4,372 research outputs found

    Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning

    Full text link
    This paper describes an experimental comparison of seven different learning algorithms on the problem of learning to disambiguate the meaning of a word from context. The algorithms tested include statistical, neural-network, decision-tree, rule-based, and case-based classification techniques. The specific problem tested involves disambiguating six senses of the word ``line'' using the words in the current and proceeding sentence as context. The statistical and neural-network methods perform the best on this particular problem and we discuss a potential reason for this observed difference. We also discuss the role of bias in machine learning and its importance in explaining performance differences observed on specific problems.Comment: 10 page

    Are screening methods useful in feature selection? An empirical study

    Full text link
    Filter or screening methods are often used as a preprocessing step for reducing the number of variables used by a learning algorithm in obtaining a classification or regression model. While there are many such filter methods, there is a need for an objective evaluation of these methods. Such an evaluation is needed to compare them with each other and also to answer whether they are at all useful, or a learning algorithm could do a better job without them. For this purpose, many popular screening methods are partnered in this paper with three regression learners and five classification learners and evaluated on ten real datasets to obtain accuracy criteria such as R-square and area under the ROC curve (AUC). The obtained results are compared through curve plots and comparison tables in order to find out whether screening methods help improve the performance of learning algorithms and how they fare with each other. Our findings revealed that the screening methods were useful in improving the prediction of the best learner on two regression and two classification datasets out of the ten datasets evaluated.Comment: 29 pages, 4 figures, 21 table

    A Decision tree-based attribute weighting filter for naive Bayes

    Get PDF
    The naive Bayes classifier continues to be a popular learning algorithm for data mining applications due to its simplicity and linear run-time. Many enhancements to the basic algorithm have been proposed to help mitigate its primary weakness--the assumption that attributes are independent given the class. All of them improve the performance of naĆÆve Bayes at the expense (to a greater or lesser degree) of execution time and/or simplicity of the final model. In this paper we present a simple filter method for setting attribute weights for use with naive Bayes. Experimental results show that naive Bayes with attribute weights rarely degrades the quality of the model compared to standard naive Bayes and, in many cases, improves it dramatically. The main advantages of this method compared to other approaches for improving naive Bayes is its run-time complexity and the fact that it maintains the simplicity of the final model

    A systematic comparison of supervised classifiers

    Get PDF
    Pattern recognition techniques have been employed in a myriad of industrial, medical, commercial and academic applications. To tackle such a diversity of data, many techniques have been devised. However, despite the long tradition of pattern recognition research, there is no technique that yields the best classification in all scenarios. Therefore, the consideration of as many as possible techniques presents itself as an fundamental practice in applications aiming at high accuracy. Typical works comparing methods either emphasize the performance of a given algorithm in validation tests or systematically compare various algorithms, assuming that the practical use of these methods is done by experts. In many occasions, however, researchers have to deal with their practical classification tasks without an in-depth knowledge about the underlying mechanisms behind parameters. Actually, the adequate choice of classifiers and parameters alike in such practical circumstances constitutes a long-standing problem and is the subject of the current paper. We carried out a study on the performance of nine well-known classifiers implemented by the Weka framework and compared the dependence of the accuracy with their configuration parameter configurations. The analysis of performance with default parameters revealed that the k-nearest neighbors method exceeds by a large margin the other methods when high dimensional datasets are considered. When other configuration of parameters were allowed, we found that it is possible to improve the quality of SVM in more than 20% even if parameters are set randomly. Taken together, the investigation conducted in this paper suggests that, apart from the SVM implementation, Weka's default configuration of parameters provides an performance close the one achieved with the optimal configuration
    • ā€¦
    corecore