Provided by ScholarlyCommons@Penn

University of Pennsylvania
ScholarlyCommons

UNIVERSITY of PEN?

Statistics Papers Wharton Faculty Research

9-2012

A Spectral Algorithm for Learning Hidden Markov
Models

Daniel Hsu

Sham M. Kakade

University of Pennsylvania

Tong Zhang

Follow this and additional works at: http://repository.upenn.edu/statistics papers
b Part of the Applied Statistics Commons, and the Theory and Algorithms Commons

Recommended Citation

Hsu, D,, Kakade, S. M., & Zhang, T. (2012). A Spectral Algorithm for Learning Hidden Markov Models. Journal of Computer and
System Sciences, 78 (), 1460-1480. http://dx.doi.org/10.1016/jjcss.2011.12.025

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/statistics_papers/585

For more information, please contact repository@pobox.upenn.edu.


https://core.ac.uk/display/132271997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fstatistics_papers%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/statistics_papers?utm_source=repository.upenn.edu%2Fstatistics_papers%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/wharton_faculty?utm_source=repository.upenn.edu%2Fstatistics_papers%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/statistics_papers?utm_source=repository.upenn.edu%2Fstatistics_papers%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=repository.upenn.edu%2Fstatistics_papers%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=repository.upenn.edu%2Fstatistics_papers%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/j.jcss.2011.12.025
http://repository.upenn.edu/statistics_papers/585
mailto:repository@pobox.upenn.edu

A Spectral Algorithm for Learning Hidden Markov Models

Abstract

Hidden Markov Models (HMM:s) are one of the most fundamental and widely used statistical tools for
modeling discrete time series. In general, learning HMM s from data is computationally hard (under
cryptographic assumptions), and practitioners typically resort to search heuristics which suffer from the usual
local optima issues. We prove that under a natural separation condition (bounds on the smallest singular value
of the HMM parameters), there is an efficient and provably correct algorithm for learning HMMs. The sample
complexity of the algorithm does not explicitly depend on the number of distinct (discrete) observations—it
implicitly depends on this quantity through spectral properties of the underlying HMM. This makes the
algorithm particularly applicable to settings with a large number of observations, such as those in natural
language processing where the space of observation is sometimes the words in a language. The algorithm is
also simple, employing only a singular value decomposition and matrix multiplications.
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A Spectral Algorithm for Learning Hidden Markov Models

Daniel Hsu Sham M. Kakade Tong Zhang
UC San Diego  Toyota Technological Institute at Chicago Rutgers University

Abstract

Hidden Markov Models (HMMs) are one of the most fundamental and widely used statistical tools for modeling
discrete time series. In general, learning HMMs from data is computationally hard (under cryptographic assumptions),
and practitioners typically resort to search heuristics which suffer from the usual local optima issues. We prove that
under a natural separation condition (bounds on the smallest singular value of the HMM parameters), there is an
efficient and provably correct algorithm for learning HMMs. The sample complexity of the algorithm does not
explicitly depend on the number of distinct (discrete) observations—it implicitly depends on this quantity through
spectral properties of the underlying HMM. This makes the algorithm particularly applicable to settings with a large
number of observations, such as those in natural language processing where the space of observation is sometimes
the words in a language. The algorithm is also simple: it employs only a singular value decomposition and matrix
multiplications.

1 Introduction

Hidden Markov Models (HMMs) [Baum and Eagon, 1967, Rabiner, 1989] are the workhorse statistical model for dis-
crete time series, with widely diverse applications including automatic speech recognition, natural language processing
(NLP), and genomic sequence modeling. In this model, a discrete hidden state evolves according to some Markovian
dynamics, and observations at particular time depend only on the hidden state at that time. The learning problem
is to estimate the model only with observation samples from the underlying distribution. Thus far, the predominant
learning algorithms have been local search heuristics, such as the Baum-Welch / EM aldorithm [Baum et al., 1970,
Dempster et all, 1977].

It is not surprising that practical algorithms have resorted to heuristics, as the general learning problem has been
shown to be hard under cryptographic assumpti@rm 2002]. Fortunately, the hardness results are for HMMs
that seem divorced from those that we are likely to encounter in practical applications.

The situation is in many ways analogous to learning mixture distributions with samples from the underlying dis-
tribution. There, the general problem is believed to be hard. However, much recent progress has been made when
certain separation assumptions are made with respect to the component mixture distrib@i.mg,

an, 2007, Vempala and Wang) 2002, Chaudhuri and Ra6, 2008, Brubaker and Vempala, 2008]).
Roughly speaking, these separation assumptions imply that with high probability, given a point sampled from the
distribution, we can recover which component distribution generated this point. In fact, there is prevalent sentiment
that we are often only interested in clustering the data when such a separation condition holds. Much of the theoretical
work here has been on how small this separation need be in order to permit an efficient algorithm to recover the model.

We present a simple and efficient algorithm for learning HMMs under a certain natural separation condition.
We provide two results for learning. The first is that we can approximate the joint distribution over observation
sequences of length(here, the quality of approximation is measured by total variation distance}. iikseases,
the approximation quality degrades polynomially. Our second result is on approximaticgyiti¢gionaldistribution
over a future observation, conditioned on some history of observations. We show that this error is asymptotically
bounded—i.efor any ¢, conditioned on the observations prior to timehe error in predicting the-th outcome is
controlled. Our algorithm can be thought of as ‘improperly’ learning an HMM in that we do not explicitly recover the
transition and observation models. However, our model does maintain a hidden state representation which is closely
(in fact, linearly) related to the HMM'’s, and can be used for interpreting the hidden state.




The separation condition we require is a spectral conditioboth the observation matrix and the transition matrix.
Roughly speaking, we require that the observation didiobs arising from distinct hidden states be distinct (vahic
we formalize by singular value conditions on the observatimtrix). This requirement can be thought of as being
weaker than the separation condition for clustering in thaobservation distributions can overlap quite a bit—give
one observation, we do not necessarily have the informadiaetermine which hidden state it was generated from
(unlike in the clustering literature). We also have a s@écwndition on the correlation between adjacent obsemati
We believe both of these conditions to be quite reasonabteainy practical applications. Furthermore, given our
analysis, extensions to our algorithm which relax thesarapsions should be possible.

The algorithm we present has both polynomial sample and atatipnal complexity. Computationally, the algo-
rithm is quite simple—at its core is a singular value decositmn (SVD) of a correlation matrix between past and
future observations. This SVD can be viewed as a Canonicak@tion Analysis (CCA) [Hotellind, 1935] between
past and future observations. The sample complexity ieai@tpresent do not explicitly depend on the number of dis-
tinct observations; rather, they implicitly depend on tiisnber through spectral properties of the HMM. This makes
the algorithm particularly applicable to settings with eganumber of observations, such as those in NLP where the
space of observations is sometimes the words in a language.

1.1 Related Work

There are two ideas closely related to this work. The first&®fnrom the subspace identification literature in control
theory [Ljung, 1987, Overschee and Moor, 1996, KatayamA5R0The second idea is that, rather than explicitly
modeling the hidden states, we can represent the prolabitif sequences of observations as products of matrix
observation operators, an idea which dates back to thatiiter on multiplicity automata [Schiitzenbefger, 1961,
Carlyle and Paz, 1971, Fliess, 1974].

The subspace identification methods, used in control theme spectral approaches to discover the relationship
between hidden states and the observations. In this literathe relationship is discovered for linear dynamical
systems such as Kalman filters. The basic idea is that theoredaip between observations and hidden states can
often be discovered by spectral/SVD methods correlatiagoest and future observations (in particular, such methods
often do a CCA between the past and future observations).ekenvalgorithms presented in the literature cannot
be directly used to learn HMMs because they assume addibige models with noise distributions independent of
the underlying states, and such models are not suitableNtivisi(an exception is [Andersson et al., 2003]). In our
setting, we use this idea of performing a CCA between pasfuitnde observations to uncover information about the
observation process (this is done through an SVD on a ctioelmatrix between past and future observations). The
state-independent additive noise condition is avoidealitin the second idea.

The second idea is that we can represent the probabilitycpfesees as products of matrix operators, as in the
literature on multiplicity automata [Schutzenberger619Carlyle and Paz, 1971, Fliess, 1974] (see [Even-Dat.et al
[2005] for discussion of this relationship). This idea wasised in both the Observable Operator Modd@eger
] and the Predictive State Representations of Littatad. [2001], both of which are closely related and both of
which can model HMMs. In fact, the former work uim @vides a non-iterative algorithm for learning
HMMs, with an asymptotic analysis. However, this algoritassumed knowing a set of ‘characteristic events’, which
is a rather strong assumption that effectively reveals safationship between the hidden states and observations. |
our algorithm, this problem is avoided through the first idea

Some of the techniques in the work in_[Even-Dar etlal., 20@7]tfacking belief states in an HMM are used
here. As discussed earlier, we provide a result showing hewrtodel’'s conditional distributions over observations
(conditioned on a history) do not asymptotically divergdisiresult was proven in [Even-Dar et al., 2007] when an
approximate model ialready knownRoughly speaking, the reason this error does not divertpaithe previous ob-
servations are always revealing information about the olesérvation; so with some appropriate contraction prgpert
we would not expect our errors to diverge. Our work borrowesfithis contraction analysis.

Among recent efforts in various communities [Andersson.e2903,| Vanluyten et all, 2007, Zhao and Jaeger,
12007 Cybenko and Crespi, 2008], the only previous efficégarithm shown to PAC-learn HMMs in a setting similar
to ours is due to_ Mossel and Roc¢h [2006]. Their algorithm fMMs is a specialization of a more general method
for learning phylogenetic trees from leaf observations. il&/hoth this algorithm and ours rely on the same rank




condition and compute similar statistics, they differ irotsignificant regards. First, [Mossel and Roch, 2006] were
not concerned with large observation spaces, and thusdtggrithm assumes the state and observation spaces to
have the same dimension. In additiZ@&Ré the more ambitious approach of learning the
observation and transition matrices explicitly, which emdinately results in a less stable and less sample-efficien
algorithm that injects noise to artificially spread apaet #igenspectrum of a probability matrix. Our algorithm

avoids recovering the observation and transition matrphevtlyEl and instead uses subspace identification to learn an
alternative representation.

2 Preliminaries
2.1 Hidden Markov Models

The HMM defines a probability distribution over sequenceiidtien stategh;) and observation&e;). We write the
set of hidden states @3] = {1, ..., m} and set of observations ag = {1,...,n}, wherem < n.

LetT € R™*™ be the state transition probability matrix wil); = Pr[hi11 = i|lhs = j], O € R"*™ be the
observation probability matrix witl;; = Pr[z; = i|h, = j], and7® € R™ be the initial state distribution with
7; = Pr[hy = i]. The conditional independence properties that an HMMfgegisire: 1) conditioned on the previous
hidden state, the current hidden state is sampled indep#pdéall other events in the history; and 2) conditioned on
the current hidden state, the current observation is sahiptiependently from all other events in the history. These
conditional independence properties of the HMM imply theandO fully characterize the probability distribution of
any sequence of states and observations.

A useful way of computing the probability of sequences ieimts of ‘observation operators’, an idea which dates
back to the literature on multiplicity automata (see [Sebtberget, 1961, Carlyle and Paz, 1971, Flless,|19748. Th
following lemma is straightforward to verify (see [Jae@d00] Even-Dar et al., 2007]).

Lemmal. Forz =1,...,n, define

Ay =T diag(Oz 1, ..., Opom).
For anyt:

—

Prlz1,...,2¢) = 1, A, ... Ay, 7T

Our algorithm learns a representation that is based on bisisrgable operator view of HMMs.

2.2 Notation
As already used in Lemnia 1, the vectgy is the all-ones vector iiR™. We denote by:,.+ the sequencery, ..., xt),
and byz.; itsreversdxy, ..., x1). When we use a sequence as a subscript, we mean the produantitigs indexed

by the sequence elements. So for example, the probabilityledion in LemmdL can be WrittefﬁAzt:lﬁ. We will
useh, to denote a probability vector (a distribution over hiddéastes), with the arrow distinguishing it from the
random hidden state variablg. Additional notation used in the theorem statements andfgiis listed in Tabl€]1.

2.3 Assumptions
We assume the HMM obeys the following condition.

Condition 1 (HMM Rank Condition) 7 > 0 element-wise, an@ andT" are rankm.

The rank condition rules out the problematic case in whichesstate has an output distribution equal to a convex
combination (mixture) of some other states’ output disttitms. Such a case could cause a learner to confuse state
with a mixture of these other states. As mentioned befoeegtmneral task of learning HMMs (even the specific goal

1In Appendi{@, we discuss the key steplin [Mossel and RochéR@md also show how to use their technique in conjunctich wirr algorithm
to recover the HMM observation and transition matrices. &gorithm does not rely on this extra step—we believe it tgdeerally unstable—but
it can be taken if desired.



of simply accurately modeling the distribution probait [Terwijn, 2002]) is hard under cryptographic assumystio
the rank condition is a natural way to exclude the malicimssances created by the hardness reduction.

The rank condition or) can be relaxed through a simple modification of our algorithat looks at multiple
observation symbols simultaneously to form the probahbdgtimation tables. For example, if two hidden states have
identical observation probability iV but different transition probabilities ifi’, then they may be differentiated by
using two consecutive observations. Although our analyaisbe applied in this case with minimal modifications, for
clarity, we only state our results for an algorithm thatrasties probability tables with rows and columns correspundi
to single observations.

2.4 Learning Model
Our learning model is similar to those of [Kearns etlal., 199ssel and Ro¢h, 2006] for PAC-learning discrete

probability distributions. We assume we can sample obsiervaequences from an HMM. In particular, we assume
each sequence is generated starting from the same irdti@ldistribution €.g.the stationary distribution of the Markov
chain specified byl"). This setting is valid for practical applications incladispeech recognition, natural language
processing, and DNA sequence modeling, where multiplegeddent sequences are available.

For simplicity, this paper only analyzes an algorithm the¢sithe initial few observations of each sequence, and
ignores the rest. We do this to avoid using concentratiomtewith complicated mixing conditions for Markov chains
in our sample complexity calculation, as these conditioerswat essential to the main ideas we present. In practice,
however, one should use the full sequences to form the pildpastimation tables required by our algorithm. In such
scenarios, a single long sequence is sufficient for learmind the effective sample size can be simply discounted by
the mixing rate of the underlying Markov chain.

Our goal is to derive accurate estimators for the cumuldjoiat) distributionPr[z;.;] and the conditional distri-
butionPr[z:|z1.:—1] for any sequence length For the conditional distribution, we obtain an approxiimathat does
not depend om, while for the joint distribution, the approximation qusldegrades gracefully with

3 Observable Representations of Hidden Markov Models

A typical strategy for learning HMMs is to estimate the olysgion and transition probabilities for each hidden state
(say, by maximizing the likelihood of a sample). Howevencsi the hidden states are not directly observed by
the learner, one often resorts to heuristeg(EM) that alternate between imputing the hidden states aledtsey
parameter§®) andT that maximize the likelihood of the sample and current statenates. Such heuristics can suffer
from local optima issues and require careful initializat{e.g.an accurate guess of the hidden states) to avoid failure.

However, under Conditidd 1, HMMs admit an efficiently learieaparameterization that depends onlyotrserv-
able quantitiesBecause such quantities can be estimated from data,heaims representation avoids any guesswork
about the hidden states and thus allows for algorithms wiiting guarantees of success.

This parameterization is natural in the context of Obsde/@perator ModeIOO], but here we empha-
size its connection to subspace identification.

3.1 Definition

Our HMM representation is defined in terms of the followingto and matrix quantities:

[Pl]l = PI‘[.’L‘l = Z]
[P211]ij - PI‘[SCQ = ivxl = j]
[P3,:6,1]ij = Pr[x3 - iva =T, T = .]] vz € [TL],

whereP; € R™is avector, and> ; € R"*™ and thePs ., ; € R™*" are matrices. These are the marginal probabilities
of observation singletons, pairs, and triples.
The representation further depends on a mdfrik R™*" that obeys the following condition.



Condition 2 (Invertibility Condition). U T O is invertible.

In other words[J defines ann-dimensional subspace that preserves the state dynanficswill become evident
in the next few lemmas.
A natural choice folU is given by the ‘thin’ SVD ofP, ;, as the next lemma exhibits.

Lemma 2. Assumer > 0 and thatO andT have column rank:. Thenrank(P 1) = m. Moreover, ifU is the matrix
of left singular vectors oP; ; corresponding to non-zero singular values, thenge(U) = range(O), soU € R"*™
obeys Conditiohl2.

Proof. Using the conditional independence properties of the HMiMies of the matrix?, ; can be factored as

NE
NE

[P21]ij = Prlzy = i,21 = j, ho = k, hy = (]

£
Il
-
~
Il
-

Oir Te 7 [0 4;

-
NgE

>
Il

1

~
Il
—

S0P, 1 = OT diag(7)O " andthusange(P,,1) C range(O). The assumptions o, 7', andz imply that7 diag(7)O "
has linearly independent rows and ti#at; hasm non-zero singular values. Therefore

O = Py (T diag(7)O ") "

(whereX * denotes the Moore-Penrose pseudo-inverse of a m&jriwhich in turn impliesange(O) C range(Ps.1).
Thusrank(P;) = rank(O) = m, and alsaange(U) = range(P» 1) = range(O). I

Our algorithm is motivated by Lemnha 2 in that we compute th®%¥ an empirical estimate d®, ; to discover
aU that satisfies Conditidd 2. We also note that this choicé/faan be thought of as a surrogate for the observation
matrix O (see Remark]5).

Now given such a matrik/, we can finally define the observable representation:

by = U'P
b = (BLU) P
B, = (UTPsu1) (UTPo)" Vaeln.
3.2 Basic Properties
The following lemma shows that the observable represma{ﬂm,gl,Bl, ..., By} is sufficient to compute the

probabilities of any sequence of observations.

Lemma 3 (Observable HMM RepresentationAssume the HMM obeys Conditibh 1 and thate R™*™ obeys
Condition2. Then:

1. b = (UTO)R.

2.1 = 1T (WUT0)".

3. B, = (UTO)A,(UTO)™! vz € [n].

4. Pr[z1y] = bl B,, by Vt € N,zy,... 2, € [n).

In addition to joint probabilities, we can compute conditiprobabilities using the observable representation. We
do so through (normalized) conditional ‘internal statesittdepend on a history of observations. We should emphasize



that these states armt in fact probability distributions over hidden states (tghuhe following lemma shows that
they are linearly related). As per Lemida 3, the initial state

b = (UTO)R

Generally, for any > 1, given observations,; ., with Pr[z1.;—1] > 0, we define the internal state as:

—

Bmt—l:l b1

gt = Z_?’15(961:15—1) = EIOB 1_7’1.

Tt—1:1

The case = 1is consistent with the general definitionighecause the denominatobis b, = 1, (UT0)~" (U T 0)7 =
I} # = 1. The following result shows how these internal states candeel to compute conditional probabilities
Prlz: = i|x1.e-1]-

Lemma 4 (Conditional Internal States)Assume the conditions in Lemfda 3. Then, for any time
1. (Recursive update of statesPif[z1.:] > 0, then

7 th gt

b = S _ =
T YIBLb,

2. (Relation to hidden states) B B
by = (UTO) hy(w1.4-1)

Where[ﬁt(:zzlzt,l)]i = Pr[h; = i|z1.4-1] is the conditional probability of the hidden state at timgiven the
observationgr.;_1,

3. (Conditional observation probabilities)
PI‘[.I‘t|$C1;t_1] = B:OB%B;.
Remark 5. If U is the matrix of left singular vectors @, ; corresponding to non-zero singular values, ttiiémcts

much like the observation probability matiixin the following sense:

Given a conditional staté, Given a conditional hidden stafe,
PI‘[SCt = i|1‘1;t_1] = [Ubt]Z PI‘[SCt = i|x1:t_1] = [Oht]l

To see this, note thdfU T is the projection operator toange(U). Sincerange(U) = range(O) (LemmdR), we have
UUTO = 0, s0Ub; = U(UTO)hy = Ohy.

3.3 Proofs

Proof of Lemma&l3.The first claim is immediate from the fa&, = O7. For the second claim, we writg in the
following unusual (but easily verified) form:

P = 1] Tdiag(m)0"
= 1(UTo)" 1 (UTO)T diag(®)O"
= 1) WT0)"'UT Py,.

The matrixU " P, ; has linearly independent rows (by the assumptions,an, 7', and the condition of), so

b = PI(U TPt = 1N (W0T0) P UTRy) UTP)Y = TL(UTO)

co T



To prove the third claim, we first expres . ; in terms ofA,:

Py,1 = OA,Tdiag(7)0"
= 0A,(UTO) " UTO)T diag(7)O"
= 0A,(UTO) U P, ;.

Again, using the fact thdthPgJ has full row rank,

B, = (UTPiua) (U Po)"
— (UTO)AL(UTO) ™ (UTPyy) (UTPs)"
= UTo)A.(UTO) L.

The probability calculation in the fourth claim is now relgdieen as a telescoping product that reduces to the product
in Lemmd11

Proof of Lemma&l4.The first claim is a simple induction. The second and thirehesaare also proved by induction as
follows. The base case is clear from Lemioha 3 sihce= 7 andb; = (U O)#, and aIs@Zlebl =1} A, 7=
Pr[z41]. For the inductive step,

- Ba, by B,,(UTO)hy  (UTO)Ay,hy o . .
b = — - = d = : definition, inductive hypothesis, Lemmh 3
o bl B, b Pr(z¢|z1:0-1] Prlz|21.4-1] ( P )

PI’[ht+1 =, .I't|l'1;t—1]

(UTO) _ (UTO) Pr[ht+1 = '|‘T11t] Pr[‘rt|x1?t—1] _ (UTO) Et+1($1:t)

Priz¢|xie—1] Priz|zi4—1]

(the first three equalities follow from the first claim, theélirctive hypothesis, and Lemihh 3), and

bl By, bii1 = I;;Amt+1ﬁt+l = Prlzip1]Ti]

o0 Tt41

(again, using Lemm@ 3J.

4 Spectral Learning of Hidden Markov Models

4.1 Algorithm

The representation in the previous section suggests tloeitalgn LEARNHMM (m, N) detailed in Figuréll, which
simply uses random samples to estimate the model paramétets that in practice, knowing: is not essential
because the method presented here tolerates models thradtameactly HMMs, and the parameter may be tuned
using cross-validation. As we discussed earlier, the reqment for independent samples is only for the convenience
of our sample complexity analysis.

The model returned by EARNHMM (m, N') can be used as follows:

e To predict the probability of a sequence:

f;r[:vl,...,;vt] = E;FOB\JC



Algorithm LEARNHMM (m, N):
Inputs:m - number of statesy - sample size
Returns: HMM model parameterized By, b, B, Va € [n]}

Independently sampl¥ observation tripleéz, x2, 23) from the HMM to form empirical estimates
Pl,PQ 1,P3I1VSC (S [ ] OfplaPQ,laPB,z,l Yz € [ ]

2. Compute the SVD 013271, and letU be the matrix of left singular vectors corresponding tosthe
largest singular values.

3. Compute model parameters:
(a) i)\l = ﬁTﬁl,
(b) oo = (P, U)* Py,
(C) Em = Uv—rﬁ37m71(ﬁ—rﬁ2,1)+ Ve € [n]

Figure 1: HMM learning algorithm.

e To predict the conditional probability of, givenxzy.,_1:
o~ bl Emﬁ
Prlz|z1.-1] = '
Yo b Byb,
Aside from the random sampling, the running time of the learalgorithm is dominated by the SVD computation
of ann x n matrix. The time required for computing joint probabilitgiculations isO(tm?) for lengtht sequences—
same as if one used the ordinary HMM parametéra0dT’). For conditional probabilities, we require some extra

work (proportional ton) to compute the normalization factor. However, our analgsiows that this normalization
factor is always close to (see Lemmpb13), so it can be safely omitted in many applicatio

4.2 Main Results

We now present our main results. The first result is a guagaomie¢he accuracy of our joint probability estimates for
observation sequences. The second result concerns thaegod conditional probability estimates — a much more
delicate quantity to bound due to conditioning on unlikehges. We also remark that if the probability distribution
is only approximately modeled as an HMM, then our resultsaeg gracefully based on this approximation quality.

4.2.1 Joint Probability Accuracy

Let o, (M) denote thenth largest singular value of a matriX. Our sample complexity bound will depend polyno-
mially on1/c,,(P21) andl/o,, (O
Also, define

e(k) = min ZPr[xgzj]:Sg[n],|S|:n—k , 1)
j€S
and let
no(e) = min{k : e(k) < e}.

In other wordsn () is the minimum number of observations that account for abewt of the total probability mass.
Clearlyno(e) < n, but it can often be much smaller in real applications. Fanegle, in many practical applications,
the frequencies of observation symbols observe a powecalie( Zipf's law) of the formf (k) « 1/k*, wheref (k) is



the frequency of thé-th most frequently observed symbolsif> 1, thene(k) = O(k'~*), andng(g) = O(/(1=9))
becomes independent of the number of observationBhis means that for such problems, our analysis below leads
to a sample complexity bound for the cumulative distribafite[z1 ;] that can be independent of This is useful in
domains with large: such as natural language processing.

Theorem 6. There exists a constant > 0 such that the following holds. Pick ay< ¢,n < 1 andt > 1, and let
e = om(0)om (Pa1)e/(4t/m). Assume the HMM obeys Conditidn 1, and

t2 m m - ng(e) 1
N>C-—. log =
-Ue (am<0>2crm<P2,1>4 T o O o (P)?) 87

With probability at least — ), the model returned by the algorithbEARNHMM (m, N) satisfies

Z |Pr[Ila"-axt]_ﬁ'[xl,...,ztn < €.

L1y Tt

The main challenge in proving Theor&in 6 is understandingthevestimation errors accumulate in the algorithm’s
probability calculation. This would have been less protd@oif we had estimates of the usual HMM parametérs
andO; the fully observable representation forces us to deal mibhe cumbersome matrix and vector products.

4.2.2 Conditional Probability Accuracy

In this section, we analyze the accuracy of our conditiomadmtionsﬁ[xt|x1, ..., 2¢+—1]. Intuitively, we might
hope that these predictive distributions do not becometrarily bad over time, (ag — oo). The reason is that
while estimation errors propagate into long-term prohgbpredictions (as evident in Theordm 6), the history of
observations constantly provides feedback about the lyidgridden state, and this information is incorporated
using Bayes'’ rule (implicitly via our internal state updsjte

This intuition was confirmed by Even-Dar ef al. [2007], whowkd that if one has an approximate modellof
andO for the HMM, then under certain conditions, the conditiopddiction does not diverge. This condition is the
positivity of the ‘value of observationy, defined as

v = _ inf JO7].
7| ] =1
Note thaty > ¢,,(0)/+/n, so it is guaranteed to be positive by Conditidn 1. Howeyeran be much larger than
what this crude lower bound suggests.

To interpret this quantity;, consider any two distributions over hidden stafe € R™. Then|O(h — ﬁ)||1 >
||k — h|j;. Regardingh as the true hidden state distribution ales the estimated hidden state distribution, this
inequality gives a lower bound on the error of the estimateseovation distributions undép. In other words, the
observation process, on average, reveal errors in our histdée estimation. The work of [Even-Dar et al., 2007] uses
this as a contraction property to show how prediction erfdee to using an approximate model) do not diverge. In
our setting, this is more difficult as we do not explicitlyiesite O nor do we explicitly maintain distributions over
hidden states.

We also need the following assumption, which we discussi&urfollowing the theorem statement.

Condition 3 (Stochasticity Condition)For all observations: and all states andj, [A;];; > a > 0.

Theorem 7. There exists a constaid > 0 such that the following holds. Pick aly< ¢,n < 1, and lete =
om(0)om(Pa1)e/(4y/m). Assume the HMM obeys Conditidis 1 &hd 3, and

m (log(2/a))* m 1 m - no(e) 1
> C. . —. -log =,
N=zC <<62a2 T ) a0 o (B @ om(OPaon(Ba?) %87

With probability at least — 7, then the model returned bhyeARNHMM (m, N) satisfies, for any timg

—~ P e
KL(Prlas|ay, ..., ze—1] || Prlzi]ze, .. 2e-1]) = Eguyp, [ln M] < e
Prz|21:-1]



To justify our choice of error measure, note that the probdéimounding the errors of conditional probabilities is
complicated by the issue of that, over the long run, we may haxondition on a very low probability event. Thus
we need to control the relative accuracy of our predictiofisis makes the KL-divergence a natural choice for the
error measure. Unfortunately, because our HMM conditiolesnaore naturally interpreted in terms of spectral and
normed quantities, we end up switching back and forth batwédeand L., errors via Pinsker-style inequalities (as in
[Even-Dar et all, 2007]). Itis not clear to us if a signifidgritetter guarantee could be obtained with a plreerror
analysis (nor is it clear how to do such an analysis).

The analysis in [Even-Dar etlal., 2007] (which assumed thpt@imations tal’ andO were provided) dealt with
this problem of dividing by zero (during a Bayes’ rule upddtg explicitly modifying the approximate model so that
it neverassigns the probability of any event to be zero (since ifelient occurred, then the conditional probability is
no longer defined). In our setting, Conditioh 3 ensures the model never assigns the probability of any event to
be zero. We can relax this condition somewhat (so that we neeguantify over all observations), though we do not
discuss this here.

We should also remark that while our sample complexity basrsignificantly larger than in Theorenh 6, we are
also bounding the more stringent KL-error measure on camdit distributions.

4.2.3 Learning Distributions e-close to HMMs

Our L, error guarantee for predicting joint probabilities stitiltis if the sample used to estimaﬁ’e, ﬁg,l, ﬁ3,1,1 come
from a probability distributiorPr[-] that is merely close to an HMM. Specifically, all we need ig thare exists some
tmax > 3 and somen state HMM with distributiorPr™M[.] such that:

1. PrHMM satisfies Conditionl1 (HMM Rank Condition),
2. Forallt < tmaw ., , | Prlzis] — PriMM(zy,]] < e™MM(1),
3. MM(2) < S0, (P,

The resulting error of our learned modal is

Y I Prlwry] — Prizea]] < ™M)+ [Pr ™™ [zy,] - Prizi)

Z1:t Z1:t

for all ¢ < tmax. The second term is now bounded as in Thedrkm 6, with speetrameters correspondingie™M .

5 Proofs

Throughout this section, we assume the HMM obeys Condifiofable[ 1l summarizes the notation that will be used
throughout the analysis in this section.

5.1 Estimation Errors

Define the following sampling error quantities:

e = |[PL—Pi2
€21 = [[Po1— P2
€351 = |[Psw1— P3asille

The following lemma bounds these errors with high probgbés a function of the number of observation samples
used to form the estimates.

10



m,n Number of states and observations
no(e) Number of significant observations
O, T, A, HMM parameters

Py, P4, P31 Marginal probabilities

ﬁl, ﬁm, ﬁ?,,m,l Empirical marginal probabilities

€1, €2.1, €321 Sampling errors [Sectidn 5.1]

U Matrix of m left singular vectors 013271

beo, By, by True observable parameters usligSectior 5.1
300, EI, 31 Estimated observable parameters uiThg

0oos Agy 01 Parameter errors [Sectibn b.1]

A >, A, [Sectior(5.1]

Om (M) m-th largest singular value of matrix/

Et, Bt True and estimated states [Secfiod 5.3]

he, he, Ge (UTO) " by, (UTO) by, he/(1] hy) [Section5.B]
Ay (UTO)"1B,(UT0O) [Sectior5.8]

7, « inf{[|Ov|[x : |lv[ls = 1}, min{[Az];,}

Table 1: Summary of notation.

Lemma 8. If the algorithm independently samplaSobservation triples from the HMM, then with probability asist
1—mn:

1 3 1

a = YNy Ty

1 3 1

R i s

a - 11 3+ 1
maxes 1 > — n—- -~
@ " N n N

=) =
=
I | W
+
o=

3
2e(k —In-—
+e()>—|— Nn77 ¥

D esan < mkin<

x

wheree(k) is defined in(T).
Proof. See Appendik Al

The rest of the analysis estimates how the sampling erréestahe accuracies of the model parameters (which
in turn affect the prediction quality). We need some resfitien matrix perturbation theory, which are given in
AppendiXB. R

LetU € R™™ be matrix of left singular vectors df, ;. The first lemma implies that i, ; is sufficiently close

to 1, i.e. ez 1 is small enough, then the difference between projectin@ﬁge(ﬁ) and torange(U) is small. In
particular,U T O will be invertible and be nearly as well-conditionedia$ O.

Lemma 9. Supposes,; < ¢ - oy, (P2,1) for somes < 1/2. Leteg = €3, /((1 — €)om(Po,1))?. Then:
1. g9 < 1,
2. 0n(UTPoy) > (1= €)om(Po),
3. Um(ﬁsz,l) > 1 —eqom(P21),
4. 5, (UT0) > VT =240m(0).

11



Proof. The assumptions imply, < 1. Sinceam(ﬁTﬁgJ) = Um(ﬁg)l), the second claim is immediate from
Corollary[22. LetU € R™*™ be the matrix of left singular vectors @b ;. For anyz € R™, |[U Uz|s =

[lz]|24/1 — HﬁIU| 2 > ||z||2v/T — €0 by Corollary[22 and the faet; < 1. The remaining claims followl

Now we will argue that the estimated paramefe;,s EI,El are close to the following true parameters from the
observable representation whiris used forlJ:

boe = (PLUYP = (UT0) 1,
B, = (U P, )(UTP)t = (UTO)ALUTO)™" forz=1,...,n,
b = U'p.

By Lemmad3, as long as T O is invertible, these parametélvr&, Ez,gl constitute a valid observable representation
for the HMM.
Define the following errors of the estimated parameters:

b = H(ﬁTO)T(EOO—’BOO)HOO - H(ﬁTO)TBOO_ImHOO,

A, = |@0) (B. - B.) 0T0)|| = |[(@T0) B0 0) - A
A= YA,

i = fjomor -, = fio7or ],

We can relate these to the sampling errors as follows.

Lemma 10. Assumes ; < o,,(P2.1)/3. Then:

€21 €1
e < 4 : + )
(Um(P271)2 30'm(P21))
8 \/ﬁ ( €21 €3,2,1 )
Az S . |\ Prlrze = 2| - . + — )
V3 a0y \" = T Y S (P
A < 8 vm ( €2,1 er&%l)
V3 on(0) \on(P21)?  30m(P21))’
2 Vm
§o< = .
'S B om0

Proof. The assumption ocb,lguaraintees thdf TO is inverAtibIe (I:emm@).A B
We boundies = [[(OTU)(boo = boo)llsc BY |0 [|oc U (bos = bos)lloc < [[bsc = boc|l2. Then:
oo —bocllz = [[(PLT) Py = (P, T) P2
< (BLO)T = (BLO) D) Pilla + (P, U) (P = Py)la
< N(BLO)T = (BLO) D)2 Prlly + [(PLO) T ol Py = Pl
1++/5 . €21 €1

.0

> = = +
2 min{om(PgJ),Um(PQT)lU)}2 Um(PleU)

A

where the last inequality follows from Lemral 23. The bound fillows from Lemmd®.
Next for A, we bound each terif(U "O)~Y (B, — B,)(UTO)|1 by vm|(UTO)~ (B, — B,)U " |2]|O|l1 <
Vml[(UTO) Y o||Be — Bll2|lU T|2]|O|l1 = v/m|| Bz — Bell2/0m(UTO). To deal with|| B, — B,||2, we use the

12



decomposition

= H(ﬁTPB‘,z,l)(ﬁTPQ,l)JF - (ﬁTﬁs,x,l)(ﬁTﬁzﬂJrHQ

< H(ijPB,z,l) ((ﬁTPz,l)Jr - (UTﬁz,l)Jr) H2 + HﬁT (P3,m,1 - ﬁ3,m,1) (UTP2,1)+H2
< |P Is 1+5 . €21 " €3.2,1
SO in{o, (P U7 Pp)}? UTP
mln{am( 2,1)70m( 2,1)} Um( 2,1)
< Prles =4 - 1+V5 ' €21 €3,2,1

~ = + = )
2 min{om(PgJ),Um(UTPgJ)}Z Um(UTPQJ)

where the second inequality uses Lenimh 23, and the final aigquses the fac P ..1ll2 < />, ;P20 <
Zi)j [Ps.21]i,; = Prlzs = x]. Applying Lemmd® gives the stated boundAp and alsoA.

Finally, we bounds; by /m|(UTO)~1UT ||s||P. — Pi||2 < v/me1 /om (U T O). Again, the stated bound follows
from Lemmd 9l

5.2 Proof of Theorem®

We need to quantify how estimation errors propagate in thbalility calculation. Because the joint probability of
a lengtht sequence is computed by multiplying togethenatrices, there is a danger of magnifying the estimation
errors exponentially. Fortunately, this is not the casefeitlowing lemma shows that these errors accumulate rqughl
additively.

Lemma 11. Assumd/ T O is invertible. For any time:

ZH((?TO)—l (Bmﬁl - Bmﬂbl)H (1+ A6+ (1+A) —

T1:t

(1+A) —1 = 07 is true

Proof. By induction ont. The base case, thatU " O)~1(by — by)|l; < (1 4+ A)%5;
= er 1. 1b1 andbt = bt(,Tl e 1)

by definition. For the inductive step, define unnormalizedesth, = b (x1..—1)
By, ., bi. Fixt > 1, and assume

> [0 i -5

T1:t—1

‘1 < (14 A1+ (1+ A -

Then, we can decompose the sum avgr as

Z ” UTO By, b Nwt 151)”1
33 H@T@* ((Bew = Bec) e (B = Be) (b =) + B (B =)

Tt T1:t—1

which, by the triangle inequality, is bounded above by

> X |@ror? (B - B.) @0, @70y h| @
S X w0 o myl [0 6w, @
+3 Z |@ oy BT o 0T o) (b - 1) |- @

Tt Ti:t—1
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We deal with each double sum individually. For the sum&in (@ use the fact that(U T O)~1b;|; = Pr[z1._1],
which, when summed over;.;_1, is 1. Thus the entire double sum is boundedAyby definition. For [(B), we
use the inductive hypothesis to bound the inner sum ﬂ)(/@rTO)@t — by)||1; the outer sum scales this bound by
A (again, by definition). Thus the double sum is boundedMfyl + A)!=16; + (1 + A)!=! — 1). Finally, for
sums in [(4), we first replac@TO)*lﬁt(ﬁTO) with A,,. SinceA,, has all non-negative entries, we have that
| A, @1 < 1] A,,|7]| for any vectord € R™, where|d| denotes element-wise absolute valueiofNow the fact
1, >, Ag |U] = 1, T|5] = 1|5 = ||#, and the inductive hypothesis imply the double suntn (4) isrisied by
(1+A)=16; + (14 A)t~! — 1. Combining these bounds fdd (2)] (3), ahtl (4) completesrttadtion.l

All that remains is to bound the effect of errorslA)ig. Theorenf b will follow from the following lemma combined
with the sampling error bounds of Lemifia 8.
Lemma 12. Assumes 1 < 0,,(P21)/3. Then for any,
S |Priwia] = Prleral| < 0o + (1400) (1+A)01 + (1+4) —1).

Proof. By Lemmd® and the condition an ;, we haveum(ﬁTO) > 0soU T O is invertible.
Now we can decompose ttlig error as follows:

Z Prlwy,] — Prlew| = 2]3;1%131 — bLB.,.,b
S LAa i - L|
< i’@m_ZOO)T((?TO)(UTO)*EME‘ (5)
; 'Z (b = 5) (@ TO)TTO) ™ (B b1 = By (6)
+ Z BLOTONTTO) ™ (Brsby = Buvb) . ()

X1:t

The first sum[(b) is

S | = 5) T @TONTTO)  Buii| < 3 [T O) (e )|

T1:t T1:t

foora. ]

(o]

IN

D s At = D 0uc Prlziy] = 0uc

Z1:t Z1:t

where the first inequality is Holder’s, and the second usedbunds in Lemnial0.
The second sunil6) employs Holder’s and Leninia 11:

(b =) T(OTONOTO) ™ (Br b1 = Bryb)| < [(0TO) (b — b || (0T O) 7 (B b = B b)|
< Gao((14 A6 + (1+A) —1).

1

Finally, the third sum[{7) uses Lemrmal11:

> pL@TOTTO) (Buy b = Buuiby)| = D [1T(OT0) (Bryby — By b
ZT1:t T1:t
Z H(UTO)_l(Ewt:l/b\l - Ewt:lgl)H

T1:t

IN

1

IN

(1+A)6+(1+A)" -1
Combining these gives the desired bouhd.
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Proof of Theorerhl6 By Lemmd8, the specified number of samplégwith a suitable constartt), together with the
setting ofe in ny(g), guarantees the following sampling error bounds:

€1 < min (0.05- (3/8) - om(Pa1) - €), 0.05- (V3/2) - 0 (O) - (1/v/m) - e)
€21 < min (0.05- (1/8) - o (P21)? - (¢/5), 0.01- (V/3/8) - 01 (O) - o (Pa1)? - (1/(tv/m)) - e)
Y w1 <039 (3V3/8) - 01(0) - 0w (Po) - (1/(tv/m)) - c.

x

These, in turn, imply the following parameter error bounis Lemmd 105, < 0.05¢, 61 < 0.05¢, andA < 0.4¢/t.
Finally, LemmdIP and the fa¢t + a/t)! < 1 + 2a for a < 1/2, imply the desired.; error bound ot. I

5.3 Proof of Theorem(7

In this subsection, we assume the HMM obeys Conditlon 3 (ditaoh to Conditior[1).
We introduce the following notation. Let the unnormalizstimated conditional hidden state distributions be

he = (UT0) by,

and its normalized version, R R

g = he/(1h).
Also, let ~ R R

A, = (UTO)'B.(U'0).

This notation lets us succinctly compare the updates madribgstimated model to the updates of the true model.
Our algorithm never explicitly computes these hidden sthséributionsg, (as it would require knowledge of the
unobserved). However, under certain conditions (namely Conditldnad[&and some estimation accuracy require-
ments), these distributions are well-defined and thus wehega for sake of analysis.

The following lemma shows that if the estimated parametersiecurate, then the state updates behave much like
the true hidden state updates.

Lemma 13. For any probability vectors € R” and any observatiom,

SThL(UT0) A0~ 1| < G +0A+A and

(Al Az — A,
DL(UTOVA, U] Al + 0o + 000Dy + A,

foralli=1,...,m

Moreover, for any non-zero vectar € R™,
A»T -~ =
1,,AzW - 1

bL(UTO) A~ 1= 00’

Proof. We need to relate the effect of the estimated operﬁgoto that of the true operatot,. First assumey is a
probability vector. Then:

b (UTO) A — 1] Ay

= \(Eoo — b)) (UTO) A1

4 (boo — boo) (UTO)(Ay — A)T + boo(UTO)(A, — A0

1(Poc = boo) " (T T O)l| oo | Aa8]1

+ 1(boo = boo) (U TO) || o | (Az — A1 10]11 + [[(Aw — Az |1 |1

IN

15



Therefore we have
S bLUTO) Al — 1| < b +00A+ A and dL(UTO) A0 < I) Al + 0o0 + 000D + Ay

Combining these inequalities with
(A0 = [Ae@i+[(As — A)@); > [Ap@]; — [[(An— An)dlly > [Ae@)i — (A — Ao) |1 |0l > [Aei]i — Ay

gives the first claim. N
Now drop the assumption thatis a probability vector, and assumg A, # 0 without loss of generality. Then:

iTAe 17 A0
b (UTO) A0 IT ApB + (boo — boo) T(UTO) Ayiis
|| A1

”A\wle - H(UTO)T(I;OO _gOO)HOOHA\wUﬂh
which is at mostl /(1 — ., ) as claimedl

A consequence of Lemniall3 is that if the estimated paramatersufficiently accurate, then the state updates
never allow predictions of very small hidden state probiads.

Corollary 14. Assumé., < 1/2, max, A, < /3,6 < /8, andmax, dec+d0c Az +A, < 1/3. Then[g:]; > «/2
for all ¢t ands.

Proof. Fort = 1, we use LemmB10 to géfi; — hyl|; < & < 1/2, so Lemmadl7 implies thas; — 1|1 < 46;.
Then[g1]; > [ha]i — [[P1]i — [91]i] > « — 461 > «/2 (using Conditio B) as needed. Ror 1, LemmdIB implies

[gz@\tfl]i > [AzGi—1]i — Az S o= a/3
b (0TO)Agior — LhApGiot + 000 + 000Bg + A, — 14+1/3 =

@
2

using Conditiofi B in the second-to-last stkp.

LemmdIB and Corollafy_14 can now be used to prove the coiatngatoperty of the KL-divergence between the
true hidden states and the estimated hidden states. Thesarstiares ideas from Even-Dar et al. [2007], though the
added difficulty is due to the fact that the state maintainedur algorithm is not a probability distribution.

Lemma 15. Letey = maxy, 20, /o + (0o + 00cls + Agz)/a + 200. ASSUME s < 1/2, max, A, < «/3, and
max, 0o + 00cAy + A, < 1/3. Forall ¢, if g, € R™ is a probability vector, then

2

T
2 (In2)?

KL(he1|[Gesr) < KL(he|[ge) — KL(R||e)? + o

Proof. The LHS, written as an expectation ovar,, is

m

Z[ﬁtJrl]i In [[Etﬂ]i] )

KL(Et+1||§t+l) = Emm ~
P gt+1]i
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We can boundn(1/[g:+1]:) as

T (TTTOVA =N
In — 1 - I boJUA—OA)A“gt T s
[Ger1i A, Gt

< [
o (IhAG [Angdi V(0T 0) A G vy
= In = - . — — . 1mht+1
AItgt]’L [Axtgt]l 11—7|?7,A1rgt
T;;Amtgt [Amt/g\t]i I;A;Et/g\t + 500 + 6OOA:Ef + Amt
[Aitgt]i [Axtgt]z - Axt I;Awt/g\t

1T A.G 20y, 0o + 000y, + Ay,

IN
=)

S(1+ 2500)>

IN

+ 2000

« «

TT Aw /.dt
< In|-2—=—| + ¢
B < [Aitgt]l ) 0

where the first inequality follows from Lemrhal13, and the setosedn(1 + a) < a. Therefore,

+ €o. (8)

P 7 P LG
KL(h+1]|er1) < Eopy | D [Resi)iln [htﬂ]i'm
i=1 TeIi

The expectation if{8) is the KL-divergence betwéaiV:;|x1.,_1] and the distribution ovel;  ; that is arrived at by
updatingPr[h;|z1..—1] (using Bayes’ rule) witfPr[h,1|h:] andPr[x,|h;]. Call this second distributioRr [y 1|x1.¢]
The chain rule for KL-divergence states

K LPr(hpya v |[Prhuga|21a]) + KL(Pr{holhesr, 2 [[Prhelhes, 214])
= KL(PI‘[/’Lt|$1:t]||Pr[ht|$1;t]) + KL(Pr[ht+1|ht,xl:t]||Pr[ht+1|ht,xlzt]).

Thus, using the non-negativity of KL-divergence, we have

A

KL(Pr{hyii|ra|[Priheri|zre) < KL(Prlhe|oya]|[Prihelaie]) + K L(Pr{hegt|he, 21l |[Prlhes|he, 1))
KL(Pr[ht|x1:t]||Pr[ht|x1:t])

where the equality follows from the fact th/th~[hH1|ht,:z:1:t] = f’vr[ht+1|ht] = Pr[hit1]he] = Prlhiga|he, z1.4].
Furthermore,

. . PI‘[.It“’Lt = Z]
Prlh; = i|lx1] = Prlhy =i|214-1] == : : and
[he = ilz1:4] [he = i|z1:0-1] ST Prlwdlhe = j] - Prlhy = jlere]
— _ — ) Prlxy|hy =1
Prlhy = ilz14] = Prlhe =ilzr] - —; [ t|, - ] ; ;
> imq Prlzefhe = j] - Pr[hy = jlzie—1]
SO
o~ S ) Pr[hy = i|w1.—1]
K L(Pr|h¢|x1.¢]||Pr|he|xq. = E.;., Prlh; =iz In ———————
(Pr(he|21:][|Pr(he|21:]) " l; [he = i|21.4] TR —
n ™ Pr[zi|lhe = 4] - Prlhe = jlai.a—
— ]Ellzt ZPI‘[I’Lt = 7;|I1:t] ln Zin_l [ t| i j] ,\[ i ]| Lt 1]
i1 > imr Prlzelhe = j] - Pr[hy = jloie—1]

17



The first expectation is

S Prlhy = il
Epp | Y Prlhe = il In %]
=t Prihy = ilw1:¢-1]

r m _ Pr(hy = i|z1:4-1]
— Ezl:til Z Pr[xt|x1:t,1] Z Pr[ht = Z|I1:t] In m
L Tt =1 B o

[ - . . Pr[ht = ’L'|CC1:t,1]
= E; . Prlzi|hy = 1| - Pr[hi = i|z14—1] I T —
e [0S Prfa|hy = i] - Prlhy = ilr1.-1) T —

x: 1=1

& . Prlhy = ilz141]
= E..,_ Prlzs, hy = t|214 1| In ———————
o | Pl e = e n o

Lzt i=1

= KL(h[,),

and the second expectation is

. ST Prfaglhy = ] - Prfhy = jlwmﬂ]
T1:t

>y Prla|hy = j]- Prlhy = jlz1.4-1]
™ Prlailhe = 4] - Prlhe = jlaia—
- Ezlzt—l ZPI‘[IdIl:tfl]ln an_l [ t| ! j] /\[ ! j| i 1]
Tt Z Pr[$t|ht = ]] : Pr[ht = ]|x1:t71]

j=1
= KL(Oh|Og).

Z Pr[h: = i|z1.4]In
i=1

Substituting these back intl(8), we have
KL(h|lGesr) < KL(hel[ge) — KL(Ohe||OGt) + €.

It remains to bounds L(Oh;||0F;) from above. We use Pinsker's inequallty [Cover and Thom@81], which states
that for any distributiong' andg,

15— allf,

N =

KL(pllq) >
together with the definition of, to deduce

o N 1 - N 72 - N
KL(Oh||Og:) > §Ew1:t71|\0ht—09t|ﬁ > 7E11;t71||ht—9t|\%

Finally, by Jensen’s inequality and Lemind 18 (the latteliappecause of Corollafy114), we have that
2
- o 1 o
Brval =Gl 2 Bl =3 > (2 KLGI9))

which gives the required bounh.
Finally, the recurrence from Lemrhal15 easily gives the feitg lemma, which in turn combines with the sam-
pling error bounds of Lemnid 8 to give TheorEm 7.

Lemma 16. Leteg = max, 2A, /a+ (doo + 000 As + Az ) /a+ 25 ande; = max, (doo + VMoo Az +/mA,) /.
Assum&,, < 1/2, max, A, < a/3, max, doo + 00z + Ay < 1/3,61 < In(2/a)/(872), g0 < In(2/a)?/(4+?),
ande; < 1/2. Then for allz,

2 (111%)250

and
72

KL(ﬁtHﬁt) < max | 461 log(2/«),
KL(PI‘[ZZ?t|ZZ?1;t,1] || f);[xth?l:tfl]) < KL(BtHgt) + 6oo+5ooA+A =+ 251.
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Proof. To prove the bound onKL(ﬁtH@), we proceed by induction o For the base case, Lemniad 18 (with
CorollaryI3) an@27 implys L (1 [|g1) < |71 — g1 ]1 In(2/a) < 461 In(2/«) as required. The inductive step follows
easily from Lemm&Z15 and simple calculus: assumaing: 1/(4c1), z — ¢122 + ¢ is non-decreasing in for all z <
Vca/c1,802" < z—c12%+co andz < /o /cq togetherimply that” < \/c2/c;. The inductive step uses the the above
fact with z = K L(14||G:), 2 = K L(hes1|[Ges1), 1 = 72/(2(In(2/))?), andes = max(e, c1 (461 log(2/a))?).

Now we prove the bound OKL(Pr[:z:t|:171;t,1]||f’;[:17t|:1:1;t,1]). First, |et1/3\r[:17t, h¢|x1..—1] denote our predicted
conditional probability of both the hidden state and obatown,i.e. the product of the following two quantities:

bL(TTO)A, s

Prie = dlove] = g and Prizdh =iovol = S5 507

Now we can apply the chain rule for KL-divergence

K L(Pr{z|w1.1]|[Prlwi|z1.0-1])
<  KL(Prlh¢|zi.e—1]||Pr[he|z1:6-1]) + KL(Pr[z|he, z10-1]||Pr{ze|he, 21:0-1])

S, 0L (0T0) A5,
= h 11 t—1 h 1“7‘ Tyt /Lf 77 A
K L(hi|[g:) + [ZZ i < b1 (UTO)A,, i

=1 x
< KL(h|[G) + Bay, s lzz [74]iOa, i1 <AAO%> (1 + o + G A + A)
i=1 x¢ [b;(UTO)AIt]l

where the Iait inequality uses Lemma 13. It will suffice tovehioat O, ; /(b (UTO)A,,]; < 1+ 2;. Note that
Oy, i = [bL(UTO)A.,]i > o by Conditior8. Furthermore, for ariy
BLTT0)As)i = Ospal < [BL(UTO) AL, —bL(UT0)As, |
< (boo — boo) (U7 O)|ec| s o
A 11(boe — o) (T T O) e[| Az, — Au, 10
+ oo (U7 O)lloc | Az, — Aue 1o

< boo + VMo Ay, + VmA,,.
Therefore
L < Oxt 1
BLOTO)A,); ~ Owi— (B + Vmooly, + VmAy,)
1
<
T 1= (0o + VMO, + VmAL,)/ax
< ! < 14 261
1-— &1
as needed

Proof of Theorerhl7 The proof is mostly the same as that of Theokém 6 with1, except that Lemn{a6 introduces
additional error terms. Specifically, we require

4
In(2/a)® m and N>cC. " m

N>C- :
= eta?yt 0,(0)20 (Pe1)t - €202 01,(0)20,,(P2q)*

so that the terms

2
max <45110g(2/a), %) and ey,
Y

respectively, ar€(¢). The specified number of samplasalso suffices to imply the preconditions of Lemima 16. The
remaining terms are bounded as in the proof of Thedieln 6.
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Lemma 17. If ||@ — b||; < ¢ < 1/2 andb is a probability vector, thetj@/ (17 @) — b||; < 4.

Proof. First, it is easy to check that— ¢ < 1'@ < 1+ ¢. Letl = {i : @/(I"@) > b;}. Then fori € I,
a@:/(17a) —b;| = a@/17a) —b; < @/l —c)—b; < (1+42e)a@ —b; < |d@ — b;| + 2cd,;. Similarly, for
i ¢ I, |b;—a;/(A7Ta)| = by —a/(ATa@) < b —adi/(1+¢) < b; — (1 —c)d; < |b; — @l + cd;. Therefore
l@/(T7a@) —bly < ||@—blls +2c¢(17a@) < ¢+ 2¢(1 +¢) < 4e.

Lemma 18. Let @ and b be probability vectors. If there exists some< 1/2 such thatb; > ¢ for all 4, then
KL(d||b) < ||a@— bl[x log(1/c).

Proof. See|[Even-Dar et al., 2007], Lemma 3.10.

Acknowledgments

The authors would like to thank John Langford and RuslankBal@inov for earlier discussions on using bottleneck
methods to learn nonlinear dynamic systems; the linedvizatf the bottleneck idea was the basis of this paper. We
also thank Yishay Mansour for pointing out hardness regattéearning HMMs. Finally, we thank Geoff Gordon,
Byron Boots, and Sajid Siddiqi for alerting us of an error joravious version of this paper. This work was completed
while the first author was an intern at TTI-C in 2008.

References

S. Andersson, T. Ryden, and R. Johansson. Linear optimdigbi@n and innovations representations of hidden
markov modelsStochastic Processes and their Applicatioh38:131-149, 2003.

Leonard E. Baum and J. A. Eagon. An inequality with applmadito statistical estimation for probabilistic functions
of Markov processes and to a model for ecologyll. Amer. Math. So¢73(3):360-363, 1967.

Leonard E. Baum, Ted Petrie, George Soules, and Norman \WWesaximization technique occurring in the statistical
analysis of probabilistic functions of Markov chaisnnals of Mathematical Statistic41(1):164-171, 1970.

S. Charles Brubaker and Santosh Vempala. Isotropic PCAffind-&nvariant clustering. If+fOCS 2008.
J.W Carlyle and A. Paz. Realization by stochastic finite mnatton.J. Comput. Syst. S¢b:26-40, 1971.

Kamalika Chaudhuri and Satish Rao. Learning mixtures ofipcbdistributions using correlations and independence.
In COLT, 2008.

T. M. Cover and J. A. Thomaglements of Information ThearWiley, 1991.

G. Cybenko and V. Crespi. Learning hidden markov modelsgusan-negative matrix factorization. Technical report,
2008. arXiv:0809.4086.

Sanjoy Dasgupta. Learning mixutres of GaussiangOCS 1999.

Sanjoy Dasgupta and Leonard Schulman. A probabilisticyarsabf EM for mixtures of separated, spherical Gaus-
sians.JMLR, 8(Feb):203-226, 2007.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelin from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, Serie8B(1):1-38, 1977.

Eyal Even-Dar, Sham M. Kakade, and Yishay Mansour. Planimi®OMDPs using multiplicity automata. dAl,
2005.

Eyal Even-Dar, Sham M. Kakade, and Yishay Mansour. The w@lodservation for monitoring dynamic systems. In
IJCAI, 2007.

20



M. Fliess. Matrices deHankel. Math. Pures App|53:197-222, 1974.

H. Hotelling. The most predictable criteriodournal of Educational Psycholog¥935.

Herbert Jaeger. Observable operator models for discratbastic time seriedNeural Comput.12(6), 2000.
T. KatayamaSubspace Methods for System Identificati®pringer, 2005.

M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, an8ellie. On the learnability of discrete distributions.
In STOG pages 273-282, 1994,

Michael Littman, Richard Sutton, and Satinder Singh. Ri@adi representations of state. Advances in Neural
Information Processing Systems 14 (NIR&)ges 1555-1561, 2001.

L. Ljung. System Identification: Theory for the Us@&tJ: Prentice-Hall Englewood Cliffs, 1987.

C. McDiarmid. On the method of bounded differences.Surveys in Combinatoricpages 148-188. Cambridge
University Press, 1989.

E. Mossel and S. Roch. Learning nonsingular phylogeniesaitn Markov modelsAnnals of Applied Probability
16(2):583-614, 2006.

P. V. Overschee and B. De Modubspace ldentification of Linear Systedgiwer Academic Publishers, 1996.

Lawrence R. Rabiner. A tutorial on hidden Markov models agldcted applications in speech recogniti®noceed-
ings of the IEEE77(2):257—286, 1989.

M.P. Schitzenberger. On the definition of a family of auttanknf. Control, 4:245-270, 1961.
G. W. Stewart and Ji-Guang Suklatrix Perturbation TheoryAcademic Press, 1990.

Sebastiaan Terwijn. On the learnability of hidden Markovdels. InInternational Colloquium on Grammatical
Inference 2002.

B. Vanluyten, J. Willems, and B. De Moor. A new approach fog tlentification of hidden markov models. In
Conference on Decision and Contr@007.

Santosh Vempala and Grant Wang. A spectral algorithm fonleg mixtures of distributions. IFROCS 2002.

MingJie Zhao and Herbert Jaeger. The error controllingritigm for learning OOMs. Technical Report 6, Interna-
tional University Bremen, 2007.

A Sample Complexity Bound

We will assume independent samples to avoid mixing estonat®therwise, one can discount the number of samples
by one minus the second eigenvalue of the hidden state ticansiatrix7".

We are bounding the Frobenius norm of the matrix errors. Faoplgcity, we unroll the matrices into vectors, and
use vector notations.

Let z be a discrete random variable that takes value§lin..,d}. We are interested in estimating the vector
qd = [Pr(z = j)];’:l from N i.i.d. copiesz; of z (i = 1,...,N). Let¢; be the vector of zeros expect theth

component being one. Then the empirical estimatgisf; = Zf;l q;/N. We are interested in bounding the quantity

17— q1l3-

The following concentration bound is a simple applicatibthe McDiarmid’s inequality [McDiarmid, 1989].
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Proposition 19. We haveve > 0:
Pr(g—aly = 1/VN +¢) < e,

Proof. Considerg = Zfil q;/N,and letp = Zfil p; /N, wherep; = ¢; except fori = k. Then we havdlg — ¢]|> —
15— qll2 < |7 —Pll2 < V2/N. By McDiarmid’s inequality, we have

-~ ~ —_ 62
Pr(|[g—qll, 2 El[g—qll, +¢) < e ™.

N N o\ 1/2
>~ < (s]3a-nq
=1 2 =1 2

N 1/2 N 1/2
= (ZEIQE—M) = <ZE[1—2@TJ+ ||d1§}> = YN dl3).

This leads to the desired bourd.

Note that

E

Using this bound, we obtain with probability— 37:

er < /In(1/n)/N + /1/N,

e21 < /In(1/n)/N ++/1/N,
Maxegg,1 < /263@71 < /In(1/n)/N + /1/N,
1/2
> e < Vn <Z 65,1,1> < /nIn(1/n)/N ++/n/N.

If the observation dimensionality is large and sample siz€ is small, then the third inequality can be improved
by considering a more detailed estimate. Given kgt ¢(k) be sum of elements in the smallest- & probabilities
Prlzg = 2] = Zi_’j [Ps ..1)i; (Equatioril). LetS,, be the set of these — k suchz. By Propositiofi .10, we obtain:

2

S Psan = Paaalld + DY (1Psanlis — [Praali)| < (\/1n(1/77)/N+ \/1/N)2'

¢Sy €Sy i)

Moreover, by the definition of}, we have

Z ||]3311 — P allr < Z Z |[ﬁ3,x,l]ij — [Ps,2,1]ij]

v TESK 1,J
< 30 S (0Pl — [Prsaly) + )
€Sk ,J
£ 30 S win (0, (Pl — [Prilis) + (k)
TESK ,]

< Z Z([ﬁ?wl]m — [Psz1]ij)| + 2¢(k).

Therefore

> e < min (VEI/M)/N + VBN +/In(1/n)/N + V1N + 26(k) )

x

This means_ , €3 .1 may be small even ifi is large, but the number of frequently occurring symbolssanall.
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B Matrix Perturbation Theory

The following perturbation bounds can be found in [Stewad Sun| 1990].

Lemma 20 (Theorem 4.11, p. 204 ih [Stewart and Sun, 199€Bt A € R™*" withm > n, and letA = A + E. If
the singular values off andA are (o7 > ... > 0,) and(o; > ... > 7,), respectively, then

o —oil <||Ell2 i=1,...,n.

Lemma 21 (Theorem 4.4, p. 262 in [Stewart and Sun, 199Q¢t A € R™*", with m > n, with the singular value
decompositiofUy, Us, Us, X1, X, V1, Va):

Ul Y0
Uy [A[wvi Val=| 0 % |.
U, 0 0

Let A = A + E, with analogous SVIU, Uy, Us, £1, 55, V1 V3). Let® be the matrix of canonical angles between
range(U7) andrange(U; ), and®© be the matrix of canonical angles betweeange(V; ) andrange(V1). If there exists

d,a > 0 such thatmin o(¥1) > a + § andmax o(X2) < «, then

E
max{|| sin ® ||, || sin O[5} < 1Bz

Corollary 22. Let A € R™*", withm > n, have rankn, and letU € R™*" be the matrix of: left singular vectors
corresponding to the non-zero singular valugs> ... > o, > 00f A. LetA = A+ E. LetU € R™*" be the matrix
of n left singular vectors corresponding to the largestingular values; > ... > &, of A, and letU, € R"*(m—n)
be the remaining left singular vectors. Assuliig|» < eo,, for somee < 1. Then:

1.0, > (1 —¢)o,,
2. |[U[ U2 < ||E|l2/Fn-

Proof. The first claim follows from Lemma 20, and the second folloves1i Lemmd 2Il because the singular values
of U U are the sines of the canonical angles betweeie(U) andrange(U). I

Lemma 23(Theorem 3.8, p. 143 in [Stewart and Sun, 1990Rt A € R™*" withm > n, and letA = A+ E. Then

1++5
2

JAY = 4t < 25X max{| AV, |4 BHIE

C Recovering the Observation and Transition Matrices

We sketch how to use the technique lof [Mossel and Roch,| 2@0&jdover the observation and transition matrices
explicitly. This is an extra step that can be used in conjonatith our algorithm.

Define then x n matrix [Ps 1];,; = Prjzs = i,z1 = j]. LetO, = diag(Oz1,. .., Ozm), SOA; = TO,. Since
Py .1 =0A,Tdiag(®)O", we havePs ; = > P31 = OTT diag(7)O". Therefore

U'Ps,1 = UTOTO,T diag(7)0"
= (UTor)o.(UuTor)"L(UTOoT)T diag(7)O"
(UToT)0,(UTOT)" (U P3).

The matrixU T P; ; has full row rank, sqU " P 1)(U T Ps 1)t = I, and thus

(UTP; 1) (U"P31)T = (UTOT) O, (UTOT)™ .
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SinceO,, is diagonal, the eigenvalues(aWTP3@71)(UTPg,,l)Jr are exactly the observation probabilit@s ., . . ., O, .
Define i.i.d. random variables. ~ N (0, 1) for eachz. Itis shown in[Mossel and Roch, 2006] that the eigenvalues
of

> (U Py 1)U P3y)t = (UTOT) (ng m) (wror)=*

will be separated with high probability (though the separais roughly on the same order as the failure probability;
this is the main source of instability with this method). Téfere an eigen-decomposition will recover the columns of
(UTOT) up to adiagonal scaling matri i.e.U T OT'S. Then for eachr, we can diagonaliz€/ " P , 1)(U " P3 1)

(UTOTS) (U P3 1)U P31)" (UTOTS) = O,.

Now we can formO from the diagonals of,.. SinceO has full column rankQ+O = I,,,, so it is now easy to also
recoverr and7’ from P, andP; 1:
otp, = 0tor =7

and
0" Py 1 (0M) T diag(®) ™! = OT(OT diag(7)0 " )(OT) " diag(7)™' = T.

Note that because [Mossel and Rach, 2006] do not allow maserohtions than states, they do not need to work
in a lower dimensional subspace suchasege(U). Thus, they perform an eigen-decomposition of the matrix

ngp3wlp31 - OT (ng m) 1

and then use the eigenvectors to form the madix Thus they rely on the stability of the eigenvectors, whiepehds
heavily on the spacing of the eigenvalues.
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