uses subspace identification to learn an
alternative representation.

2 Preliminaries

2.1 Hidden Markov Models

The HMM defines a probability distribution over sequences ofhidden states(ht) and observations(xt). We write the
set of hidden states as[m] = {1, . . . , m} and set of observations as[n] = {1, . . . , n}, wherem ≤ n.

Let T ∈ R
m×m be the state transition probability matrix withTij = Pr[ht+1 = i|ht = j], O ∈ R

n×m be the
observation probability matrix withOij = Pr[xt = i|ht = j], and~π ∈ R

m be the initial state distribution with
~πi = Pr[h1 = i]. The conditional independence properties that an HMM satisfies are: 1) conditioned on the previous
hidden state, the current hidden state is sampled independently of all other events in the history; and 2) conditioned on
the current hidden state, the current observation is sampled independently from all other events in the history. These
conditional independence properties of the HMM imply thatT andO fully characterize the probability distribution of
any sequence of states and observations.

A useful way of computing the probability of sequences is in terms of ‘observation operators’, an idea which dates
back to the literature on multiplicity automata (see [Schützenberger, 1961, Carlyle and Paz, 1971, Fliess, 1974]). The
following lemma is straightforward to verify (see [Jaeger,2000, Even-Dar et al., 2007]).

Lemma 1. For x = 1, . . . , n, define
Ax = T diag(Ox,1, . . . , Ox,m).

For anyt:
Pr[x1, . . . , xt] = ~1⊤mAxt

. . . Ax1
~π.

Our algorithm learns a representation that is based on this observable operator view of HMMs.

2.2 Notation

As already used in Lemma 1, the vector~1m is the all-ones vector inRm. We denote byx1:t the sequence(x1, . . . , xt),
and byxt:1 its reverse(xt, . . . , x1). When we use a sequence as a subscript, we mean the product of quantities indexed
by the sequence elements. So for example, the probability calculation in Lemma 1 can be written~1⊤mAxt:1

~π. We will
use~ht to denote a probability vector (a distribution over hidden states), with the arrow distinguishing it from the
random hidden state variableht. Additional notation used in the theorem statements and proofs is listed in Table 1.

2.3 Assumptions

We assume the HMM obeys the following condition.

Condition 1 (HMM Rank Condition). ~π > 0 element-wise, andO andT are rankm.

The rank condition rules out the problematic case in which some statei has an output distribution equal to a convex
combination (mixture) of some other states’ output distributions. Such a case could cause a learner to confuse statei
with a mixture of these other states. As mentioned before, the general task of learning HMMs (even the specific goal

1In Appendix C, we discuss the key step in [Mossel and Roch, 2006], and also show how to use their technique in conjunction with our algorithm
to recover the HMM observation and transition matrices. Ouralgorithm does not rely on this extra step—we believe it to begenerally unstable—but
it can be taken if desired.
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of simply accurately modeling the distribution probabilities [Terwijn, 2002]) is hard under cryptographic assumptions;
the rank condition is a natural way to exclude the malicious instances created by the hardness reduction.

The rank condition onO can be relaxed through a simple modification of our algorithmthat looks at multiple
observation symbols simultaneously to form the probability estimation tables. For example, if two hidden states have
identical observation probability inO but different transition probabilities inT , then they may be differentiated by
using two consecutive observations. Although our analysiscan be applied in this case with minimal modifications, for
clarity, we only state our results for an algorithm that estimates probability tables with rows and columns corresponding
to single observations.

2.4 Learning Model

Our learning model is similar to those of [Kearns et al., 1994, Mossel and Roch, 2006] for PAC-learning discrete
probability distributions. We assume we can sample observation sequences from an HMM. In particular, we assume
each sequence is generated starting from the same initial state distribution (e.g.the stationary distribution of the Markov
chain specified byT ). This setting is valid for practical applications including speech recognition, natural language
processing, and DNA sequence modeling, where multiple independent sequences are available.

For simplicity, this paper only analyzes an algorithm that uses the initial few observations of each sequence, and
ignores the rest. We do this to avoid using concentration bounds with complicated mixing conditions for Markov chains
in our sample complexity calculation, as these conditions are not essential to the main ideas we present. In practice,
however, one should use the full sequences to form the probability estimation tables required by our algorithm. In such
scenarios, a single long sequence is sufficient for learning, and the effective sample size can be simply discounted by
the mixing rate of the underlying Markov chain.

Our goal is to derive accurate estimators for the cumulative(joint) distributionPr[x1:t] and the conditional distri-
butionPr[xt|x1:t−1] for any sequence lengtht. For the conditional distribution, we obtain an approximation that does
not depend ont, while for the joint distribution, the approximation quality degrades gracefully witht.

3 Observable Representations of Hidden Markov Models

A typical strategy for learning HMMs is to estimate the observation and transition probabilities for each hidden state
(say, by maximizing the likelihood of a sample). However, since the hidden states are not directly observed by
the learner, one often resorts to heuristics (e.g.EM) that alternate between imputing the hidden states and selecting
parameterŝO andT̂ that maximize the likelihood of the sample and current stateestimates. Such heuristics can suffer
from local optima issues and require careful initialization (e.g.an accurate guess of the hidden states) to avoid failure.

However, under Condition 1, HMMs admit an efficiently learnable parameterization that depends only onobserv-
able quantities. Because such quantities can be estimated from data, learning this representation avoids any guesswork
about the hidden states and thus allows for algorithms with strong guarantees of success.

This parameterization is natural in the context of Observable Operator Models [Jaeger, 2000], but here we empha-
size its connection to subspace identification.

3.1 Definition

Our HMM representation is defined in terms of the following vector and matrix quantities:

[P1]i = Pr[x1 = i]

[P2,1]ij = Pr[x2 = i, x1 = j]

[P3,x,1]ij = Pr[x3 = i, x2 = x, x1 = j] ∀x ∈ [n],

whereP1 ∈ R
n is a vector, andP2,1 ∈ R

n×n and theP3,x,1 ∈ R
n×n are matrices. These are the marginal probabilities

of observation singletons, pairs, and triples.
The representation further depends on a matrixU ∈ R

n×m that obeys the following condition.
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Condition 2 (Invertibility Condition). U⊤O is invertible.

In other words,U defines anm-dimensional subspace that preserves the state dynamics—this will become evident
in the next few lemmas.

A natural choice forU is given by the ‘thin’ SVD ofP2,1, as the next lemma exhibits.

Lemma 2. Assume~π > 0 and thatO andT have column rankm. Thenrank(P2,1) = m. Moreover, ifU is the matrix
of left singular vectors ofP2,1 corresponding to non-zero singular values, thenrange(U) = range(O), soU ∈ R

n×m

obeys Condition 2.

Proof. Using the conditional independence properties of the HMM, entries of the matrixP2,1 can be factored as

[P2,1]ij =

m∑

k=1

m∑

ℓ=1

Pr[x2 = i, x1 = j, h2 = k, h1 = ℓ]

=
m∑

k=1

m∑

ℓ=1

Oik Tkℓ ~πℓ [O⊤]ℓj

soP2,1 = OT diag(~π)O⊤ and thusrange(P2,1) ⊆ range(O). The assumptions onO, T , and~π imply thatT diag(~π)O⊤

has linearly independent rows and thatP2,1 hasm non-zero singular values. Therefore

O = P2,1(T diag(~π)O⊤)+

(whereX+ denotes the Moore-Penrose pseudo-inverseof a matrixX), which in turn impliesrange(O) ⊆ range(P2,1).
Thusrank(P2,1) = rank(O) = m, and alsorange(U) = range(P2,1) = range(O).

Our algorithm is motivated by Lemma 2 in that we compute the SVD of an empirical estimate ofP2,1 to discover
aU that satisfies Condition 2. We also note that this choice forU can be thought of as a surrogate for the observation
matrixO (see Remark 5).

Now given such a matrixU , we can finally define the observable representation:

~b1 = U⊤P1

~b∞ =
(
P⊤

2,1U
)+

P1

Bx =
(
U⊤P3,x,1

) (
U⊤P2,1

)+ ∀x ∈ [n] .

3.2 Basic Properties

The following lemma shows that the observable representation {~b∞,~b1, B1, . . . , Bn} is sufficient to compute the
probabilities of any sequence of observations.

Lemma 3 (Observable HMM Representation). Assume the HMM obeys Condition 1 and thatU ∈ R
n×m obeys

Condition 2. Then:

1. ~b1 = (U⊤O)~π.

2. ~b⊤∞ = ~1⊤m(U⊤O)−1.

3. Bx = (U⊤O)Ax(U⊤O)−1 ∀x ∈ [n].

4. Pr[x1:t] = ~b⊤∞Bxt:1
~b1 ∀t ∈ N, x1, . . . , xt ∈ [n].

In addition to joint probabilities, we can compute conditional probabilities using the observable representation. We
do so through (normalized) conditional ‘internal states’ that depend on a history of observations. We should emphasize
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that these states arenot in fact probability distributions over hidden states (though the following lemma shows that
they are linearly related). As per Lemma 3, the initial stateis

~b1 = (U⊤O)~π.

Generally, for anyt ≥ 1, given observationsx1:t−1 with Pr[x1:t−1] > 0, we define the internal state as:

~bt = ~bt(x1:t−1) =
Bxt−1:1

~b1

~b⊤∞Bxt−1:1
~b1

.

The caset = 1 is consistent with the general definition of~bt because the denominator is~b⊤∞
~b1 = ~1⊤m(U⊤O)−1(U⊤O)~π =

~1⊤m~π = 1. The following result shows how these internal states can beused to compute conditional probabilities
Pr[xt = i|x1:t−1].

Lemma 4 (Conditional Internal States). Assume the conditions in Lemma 3. Then, for any timet:

1. (Recursive update of states) IfPr[x1:t] > 0, then

~bt+1 =
Bxt

~bt

~b⊤∞Bxt

~bt

,

2. (Relation to hidden states)
~bt = (U⊤O) ~ht(x1:t−1)

where[~ht(x1:t−1)]i = Pr[ht = i|x1:t−1] is the conditional probability of the hidden state at timet given the
observationsx1:t−1,

3. (Conditional observation probabilities)

Pr[xt|x1:t−1] = ~b⊤∞Bxt

~bt.

Remark 5. If U is the matrix of left singular vectors ofP2,1 corresponding to non-zero singular values, thenU acts
much like the observation probability matrixO in the following sense:

Given a conditional state~bt,
Pr[xt = i|x1:t−1] = [U~bt]i.

Given a conditional hidden state~ht,
Pr[xt = i|x1:t−1] = [O~ht]i.

To see this, note thatUU⊤ is the projection operator torange(U). Sincerange(U) = range(O) (Lemma 2), we have
UU⊤O = O, soU~bt = U(U⊤O)~ht = O~ht.

3.3 Proofs

Proof of Lemma 3.The first claim is immediate from the factP1 = O~π. For the second claim, we writeP1 in the
following unusual (but easily verified) form:

P⊤
1 = ~1⊤mT diag(~π)O⊤

= ~1⊤m(U⊤O)−1(U⊤O)T diag(~π)O⊤

= ~1⊤m(U⊤O)−1U⊤P2,1.

The matrixU⊤P2,1 has linearly independent rows (by the assumptions on~π, O, T , and the condition onU ), so

~b⊤∞ = P⊤
1 (U⊤P2,1)

+ = ~1⊤m(U⊤O)−1 (U⊤P2,1) (U⊤P2,1)
+ = ~1⊤m(U⊤O)−1.
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To prove the third claim, we first expressP3,x,1 in terms ofAx:

P3,x,1 = OAxT diag(~π)O⊤

= OAx(U⊤O)−1(U⊤O)T diag(~π)O⊤

= OAx(U⊤O)−1U⊤P2,1.

Again, using the fact thatU⊤P2,1 has full row rank,

Bx =
(
U⊤P3,x,1

) (
U⊤P2,1

)+

= (U⊤O)Ax(U⊤O)−1
(
U⊤P2,1

) (
U⊤P2,1

)+

= (U⊤O)Ax(U⊤O)−1.

The probability calculation in the fourth claim is now readily seen as a telescoping product that reduces to the product
in Lemma 1.

Proof of Lemma 4.The first claim is a simple induction. The second and third claims are also proved by induction as
follows. The base case is clear from Lemma 3 since~h1 = ~π and~b1 = (U⊤O)~π, and also~b⊤∞Bx1

~b1 = ~1⊤mAx1
~π =

Pr[x1]. For the inductive step,

~bt+1 =
Bxt

~bt

~b⊤∞Bxt

~bt

=
Bxt

(U⊤O)~ht

Pr[xt|x1:t−1]
=

(U⊤O)Axt

~ht

Pr[xt|x1:t−1]
(definition, inductive hypothesis, Lemma 3)

= (U⊤O)
Pr[ht+1 = ·, xt|x1:t−1]

Pr[xt|x1:t−1]
= (U⊤O)

Pr[ht+1 = ·|x1:t] Pr[xt|x1:t−1]

Pr[xt|x1:t−1]
= (U⊤O) ~ht+1(x1:t)

(the first three equalities follow from the first claim, the inductive hypothesis, and Lemma 3), and

~b⊤∞Bxt+1
~bt+1 = ~1⊤mAxt+1

~ht+1 = Pr[xt+1|x1:t]

(again, using Lemma 3).

4 Spectral Learning of Hidden Markov Models

4.1 Algorithm

The representation in the previous section suggests the algorithm LEARNHMM (m, N) detailed in Figure 1, which
simply uses random samples to estimate the model parameters. Note that in practice, knowingm is not essential
because the method presented here tolerates models that arenot exactly HMMs, and the parameterm may be tuned
using cross-validation. As we discussed earlier, the requirement for independent samples is only for the convenience
of our sample complexity analysis.

The model returned by LEARNHMM (m, N) can be used as follows:

• To predict the probability of a sequence:

P̂r[x1, . . . , xt] = b̂⊤∞B̂xt
. . . B̂x1

b̂1.

• Given an observationxt, the ‘internal state’ update is:

b̂t+1 =
B̂xt

b̂t

b̂⊤∞B̂xt
b̂t

.
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Algorithm LEARNHMM (m, N):
Inputs:m - number of states,N - sample size
Returns: HMM model parameterized by{b̂1, b̂∞, B̂x ∀x ∈ [n]}

1. Independently sampleN observation triples(x1, x2, x3) from the HMM to form empirical estimates
P̂1, P̂2,1, P̂3,x,1 ∀x ∈ [n] of P1, P2,1, P3,x,1 ∀x ∈ [n].

2. Compute the SVD of̂P2,1, and letÛ be the matrix of left singular vectors corresponding to them
largest singular values.

3. Compute model parameters:

(a) b̂1 = Û⊤P̂1,

(b) b̂∞ = (P̂⊤
2,1Û)+P1,

(c) B̂x = Û⊤P̂3,x,1(Û
⊤P̂2,1)

+ ∀x ∈ [n].

Figure 1: HMM learning algorithm.

• To predict the conditional probability ofxt givenx1:t−1:

P̂r[xt|x1:t−1] =
b̂⊤∞B̂xt

b̂t∑
x b̂⊤∞B̂xb̂t

.

Aside from the random sampling, the running time of the learning algorithm is dominated by the SVD computation
of ann×n matrix. The time required for computing joint probability calculations isO(tm2) for lengtht sequences—
same as if one used the ordinary HMM parameters (O andT ). For conditional probabilities, we require some extra
work (proportional ton) to compute the normalization factor. However, our analysis shows that this normalization
factor is always close to1 (see Lemma 13), so it can be safely omitted in many applications.

4.2 Main Results

We now present our main results. The first result is a guarantee on the accuracy of our joint probability estimates for
observation sequences. The second result concerns the accuracy of conditional probability estimates — a much more
delicate quantity to bound due to conditioning on unlikely events. We also remark that if the probability distribution
is only approximately modeled as an HMM, then our results degrade gracefully based on this approximation quality.

4.2.1 Joint Probability Accuracy

Let σm(M) denote themth largest singular value of a matrixM . Our sample complexity bound will depend polyno-
mially on1/σm(P2,1) and1/σm(O).

Also, define

ǫ(k) = min




∑

j∈S

Pr[x2 = j] : S ⊆ [n], |S| = n − k



 , (1)

and let
n0(ε) = min{k : ǫ(k) ≤ ε}.

In other words,n0(ε) is the minimum number of observations that account for about1−ǫ of the total probability mass.
Clearlyn0(ε) ≤ n, but it can often be much smaller in real applications. For example, in many practical applications,
the frequencies of observation symbols observe a power law (called Zipf’s law) of the formf(k) ∝ 1/ks, wheref(k) is
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the frequency of thek-th most frequently observed symbol. Ifs > 1, thenǫ(k) = O(k1−s), andn0(ε) = O(ε1/(1−s))
becomes independent of the number of observationsn. This means that for such problems, our analysis below leads
to a sample complexity bound for the cumulative distribution Pr[x1:t] that can be independent ofn. This is useful in
domains with largen such as natural language processing.

Theorem 6. There exists a constantC > 0 such that the following holds. Pick any0 < ǫ, η < 1 andt ≥ 1, and let
ε = σm(O)σm(P2,1)ǫ/(4t

√
m). Assume the HMM obeys Condition 1, and

N ≥ C · t2

ǫ2
·
(

m

σm(O)2σm(P2,1)4
+

m · n0(ε)

σm(O)2σm(P2,1)2

)
· log

1

η
.

With probability at least1 − η, the model returned by the algorithmLEARNHMM (m, N) satisfies
∑

x1,...,xt

|Pr[x1, . . . , xt] − P̂r[x1, . . . , xt]| ≤ ǫ.

The main challenge in proving Theorem 6 is understanding howthe estimation errors accumulate in the algorithm’s
probability calculation. This would have been less problematic if we had estimates of the usual HMM parametersT
andO; the fully observable representation forces us to deal withmore cumbersome matrix and vector products.

4.2.2 Conditional Probability Accuracy

In this section, we analyze the accuracy of our conditional predictionsP̂r[xt|x1, . . . , xt−1]. Intuitively, we might
hope that these predictive distributions do not become arbitrarily bad over time, (ast → ∞). The reason is that
while estimation errors propagate into long-term probability predictions (as evident in Theorem 6), the history of
observations constantly provides feedback about the underlying hidden state, and this information is incorporated
using Bayes’ rule (implicitly via our internal state updates).

This intuition was confirmed by Even-Dar et al. [2007], who showed that if one has an approximate model ofT
andO for the HMM, then under certain conditions, the conditionalprediction does not diverge. This condition is the
positivity of the ‘value of observation’γ, defined as

γ = inf
~v:‖~v‖1=1

‖O~v‖1.

Note thatγ ≥ σm(O)/
√

n, so it is guaranteed to be positive by Condition 1. However,γ can be much larger than
what this crude lower bound suggests.

To interpret this quantityγ, consider any two distributions over hidden states~h, ĥ ∈ R
m. Then‖O(~h − ĥ)‖1 ≥

γ‖~h − ĥ‖1. Regarding~h as the true hidden state distribution andĥ as the estimated hidden state distribution, this
inequality gives a lower bound on the error of the estimated observation distributions underO. In other words, the
observation process, on average, reveal errors in our hidden state estimation. The work of [Even-Dar et al., 2007] uses
this as a contraction property to show how prediction errors(due to using an approximate model) do not diverge. In
our setting, this is more difficult as we do not explicitly estimateO nor do we explicitly maintain distributions over
hidden states.

We also need the following assumption, which we discuss further following the theorem statement.

Condition 3 (Stochasticity Condition). For all observationsx and all statesi andj, [Ax]ij ≥ α > 0.

Theorem 7. There exists a constantC > 0 such that the following holds. Pick any0 < ǫ, η < 1, and letε =
σm(O)σm(P2,1)ǫ/(4

√
m). Assume the HMM obeys Conditions 1 and 3, and

N ≥ C ·
((

m

ǫ2α2
+

(log(2/α))4

ǫ4α2γ4

)
· m

σm(O)2σm(P2,1)4
+

1

ǫ2
· m · n0(ε)

σm(O)2σm(P2,1)2

)
· log

1

η
.

With probability at least1 − η, then the model returned byLEARNHMM (m, N) satisfies, for any timet,

KL(Pr[xt|x1, . . . , xt−1] || P̂r[xt|x1, . . . , xt−1]) = Ex1:t

[
ln

Pr[xt|x1:t−1]

P̂r[xt|x1:t−1]

]
≤ ǫ.
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To justify our choice of error measure, note that the problemof bounding the errors of conditional probabilities is
complicated by the issue of that, over the long run, we may have to condition on a very low probability event. Thus
we need to control the relative accuracy of our predictions.This makes the KL-divergence a natural choice for the
error measure. Unfortunately, because our HMM conditions are more naturally interpreted in terms of spectral and
normed quantities, we end up switching back and forth between KL andL1 errors via Pinsker-style inequalities (as in
[Even-Dar et al., 2007]). It is not clear to us if a significantly better guarantee could be obtained with a pureL1 error
analysis (nor is it clear how to do such an analysis).

The analysis in [Even-Dar et al., 2007] (which assumed that approximations toT andO were provided) dealt with
this problem of dividing by zero (during a Bayes’ rule update) by explicitly modifying the approximate model so that
it neverassigns the probability of any event to be zero (since if thisevent occurred, then the conditional probability is
no longer defined). In our setting, Condition 3 ensures that true model never assigns the probability of any event to
be zero. We can relax this condition somewhat (so that we neednot quantify over all observations), though we do not
discuss this here.

We should also remark that while our sample complexity boundis significantly larger than in Theorem 6, we are
also bounding the more stringent KL-error measure on conditional distributions.

4.2.3 Learning Distributions ǫ-close to HMMs

OurL1 error guarantee for predicting joint probabilities still holds if the sample used to estimateP̂1, P̂2,1, P̂3,x,1 come
from a probability distributionPr[·] that is merely close to an HMM. Specifically, all we need is that there exists some
tmax ≥ 3 and somem state HMM with distributionPrHMM [·] such that:

1. PrHMM satisfies Condition 1 (HMM Rank Condition),

2. For allt ≤ tmax,
∑

x1:t
|Pr[x1:t] − PrHMM [x1:t]| ≤ ǫHMM (t),

3. ǫHMM (2) ≪ 1
2σm(P HMM

2,1 ).

The resulting error of our learned model̂Pr is

∑

x1:t

|Pr[x1:t] − P̂r[x1:t]| ≤ ǫHMM (t) +
∑

x1:t

|PrHMM [x1:t] − P̂r[x1:t]|

for all t ≤ tmax. The second term is now bounded as in Theorem 6, with spectralparameters corresponding toPrHMM .

5 Proofs

Throughout this section, we assume the HMM obeys Condition 1. Table 1 summarizes the notation that will be used
throughout the analysis in this section.

5.1 Estimation Errors

Define the following sampling error quantities:

ǫ1 = ‖P̂1 − P1‖2

ǫ2,1 = ‖P̂2,1 − P2,1‖2

ǫ3,x,1 = ‖P̂3,x,1 − P3,x,1‖2

The following lemma bounds these errors with high probability as a function of the number of observation samples
used to form the estimates.
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m, n Number of states and observations
n0(ε) Number of significant observations
O, T , Ax HMM parameters
P1, P2,1, P3,x,1 Marginal probabilities
P̂1, P̂2,1, P̂3,x,1 Empirical marginal probabilities
ǫ1, ǫ2,1, ǫ3,x,1 Sampling errors [Section 5.1]
Û Matrix of m left singular vectors of̂P2,1

b̃∞, B̃x, b̃1 True observable parameters usingÛ [Section 5.1]
b̂∞, B̂x, b̂1 Estimated observable parameters usingÛ
δ∞, ∆x, δ1 Parameter errors [Section 5.1]
∆

∑
x ∆x [Section 5.1]

σm(M) m-th largest singular value of matrixM
~bt, b̂t True and estimated states [Section 5.3]
~ht, ĥt, ĝt (Û⊤O)−1~bt, (Û⊤O)−1 b̂t, ĥt/(~1⊤mĥt) [Section 5.3]
Âx (Û⊤O)−1B̂x(Û⊤O) [Section 5.3]
γ, α inf{‖Ov‖1 : ‖v‖1 = 1}, min{[Ax]i,j}

Table 1: Summary of notation.

Lemma 8. If the algorithm independently samplesN observation triples from the HMM, then with probability at least
1 − η:

ǫ1 ≤
√

1

N
ln

3

η
+

√
1

N

ǫ2,1 ≤
√

1

N
ln

3

η
+

√
1

N

max
x

ǫ3,x,1 ≤
√

1

N
ln

3

η
+

√
1

N

∑

x

ǫ3,x,1 ≤ min
k

(√
k

N
ln

3

η
+

√
k

N
+ 2ǫ(k)

)
+

√
1

N
ln

3

η
+

√
1

N

whereǫ(k) is defined in(1).

Proof. See Appendix A.

The rest of the analysis estimates how the sampling errors affect the accuracies of the model parameters (which
in turn affect the prediction quality). We need some resultsfrom matrix perturbation theory, which are given in
Appendix B.

Let U ∈ R
n×m be matrix of left singular vectors ofP2,1. The first lemma implies that if̂P2,1 is sufficiently close

to P2,1, i.e. ǫ2,1 is small enough, then the difference between projecting torange(Û) and torange(U) is small. In
particular,Û⊤O will be invertible and be nearly as well-conditioned asU⊤O.

Lemma 9. Supposeǫ2,1 ≤ ε · σm(P2,1) for someε < 1/2. Letε0 = ǫ22,1/((1 − ε)σm(P2,1))
2. Then:

1. ε0 < 1,

2. σm(Û⊤P̂2,1) ≥ (1 − ε)σm(P2,1),

3. σm(Û⊤P2,1) ≥
√

1 − ε0σm(P2,1),

4. σm(Û⊤O) ≥
√

1 − ε0σm(O).
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Proof. The assumptions implyε0 < 1. Sinceσm(Û⊤P̂2,1) = σm(P̂2,1), the second claim is immediate from
Corollary 22. LetU ∈ R

n×m be the matrix of left singular vectors ofP2,1. For anyx ∈ R
m, ‖Û⊤Ux‖2 =

‖x‖2

√
1 − ‖Û⊤

⊥U‖2
2 ≥ ‖x‖2

√
1 − ε0 by Corollary 22 and the factε0 < 1. The remaining claims follow.

Now we will argue that the estimated parametersb̂∞, B̂x, b̂1 are close to the following true parameters from the
observable representation whenÛ is used forU :

b̃∞ = (P⊤
2,1Û)+P1 = (Û⊤O)−⊤~1m,

B̃x = (Û⊤P3,x,1)(Û
⊤P2,1)

+ = (Û⊤O)Ax(Û⊤O)−1 for x = 1, . . . , n,

b̃1 = Û⊤P1.

By Lemma 3, as long aŝU⊤O is invertible, these parametersb̃∞, B̃x, b̃1 constitute a valid observable representation
for the HMM.

Define the following errors of the estimated parameters:

δ∞ =
∥∥∥(Û⊤O)⊤ (̂b∞ − b̃∞)

∥∥∥
∞

=
∥∥∥(Û⊤O)⊤b̂∞ −~1m

∥∥∥
∞

,

∆x =
∥∥∥(Û⊤O)−1

(
B̂x − B̃x

)
(Û⊤O)

∥∥∥
1

=
∥∥∥(Û⊤O)−1B̂x(Û⊤O) − Ax

∥∥∥
1
,

∆ =
∑

x

∆x

δ1 =
∥∥∥(Û⊤O)−1 (̂b1 − b̃1)

∥∥∥
1

=
∥∥∥(Û⊤O)−1 b̂1 − ~π

∥∥∥
1
.

We can relate these to the sampling errors as follows.

Lemma 10. Assumeǫ2,1 ≤ σm(P2,1)/3. Then:

δ∞ ≤ 4 ·
(

ǫ2,1

σm(P2,1)2
+

ǫ1
3σm(P2,1)

)
,

∆x ≤ 8√
3
·

√
m

σm(O)
·
(

Pr[x2 = x] · ǫ2,1

σm(P2,1)2
+

ǫ3,x,1

3σm(P2,1)

)
,

∆ ≤ 8√
3
·

√
m

σm(O)
·
(

ǫ2,1

σm(P2,1)2
+

∑
x ǫ3,x,1

3σm(P2,1)

)
,

δ1 ≤ 2√
3
·

√
m

σm(O)
· ǫ1.

Proof. The assumption onǫ2,1 guarantees that̂U⊤O is invertible (Lemma 9).
We boundδ∞ = ‖(O⊤U)(̂b∞ − b̃∞)‖∞ by ‖O⊤‖∞‖U (̂b∞ − b̃∞)‖∞ ≤ ‖b̂∞ − b̃∞‖2. Then:

‖b̂∞ − b̃∞‖2 = ‖(P̂⊤
2,1Û)+P̂1 − (P⊤

2,1Û)+P1‖2

≤ ‖((P̂⊤
2,1Û)+ − (P⊤

2,1Û)+)P̂1‖2 + ‖(P⊤
2,1Û)+(P̂1 − P1)‖2

≤ ‖((P̂⊤
2,1Û)+ − (P⊤

2,1Û)+)‖2‖P̂1‖1 + ‖(P⊤
2,1Û)+‖2‖P̂1 − P1‖2

≤ 1 +
√

5

2
· ǫ2,1

min{σm(P̂2,1), σm(P⊤
2,1Û)}2

+
ǫ1

σm(P⊤
2,1Û)

,

where the last inequality follows from Lemma 23. The bound now follows from Lemma 9.
Next for ∆x, we bound each term‖(Û⊤O)−1(B̂x − B̃x)(Û⊤O)‖1 by

√
m‖(Û⊤O)−1(B̂x − B̃x)Û⊤‖2‖O‖1 ≤√

m‖(Û⊤O)−1‖2‖B̂x − B̃x‖2‖Û⊤‖2‖O‖1 =
√

m‖B̂x − B̃x‖2/σm(Û⊤O). To deal with‖B̂x − B̃x‖2, we use the
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decomposition
∥∥∥B̂x − B̃x

∥∥∥
2

=
∥∥∥(Û⊤P3,x,1)(Û

⊤P2,1)
+ − (Û⊤P̂3,x,1)(Û

⊤P̂2,1)
+
∥∥∥

2

≤
∥∥∥(Û⊤P3,x,1)

(
(Û⊤P2,1)

+ − (Û⊤P̂2,1)
+
)∥∥∥

2
+
∥∥∥Û⊤

(
P3,x,1 − P̂3,x,1

)
(Û⊤P2,1)

+
∥∥∥

2

≤ ‖P3,x,1‖2 ·
1 +

√
5

2
· ǫ2,1

min{σm(P̂2,1), σm(Û⊤P2,1)}2
+

ǫ3,x,1

σm(Û⊤P2,1)

≤ Pr[x2 = x] · 1 +
√

5

2
· ǫ2,1

min{σm(P̂2,1), σm(Û⊤P2,1)}2
+

ǫ3,x,1

σm(Û⊤P2,1)
,

where the second inequality uses Lemma 23, and the final inequality uses the fact‖P3,x,1‖2 ≤
√∑

i,j [P3,x,1]2i,j ≤
∑

i,j [P3,x,1]i,j = Pr[x2 = x]. Applying Lemma 9 gives the stated bound on∆x and also∆.

Finally, we boundδ1 by
√

m‖(Û⊤O)−1Û⊤‖2‖P̂1 − P1‖2 ≤ √
mǫ1/σm(Û⊤O). Again, the stated bound follows

from Lemma 9.

5.2 Proof of Theorem 6

We need to quantify how estimation errors propagate in the probability calculation. Because the joint probability of
a lengtht sequence is computed by multiplying togethert matrices, there is a danger of magnifying the estimation
errors exponentially. Fortunately, this is not the case: the following lemma shows that these errors accumulate roughly
additively.

Lemma 11. AssumêU⊤O is invertible. For any timet:

∑

x1:t

∥∥∥(Û⊤O)−1
(
B̂xt:1

b̂1 − B̃xt:1
b̃1

)∥∥∥
1
≤ (1 + ∆)tδ1 + (1 + ∆)t − 1.

Proof. By induction ont. The base case, that‖(Û⊤O)−1 (̂b1 − b̃1)‖1 ≤ (1 + ∆)0δ1 + (1 + ∆)0 − 1 = δ1 is true
by definition. For the inductive step, define unnormalized stateŝbt = b̂t(x1:t−1) = B̂xt−1:1

b̂1 andb̃t = b̃t(x1:t−1) =

B̃xt−1:1
b̃1. Fix t > 1, and assume

∑

x1:t−1

∥∥∥(Û⊤O)−1
(
b̂t − b̃t

)∥∥∥
1
≤ (1 + ∆)t−1δ1 + (1 + ∆)t−1 − 1.

Then, we can decompose the sum overx1:t as

∑

x1:t

‖(Û⊤O)−1(B̂xt:1
b̂1 − B̃xt:1

b̃1)‖1

=
∑

xt

∑

x1:t−1

∥∥∥(Û⊤O)−1
((

B̂xt
− B̃xt

)
b̃t +

(
B̂xt

− B̃xt

)(
b̂t − b̃t

)
+ B̃xt

(
b̂t − b̃t

))∥∥∥
1
,

which, by the triangle inequality, is bounded above by

∑

xt

∑

x1:t−1

∥∥∥(Û⊤O)−1
(
B̂xt

− B̃xt

)
(Û⊤O)

∥∥∥
1

∥∥∥(Û⊤O)−1b̃t

∥∥∥
1

(2)

+
∑

xt

∑

x1:t−1

∣∣∣(Û⊤O)−1
(
B̂xt

− B̃xt

)
(Û⊤O)

∥∥∥
1

∥∥∥(Û⊤O)−1
(
b̂t − b̃t

)∥∥∥
1

(3)

+
∑

xt

∑

x1:t−1

∥∥∥(Û⊤O)−1B̃t(Û
⊤O)(Û⊤O)−1

(
b̂t − b̃t

)∥∥∥
1
. (4)
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We deal with each double sum individually. For the sums in (2), we use the fact that‖(Û⊤O)−1b̃t‖1 = Pr[x1:t−1],
which, when summed overx1:t−1, is 1. Thus the entire double sum is bounded by∆ by definition. For (3), we
use the inductive hypothesis to bound the inner sum over‖(Û⊤O)(̂bt − b̃t)‖1; the outer sum scales this bound by
∆ (again, by definition). Thus the double sum is bounded by∆((1 + ∆)t−1δ1 + (1 + ∆)t−1 − 1). Finally, for
sums in (4), we first replace(Û⊤O)−1B̃t(Û

⊤O) with Axt
. SinceAxt

has all non-negative entries, we have that
‖Axt

~v‖1 ≤ ~1⊤mAxt
|~v| for any vector~v ∈ R

m, where|~v| denotes element-wise absolute value of~v. Now the fact
~1⊤m
∑

xt
Axt

|~v| = ~1⊤mT |~v| = ~1⊤m|~v| = ‖~v‖1 and the inductive hypothesis imply the double sum in (4) is bounded by
(1 + ∆)t−1δ1 + (1 + ∆)t−1 − 1. Combining these bounds for (2), (3), and (4) completes the induction.

All that remains is to bound the effect of errors inb̂∞. Theorem 6 will follow from the following lemma combined
with the sampling error bounds of Lemma 8.

Lemma 12. Assumeǫ2,1 ≤ σm(P2,1)/3. Then for anyt,
∑

x1:t

∣∣∣Pr[x1:t] − P̂r[x1:t]
∣∣∣ ≤ δ∞ + (1 + δ∞)

(
(1 + ∆)tδ1 + (1 + ∆)t − 1

)
.

Proof. By Lemma 9 and the condition onǫ2,1, we haveσm(Û⊤O) > 0 soÛ⊤O is invertible.
Now we can decompose theL1 error as follows:

∑

x1:t

∣∣∣P̂r[x1:t] − Pr[x1:t]
∣∣∣ =

∑

x1:t

∣∣∣̂b⊤∞B̂xt:1
b̂1 − ~b⊤∞Bxt:1

~b1

∣∣∣

=
∑

x1:t

∣∣∣̂b⊤∞B̂xt:1
b̂1 − b̃⊤∞B̃xt:1

b̃1

∣∣∣

≤
∑

x1:t

∣∣∣(̂b∞ − b̃∞)⊤(Û⊤O)(Û⊤O)−1B̃xt:1
b̃1

∣∣∣ (5)

+
∑

x1:t

∣∣∣(̂b∞ − b̃∞)⊤(Û⊤O)(Û⊤O)−1(B̂xt:1
b̂1 − B̃xt:1

b̃1)
∣∣∣ (6)

+
∑

x1:t

∣∣∣̃b⊤∞(Û⊤O)(Û⊤O)−1(B̂xt:1
b̂1 − B̃xt:1

b̃1)
∣∣∣ . (7)

The first sum (5) is
∑

x1:t

∣∣∣(̂b∞ − b̃∞)⊤(Û⊤O)(Û⊤O)−1B̃xt:1
b̃1

∣∣∣ ≤
∑

x1:t

∥∥∥(Û⊤O)⊤ (̂b∞ − b̃∞)
∥∥∥
∞

∥∥∥(Û⊤O)−1B̃xt:1
b̃1

∥∥∥
1

≤
∑

x1:t

δ∞ ‖Axt:1
~π‖1 =

∑

x1:t

δ∞ Pr[x1:t] = δ∞

where the first inequality is Hölder’s, and the second uses the bounds in Lemma 10.
The second sum (6) employs Hölder’s and Lemma 11:

∣∣∣(̂b∞ − b̃∞)⊤(Û⊤O)(Û⊤O)−1(B̂xt:1
b̂1 − B̃xt:1

b̃1)
∣∣∣ ≤

∥∥∥(Û⊤O)⊤ (̂b∞ − b̃∞)
∥∥∥
∞

∥∥∥(Û⊤O)−1(B̂xt:1
b̂1 − B̃xt:1

b̃1)
∥∥∥

1

≤ δ∞((1 + ∆)tδ1 + (1 + ∆)t − 1).

Finally, the third sum (7) uses Lemma 11:
∑

x1:t

∣∣∣̃b⊤∞(Û⊤O)(Û⊤O)−1(B̂xt:1
b̂1 − B̃xt:1

b̃1)
∣∣∣ =

∑

x1:t

∣∣∣1⊤(Û⊤O)−1(B̂xt:1
b̂1 − B̃xt:1

b̃1)
∣∣∣

≤
∑

x1:t

∥∥∥(Û⊤O)−1(B̂xt:1
b̂1 − B̃xt:1

b̃1)
∥∥∥

1

≤ (1 + ∆)tδ1 + (1 + ∆)t − 1.

Combining these gives the desired bound.
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Proof of Theorem 6.By Lemma 8, the specified number of samplesN (with a suitable constantC), together with the
setting ofε in n0(ε), guarantees the following sampling error bounds:

ǫ1 ≤ min
(
0.05 · (3/8) · σm(P2,1) · ǫ), 0.05 · (

√
3/2) · σm(O) · (1/

√
m) · ǫ

)

ǫ2,1 ≤ min
(
0.05 · (1/8) · σm(P2,1)

2 · (ǫ/5), 0.01 · (
√

3/8) · σm(O) · σm(P2,1)
2 · (1/(t

√
m)) · ǫ

)

∑

x

ǫ3,x,1 ≤ 0.39 · (3
√

3/8) · σm(O) · σm(P2,1) · (1/(t
√

m)) · ǫ.

These, in turn, imply the following parameter error bounds,via Lemma 10:δ∞ ≤ 0.05ǫ, δ1 ≤ 0.05ǫ, and∆ ≤ 0.4ǫ/t.
Finally, Lemma 12 and the fact(1 + a/t)t ≤ 1 + 2a for a ≤ 1/2, imply the desiredL1 error bound ofǫ.

5.3 Proof of Theorem 7

In this subsection, we assume the HMM obeys Condition 3 (in addition to Condition 1).
We introduce the following notation. Let the unnormalized estimated conditional hidden state distributions be

ĥt = (Û⊤O)−1b̂t,

and its normalized version,
ĝt = ĥt/(~1⊤mĥt).

Also, let
Âx = (Û⊤O)−1B̂x(Û⊤O).

This notation lets us succinctly compare the updates made byour estimated model to the updates of the true model.
Our algorithm never explicitly computes these hidden statedistributionsĝt (as it would require knowledge of the
unobservedO). However, under certain conditions (namely Conditions 1 and 3 and some estimation accuracy require-
ments), these distributions are well-defined and thus we usethem for sake of analysis.

The following lemma shows that if the estimated parameters are accurate, then the state updates behave much like
the true hidden state updates.

Lemma 13. For any probability vector~w ∈ R
m and any observationx,

∣∣∣∣∣
∑

x

b̂⊤∞(Û⊤O)Âx ~w − 1

∣∣∣∣∣ ≤ δ∞ + δ∞∆ + ∆ and

[Âx ~w]i

b̂⊤∞(Û⊤O)Âx ~w
≥ [Ax ~w]i − ∆x

~1⊤mAx ~w + δ∞ + δ∞∆x + ∆x

for all i = 1, . . . , m

Moreover, for any non-zero vector~w ∈ R
m,

~1⊤mÂx ~w

b̂⊤∞(Û⊤O)Âx ~w
≤ 1

1 − δ∞
.

Proof. We need to relate the effect of the estimated operatorÂx to that of the true operatorAx. First assume~w is a
probability vector. Then:
∣∣∣̂b⊤∞(Û⊤O)Âx ~w −~1⊤mAx ~w

∣∣∣ =
∣∣∣(̂b∞ − b̃∞)⊤(Û⊤O)Ax ~w

+ (̂b∞ − b̃∞)⊤(Û⊤O)(Âx − Ax)~w + b̃∞(Û⊤O)(Âx − Ax)~w
∣∣∣

≤ ‖(̂b∞ − b̃∞)⊤(Û⊤O)‖∞‖Ax ~w‖1

+ ‖(̂b∞ − b̃∞)⊤(Û⊤O)‖∞‖(Âx − Ax)‖1‖~w‖1 + ‖(Âx − Ax)‖1‖~w‖1.
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Therefore we have
∣∣∣∣∣
∑

x

b̂⊤∞(Û⊤O)Âx ~w − 1

∣∣∣∣∣ ≤ δ∞ + δ∞∆ + ∆ and b̂⊤∞(Û⊤O)Âx ~w ≤ ~1⊤mAx ~w + δ∞ + δ∞∆x + ∆x.

Combining these inequalities with

[Âx ~w]i = [Ax ~w]i +[(Âx−Ax)~w]i ≥ [Ax ~w]i−‖(Âx−Ax)~w‖1 ≥ [Ax ~w]i−‖(Âx−Ax)‖1‖~w‖1 ≥ [Ax ~w]i−∆x

gives the first claim.
Now drop the assumption that~w is a probability vector, and assume~1⊤mÂx ~w 6= 0 without loss of generality. Then:

~1⊤mÂx ~w

b̂⊤∞(Û⊤O)Âx ~w
=

~1⊤mÂx ~w

~1⊤mÂx ~w + (̂b∞ − b̃∞)⊤(Û⊤O)Âx ~w

≤ ‖Âx ~w‖1

‖Âx ~w‖1 − ‖(Û⊤O)⊤ (̂b∞ − b̃∞)‖∞‖Âx ~w‖1

which is at most1/(1 − δ∞) as claimed.

A consequence of Lemma 13 is that if the estimated parametersare sufficiently accurate, then the state updates
never allow predictions of very small hidden state probabilities.

Corollary 14. Assumeδ∞ ≤ 1/2, maxx ∆x ≤ α/3, δ1 ≤ α/8, andmaxx δ∞+δ∞∆x+∆x ≤ 1/3. Then[ĝt]i ≥ α/2
for all t andi.

Proof. For t = 1, we use Lemma 10 to get‖~h1 − ĥ1‖1 ≤ δ1 ≤ 1/2, so Lemma 17 implies that‖~h1 − ĝ1‖1 ≤ 4δ1.
Then[ĝ1]i ≥ [~h1]i − |[~h1]i − [ĝ1]i| ≥ α − 4δ1 ≥ α/2 (using Condition 3) as needed. Fort > 1, Lemma 13 implies

[Âxĝt−1]i
~b⊤∞(Û⊤O)Âxĝt−1

≥ [Axĝt−1]i − ∆x

~1⊤mAxĝt−1 + δ∞ + δ∞∆x + ∆x

≥ α − α/3

1 + 1/3
≥ α

2

using Condition 3 in the second-to-last step.

Lemma 13 and Corollary 14 can now be used to prove the contraction property of the KL-divergence between the
true hidden states and the estimated hidden states. The analysis shares ideas from Even-Dar et al. [2007], though the
added difficulty is due to the fact that the state maintained by our algorithm is not a probability distribution.

Lemma 15. Let ε0 = maxx 2∆x/α + (δ∞ + δ∞∆x + ∆x)/α + 2δ∞. Assumeδ∞ ≤ 1/2, maxx ∆x ≤ α/3, and
maxx δ∞ + δ∞∆x + ∆x ≤ 1/3. For all t, if ĝt ∈ R

m is a probability vector, then

KL(~ht+1||ĝt+1) ≤ KL(~ht||ĝt) −
γ2

2
(
ln 2

α

)2 KL(~ht||ĝt)
2 + ε0.

Proof. The LHS, written as an expectation overx1:t, is

KL(~ht+1||ĝt+1) = Ex1:t

[
m∑

i=1

[~ht+1]i ln
[~ht+1]i
[ĝt+1]i

]
.
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We can boundln(1/[ĝt+1]i) as

ln
1

[ĝt+1]i
= ln

(
b̂⊤∞(Û⊤O)Âxt

ĝt

[Âxt
ĝt]i

·~1⊤mĥt+1

)

= ln

(
~1⊤mAxt

ĝt

[Axt
ĝt]i

· [Axt
ĝt]i

[Âxt
ĝt]i

· b̂⊤∞(Û⊤O)Âxt
ĝt

~1⊤mAxt
ĝt

·~1⊤mĥt+1

)

≤ ln

(
~1⊤mAxt

ĝt

[Axt
ĝt]i

· [Axt
ĝt]i

[Axt
ĝt]i − ∆xt

·
~1⊤mAxt

ĝt + δ∞ + δ∞∆xt
+ ∆xt

~1⊤mAxt
ĝt

· (1 + 2δ∞)

)

≤ ln

(
~1⊤mAxt

ĝt

[Axt
ĝt]i

)
+

2∆xt

α
+

δ∞ + δ∞∆xt
+ ∆xt

α
+ 2δ∞

≤ ln

(
~1⊤mAxt

ĝt

[Axt
ĝt]i

)
+ ε0

where the first inequality follows from Lemma 13, and the second usesln(1 + a) ≤ a. Therefore,

KL(~ht+1||ĝt+1) ≤ Ex1:t

[
m∑

i=1

[~ht+1]i ln

(
[~ht+1]i ·

~1⊤mAxt
ĝt

[Axt
ĝt]i

)]
+ ε0. (8)

The expectation in (8) is the KL-divergence betweenPr[ht|x1:t−1] and the distribution overht+1 that is arrived at by
updatinĝPr[ht|x1:t−1] (using Bayes’ rule) withPr[ht+1|ht] andPr[xt|ht]. Call this second distributioñPr[ht+1|x1:t].
The chain rule for KL-divergence states

KL(Pr[ht+1|x1:t]||P̃r[ht+1|x1:t]) + KL(Pr[ht|ht+1, x1:t]||P̃r[ht|ht+1, x1:t])

= KL(Pr[ht|x1:t]||P̃r[ht|x1:t]) + KL(Pr[ht+1|ht, x1:t]||P̃r[ht+1|ht, x1:t]).

Thus, using the non-negativity of KL-divergence, we have

KL(Pr[ht+1|x1:t]||P̃r[ht+1|x1:t]) ≤ KL(Pr[ht|x1:t]||P̃r[ht|x1:t]) + KL(Pr[ht+1|ht, x1:t]||P̃r[ht+1|ht, x1:t])

= KL(Pr[ht|x1:t]||P̃r[ht|x1:t])

where the equality follows from the fact that̃Pr[ht+1|ht, x1:t] = P̃r[ht+1|ht] = Pr[ht+1|ht] = Pr[ht+1|ht, x1:t].
Furthermore,

Pr[ht = i|x1:t] = Pr[ht = i|x1:t−1] ·
Pr[xt|ht = i]∑m

j=1 Pr[xt|ht = j] · Pr[ht = j|x1:t−1]
and

P̃r[ht = i|x1:t] = P̂r[ht = i|x1:t−1] ·
Pr[xt|ht = i]

∑m
j=1 Pr[xt|ht = j] · P̂r[ht = j|x1:t−1]

,

so

KL(Pr[ht|x1:t]||P̃r[ht|x1:t]) = Ex1:t

[
m∑

i=1

Pr[ht = i|x1:t] ln
Pr[ht = i|x1:t−1]

P̂r[ht = i|x1:t−1]

]

− Ex1:t

[
m∑

i=1

Pr[ht = i|x1:t] ln

∑m
j=1 Pr[xt|ht = j] · Pr[ht = j|x1:t−1]

∑m
j=1 Pr[xt|ht = j] · P̂r[ht = j|x1:t−1]

]
.
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The first expectation is

Ex1:t

[
m∑

i=1

Pr[ht = i|x1:t] ln
Pr[ht = i|x1:t−1]

P̂r[ht = i|x1:t−1]

]

= Ex1:t−1

[
∑

xt

Pr[xt|x1:t−1]

m∑

i=1

Pr[ht = i|x1:t] ln
Pr[ht = i|x1:t−1]

P̂r[ht = i|x1:t−1]

]

= Ex1:t−1

[
∑

xt

m∑

i=1

Pr[xt|ht = i] · Pr[ht = i|x1:t−1] ln
Pr[ht = i|x1:t−1]

P̂r[ht = i|x1:t−1]

]

= Ex1:t−1

[
∑

xt

m∑

i=1

Pr[xt, ht = i|x1:t−1] ln
Pr[ht = i|x1:t−1]

P̂r[ht = i|x1:t−1]

]

= KL(~ht||ĝt),

and the second expectation is

Ex1:t

[
m∑

i=1

Pr[ht = i|x1:t] ln

∑m
j=1 Pr[xt|ht = j] · Pr[ht = j|x1:t−1]

∑m
j=1 Pr[xt|ht = j] · P̂r[ht = j|x1:t−1]

]

= Ex1:t−1

[
∑

xt

Pr[xt|x1:t−1] ln

∑m
j=1 Pr[xt|ht = j] · Pr[ht = j|x1:t−1]

∑m
j=1 Pr[xt|ht = j] · P̂r[ht = j|x1:t−1]

]

= KL(O~ht||Oĝt).

Substituting these back into (8), we have

KL(~ht+1||ĝt+1) ≤ KL(~ht||ĝt) − KL(O~ht||Oĝt) + ε0.

It remains to boundKL(O~ht||Oĝt) from above. We use Pinsker’s inequality [Cover and Thomas, 1991], which states
that for any distributions~p and~q,

KL(~p||~q) ≥ 1

2
‖~p − ~q‖2

1,

together with the definition ofγ, to deduce

KL(O~ht||Oĝt) ≥ 1

2
Ex1:t−1

‖O~ht − Oĝt‖2
1 ≥ γ2

2
Ex1:t−1

‖~ht − ĝt‖2
1.

Finally, by Jensen’s inequality and Lemma 18 (the latter applies because of Corollary 14), we have that

Ex1:t−1
‖~ht − ĝt‖2

1 ≥ (Ex1:t−1
‖~ht − ĝt‖1)

2 ≥
(

1

ln 2
α

KL(~ht||ĝt)

)2

which gives the required bound.

Finally, the recurrence from Lemma 15 easily gives the following lemma, which in turn combines with the sam-
pling error bounds of Lemma 8 to give Theorem 7.

Lemma 16. Letε0 = maxx 2∆x/α+(δ∞+δ∞∆x +∆x)/α+2δ∞ andε1 = maxx(δ∞ +
√

mδ∞∆x +
√

m∆x)/α.
Assumeδ∞ ≤ 1/2, maxx ∆x ≤ α/3, maxx δ∞ + δ∞∆x + ∆x ≤ 1/3, δ1 ≤ ln(2/α)/(8γ2), ε0 ≤ ln(2/α)2/(4γ2),
andε1 ≤ 1/2. Then for allt,

KL(~ht||ĝt) ≤ max


4δ1 log(2/α),

√
2
(
ln 2

α

)2
ε0

γ2


 and

KL(Pr[xt|x1:t−1] || P̂r[xt|x1:t−1]) ≤ KL(~ht||ĝt) + δ∞ + δ∞∆ + ∆ + 2ε1.
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Proof. To prove the bound onKL(~ht||ĝt), we proceed by induction ont. For the base case, Lemmas 18 (with
Corollary 14) and 17 implyKL(~h1||ĝ1) ≤ ‖~h1− ĝ1‖1 ln(2/α) ≤ 4δ1 ln(2/α) as required. The inductive step follows
easily from Lemma 15 and simple calculus: assumingc2 ≤ 1/(4c1), z − c1z

2 + c2 is non-decreasing inz for all z ≤√
c2/c1, soz′ ≤ z−c1z

2+c2 andz ≤
√

c2/c1 together imply thatz′ ≤
√

c2/c1. The inductive step uses the the above
fact with z = KL(~ht||ĝt), z′ = KL(~ht+1||ĝt+1), c1 = γ2/(2(ln(2/α))2), andc2 = max(ε0, c1(4δ1 log(2/α))2).

Now we prove the bound onKL(Pr[xt|x1:t−1]||P̂r[xt|x1:t−1]). First, letP̂r[xt, ht|x1:t−1] denote our predicted
conditional probability of both the hidden state and observation,i.e. the product of the following two quantities:

P̂r[ht = i|x1:t−1] = [ĝt]i and P̂r[xt|ht = i, x1:t−1] =
[̂b⊤∞(Û⊤O)Âxt

]i∑
x b̂⊤∞(Û⊤O)Âxĝt

.

Now we can apply the chain rule for KL-divergence

KL(Pr[xt|x1:t−1]||P̂r[xt|x1:t−1])

≤ KL(Pr[ht|x1:t−1]||P̂r[ht|x1:t−1]) + KL(Pr[xt|ht, x1:t−1]||P̂r[xt|ht, x1:t−1])

= KL(~ht||ĝt) + Ex1:t−1

[
m∑

i=1

∑

xt

[~ht]iOxt,i ln

(
Oxt,i ·

∑
x b̂⊤∞(Û⊤O)Âxĝt

[̂b⊤∞(Û⊤O)Âxt
]i

)]

≤ KL(~ht||ĝt) + Ex1:t−1

[
m∑

i=1

∑

xt

[~ht]iOxt,i ln

(
Oxt,i

[̂b⊤∞(Û⊤O)Âxt
]i

)]
+ ln(1 + δ∞ + δ∞∆ + ∆)

where the last inequality uses Lemma 13. It will suffice to show thatOxt,i/[̂b⊤∞(Û⊤O)Âxt
]i ≤ 1 + 2ε1. Note that

Oxt,i = [̃b⊤∞(Û⊤O)Axt
]i > α by Condition 3. Furthermore, for anyi,

|[̂b⊤∞(Û⊤O)Âxt
]i − Oxt,i| ≤ ‖b̂⊤∞(Û⊤O)Âxt

− b̃⊤∞(Û⊤O)Axt
‖∞

≤ ‖(̂b∞ − b̃∞)(Û⊤O)‖∞‖Axt
‖∞

+ ‖(̂b∞ − b̃∞)(Û⊤O)‖∞‖Âxt
− Axt

‖∞
+ ‖b̃∞(Û⊤O)‖∞‖Âxt

− Axt
‖∞

≤ δ∞ +
√

mδ∞∆xt
+
√

m∆xt
.

Therefore

Oxt,i

[̂b⊤∞(Û⊤O)Âxt
]i

≤ Oxt,i

Oxt,i − (δ∞ +
√

mδ∞∆xt
+
√

m∆xt
)

≤ 1

1 − (δ∞ +
√

mδ∞∆xt
+
√

m∆xt
)/α

≤ 1

1 − ε1
≤ 1 + 2ε1

as needed.

Proof of Theorem 7.The proof is mostly the same as that of Theorem 6 witht = 1, except that Lemma 16 introduces
additional error terms. Specifically, we require

N ≥ C · ln(2/α)4

ǫ4α2γ4
· m

σm(O)2σm(P2,1)4
and N ≥ C · m

ǫ2α2
· m

σm(O)2σm(P2,1)4

so that the terms

max

(
4δ1 log(2/α),

√
2 ln(2/α)2ε0

γ2

)
and ε1,

respectively, areO(ǫ). The specified number of samplesN also suffices to imply the preconditions of Lemma 16. The
remaining terms are bounded as in the proof of Theorem 6.
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Lemma 17. If ‖~a−~b‖1 ≤ c ≤ 1/2 and~b is a probability vector, then‖~a/(~1⊤~a) −~b‖1 ≤ 4c.

Proof. First, it is easy to check that1 − c ≤ ~1⊤~a ≤ 1 + c. Let I = {i : ~ai/(~1⊤~a) > ~bi}. Then for i ∈ I,
|~ai/(~1⊤~a) − ~bi| = ~ai/(~1⊤~a) − ~bi ≤ ~ai/(1 − c) − ~bi ≤ (1 + 2c)~ai − ~bi ≤ |~ai − ~bi| + 2c~ai. Similarly, for
i /∈ I, |~bi − ~ai/(~1⊤~a)| = ~bi − ~ai/(~1⊤~a) ≤ ~bi − ~ai/(1 + c) ≤ ~bi − (1 − c)~ai ≤ |~bi − ~ai| + c~ai. Therefore
‖~a/(~1⊤~a) −~b‖1 ≤ ‖~a −~b‖1 + 2c(~1⊤~a) ≤ c + 2c(1 + c) ≤ 4c.

Lemma 18. Let ~a and~b be probability vectors. If there exists somec < 1/2 such that~bi > c for all i, then
KL(~a||~b) ≤ ‖~a −~b‖1 log(1/c).

Proof. See [Even-Dar et al., 2007], Lemma 3.10.
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A Sample Complexity Bound

We will assume independent samples to avoid mixing estimation. Otherwise, one can discount the number of samples
by one minus the second eigenvalue of the hidden state transition matrixT .

We are bounding the Frobenius norm of the matrix errors. For simplicity, we unroll the matrices into vectors, and
use vector notations.

Let z be a discrete random variable that takes values in{1, . . . , d}. We are interested in estimating the vector
~q = [Pr(z = j)]dj=1 from N i.i.d. copieszi of z (i = 1, . . . , N ). Let ~qi be the vector of zeros expect thezi-th

component being one. Then the empirical estimate of~q is q̂ =
∑N

i=1 ~qi/N . We are interested in bounding the quantity

‖q̂ − ~q‖2
2.

The following concentration bound is a simple application of the McDiarmid’s inequality [McDiarmid, 1989].
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Proposition 19. We have∀ǫ > 0:

Pr
(
‖q̂ − ~q‖2 ≥ 1/

√
N + ǫ

)
≤ e−Nǫ2.

Proof. Consider̂q =
∑N

i=1 ~qi/N , and letp̂ =
∑N

i=1 ~pi/N , where~pi = ~qi except fori = k. Then we have‖q̂− ~q‖2 −
‖p̂ − ~q‖2 ≤ ‖q̂ − p̂‖2 ≤

√
2/N . By McDiarmid’s inequality, we have

Pr (‖q̂ − ~q‖2 ≥ E ‖q̂ − ~q‖2 + ǫ) ≤ e−Nǫ2 .

Note that

E

∥∥∥∥∥

N∑

i=1

~qi − N~q

∥∥∥∥∥
2

≤


E

∥∥∥∥∥

N∑

i=1

~qi − N~q

∥∥∥∥∥

2

2




1/2

=

(
N∑

i=1

E‖~qi − ~q‖2
2

)1/2

=

(
N∑

i=1

E
[
1 − 2~q⊤i ~q + ‖~q‖2

2

]
)1/2

=
√

N(1 − ‖~q‖2
2).

This leads to the desired bound.

Using this bound, we obtain with probability1 − 3η:

ǫ1 ≤
√

ln(1/η)/N +
√

1/N,

ǫ2,1 ≤
√

ln(1/η)/N +
√

1/N,

max
x

ǫ3,x,1 ≤
√∑

x

ǫ23,x,1 ≤
√

ln(1/η)/N +
√

1/N,

∑

x

ǫ3,x,1 ≤
√

n

(
∑

x

ǫ23,x,1

)1/2

≤
√

n ln(1/η)/N +
√

n/N.

If the observation dimensionalityn is large and sample sizeN is small, then the third inequality can be improved
by considering a more detailed estimate. Given anyk, let ǫ(k) be sum of elements in the smallestn − k probabilities
Pr[x2 = x] =

∑
i,j [P3,x,1]ij (Equation 1). LetSk be the set of thesen − k suchx. By Proposition 19, we obtain:

∑

x/∈Sk

‖P̂3,x,1 − P3,x,1‖2
F +

∣∣∣∣∣∣

∑

x∈Sk

∑

i,j

([P̂3,x,1]ij − [P3,x,1]ij)

∣∣∣∣∣∣

2

≤
(√

ln(1/η)/N +
√

1/N
)2

.

Moreover, by the definition ofSk, we have
∑

x∈Sk

‖P̂3,x,1 − P3,x,1‖F ≤
∑

x∈Sk

∑

i,j

|[P̂3,x,1]ij − [P3,x,1]ij |

≤
∑

x∈Sk

∑

i,j

max
(
0, [P̂3,x,1]ij − [P3,x,1]ij

)
+ ǫ(k)

+
∑

x∈Sk

∑

i,j

min
(
0, [P̂3,x,1]ij − [P3,x,1]ij

)
+ ǫ(k)

≤

∣∣∣∣∣∣

∑

x∈Sk

∑

i,j

([P̂3,x,1]ij − [P3,x,1]ij)

∣∣∣∣∣∣
+ 2ǫ(k).

Therefore ∑

x

ǫ3,x,1 ≤ min
k

(√
k ln(1/η)/N +

√
k/N +

√
ln(1/η)/N +

√
1/N + 2ǫ(k)

)
.

This means
∑

x ǫ3,x,1 may be small even ifn is large, but the number of frequently occurring symbols aresmall.
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B Matrix Perturbation Theory

The following perturbation bounds can be found in [Stewart and Sun, 1990].

Lemma 20 (Theorem 4.11, p. 204 in [Stewart and Sun, 1990]). Let A ∈ R
m×n with m ≥ n, and letÃ = A + E. If

the singular values ofA andÃ are (σ1 ≥ . . . ≥ σn) and(σ̃1 ≥ . . . ≥ σ̃n), respectively, then

|σ̃i − σi| ≤ ‖E‖2 i = 1, . . . , n.

Lemma 21 (Theorem 4.4, p. 262 in [Stewart and Sun, 1990]). Let A ∈ R
m×n, with m ≥ n, with the singular value

decomposition(U1, U2, U3, Σ1, Σ2, V1, V2):




U⊤
1

U⊤
2

U⊤
3


A

[
V1 V2

]
=




Σ1 0
0 Σ2

0 0


 .

Let Ã = A + E, with analogous SVD(Ũ1, Ũ2, Ũ3, Σ̃1, Σ̃2, Ṽ1Ṽ2). LetΦ be the matrix of canonical angles between
range(U1) andrange(Ũ1), andΘ be the matrix of canonical angles betweenrange(V1) andrange(Ṽ1). If there exists
δ, α > 0 such thatmin σ(Σ̃1) ≥ α + δ andmax σ(Σ2) ≤ α, then

max{‖ sinΦ‖2, ‖ sin Θ‖2} ≤ ‖E‖2

δ
.

Corollary 22. LetA ∈ R
m×n, with m ≥ n, have rankn, and letU ∈ R

m×n be the matrix ofn left singular vectors
corresponding to the non-zero singular valuesσ1 ≥ . . . ≥ σn > 0 ofA. LetÃ = A+E. LetŨ ∈ R

m×n be the matrix
of n left singular vectors corresponding to the largestn singular values̃σ1 ≥ . . . ≥ σ̃n of Ã, and letŨ⊥ ∈ R

m×(m−n)

be the remaining left singular vectors. Assume‖E‖2 ≤ ǫσn for someǫ < 1. Then:

1. σ̃n ≥ (1 − ǫ)σn,

2. ‖Ũ⊤
⊥U‖2 ≤ ‖E‖2/σ̃n.

Proof. The first claim follows from Lemma 20, and the second follows from Lemma 21 because the singular values
of Ũ⊤

⊥U are the sines of the canonical angles betweenrange(U) andrange(Ũ).

Lemma 23(Theorem 3.8, p. 143 in [Stewart and Sun, 1990]). LetA ∈ R
m×n, withm ≥ n, and letÃ = A+E. Then

‖Ã+ − A+‖2 ≤ 1 +
√

5

2
· max{‖A+‖2

2, ‖Ã+‖2
2}‖E‖2.

C Recovering the Observation and Transition Matrices

We sketch how to use the technique of [Mossel and Roch, 2006] to recover the observation and transition matrices
explicitly. This is an extra step that can be used in conjunction with our algorithm.

Define then × n matrix [P3,1]i,j = Pr[x3 = i, x1 = j]. Let Ox = diag(Ox,1, . . . , Ox,m), soAx = TOx. Since
P3,x,1 = OAxT diag(~π)O⊤, we haveP3,1 =

∑
x P3,x,1 = OTT diag(~π)O⊤. Therefore

U⊤P3,x,1 = U⊤OTOxT diag(~π)O⊤

= (U⊤OT )Ox(U⊤OT )−1(U⊤OT )T diag(~π)O⊤

= (U⊤OT )Ox(U⊤OT )−1(U⊤P3,1).

The matrixU⊤P3,1 has full row rank, so(U⊤P3,1)(U
⊤P3,1)

+ = I, and thus

(U⊤P3,x,1)(U
⊤P3,1)

+ = (U⊤OT ) Ox (U⊤OT )−1.
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SinceOx is diagonal, the eigenvalues of(U⊤P3,x,1)(U
⊤P3,1)

+ are exactly the observation probabilitiesOr,1, . . . , Or,m.
Define i.i.d. random variablesgx ∼ N(0, 1) for eachx. It is shown in [Mossel and Roch, 2006] that the eigenvalues

of
∑

x

gx(U⊤P3,x,1)(U
⊤P3,1)

+ = (U⊤OT )

(
∑

x

gxOx

)
(U⊤OT )−1.

will be separated with high probability (though the separation is roughly on the same order as the failure probability;
this is the main source of instability with this method). Therefore an eigen-decomposition will recover the columns of
(U⊤OT ) up to a diagonal scaling matrixS, i.e.U⊤OTS. Then for eachx, we can diagonalize(U⊤P3,x,1)(U

⊤P3,1)
+:

(U⊤OTS)−1 (U⊤P3,x,1)(U
⊤P3,1)

+ (U⊤OTS) = Ox.

Now we can formO from the diagonals ofOx. SinceO has full column rank,O+O = Im, so it is now easy to also
recover~π andT from P1 andP2,1:

O+P1 = O+O~π = ~π

and
O+P2,1(O

+)⊤ diag(~π)−1 = O+(OT diag(~π)O⊤)(O+)⊤ diag(~π)−1 = T.

Note that because [Mossel and Roch, 2006] do not allow more observations than states, they do not need to work
in a lower dimensional subspace such asrange(U). Thus, they perform an eigen-decomposition of the matrix

∑

x

gxP3,x,1P
−1
3,1 = (OT )

(
∑

x

gxOx

)
(OT )−1,

and then use the eigenvectors to form the matrixOT . Thus they rely on the stability of the eigenvectors, which depends
heavily on the spacing of the eigenvalues.
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