408,315 research outputs found

    Threshold Learning Dynamics in Social Networks

    Get PDF
    Social learning is defined as the ability of a population to aggregate information, a process which must crucially depend on the mechanisms of social interaction. Consumers choosing which product to buy, or voters deciding which option to take with respect to an important issue, typically confront external signals to the information gathered from their contacts. Economic models typically predict that correct social learning occurs in large populations unless some individuals display unbounded influence. We challenge this conclusion by showing that an intuitive threshold process of individual adjustment does not always lead to such social learning. We find, specifically, that three generic regimes exist separated by sharp discontinuous transitions. And only in one of them, where the threshold is within a suitable intermediate range, the population learns the correct information. In the other two, where the threshold is either too high or too low, the system either freezes or enters into persistent flux, respectively. These regimes are generally observed in different social networks (both complex or regular), but limited interaction is found to promote correct learning by enlarging the parameter region where it occurs.This work is supported by MEC (Spain) through project FISICOS (FIS2007-60327). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    An Efficient Threshold-Driven Aggregate-Label Learning Algorithm for Multimodal Information Processing

    Get PDF
    The aggregate-label learning paradigm tackles the long-standing temporary credit assignment (TCA) problem in neuroscience and machine learning, enabling spiking neural networks to learn multimodal sensory clues with delayed feedback signals. However, the existing aggregate-label learning algorithms only work for single spiking neurons, and with low learning efficiency, which limit their real-world applicability. To address these limitations, we first propose an efficient threshold-driven plasticity algorithm for spiking neurons, namely ETDP. It enables spiking neurons to generate the desired number of spikes that match the magnitude of delayed feedback signals and to learn useful multimodal sensory clues embedded within spontaneous spiking activities. Furthermore, we extend the ETDP algorithm to support multi-layer spiking neural networks (SNNs), which significantly improves the applicability of aggregate-label learning algorithms. We also validate the multi-layer ETDP learning algorithm in a multimodal computation framework for audio-visual pattern recognition. Experimental results on both synthetic and realistic datasets show significant improvements in the learning efficiency and model capacity over the existing aggregate-label learning algorithms. It, therefore, provides many opportunities for solving real-world multimodal pattern recognition tasks with spiking neural networks

    Machine Learning as an Accurate Predictor for Percolation Threshold of Diverse Networks

    Full text link
    The percolation threshold is an important measure to determine the inherent rigidity of large networks. Predictors of the percolation threshold for large networks are computationally intense to run, hence it is a necessity to develop predictors of the percolation threshold of networks, that do not rely on numerical simulations. We demonstrate the efficacy of five machine learning-based regression techniques for the accurate prediction of the percolation threshold. The dataset generated to train the machine learning models contains a total of 777 real and synthetic networks. It consists of 5 statistical and structural properties of networks as features and the numerically computed percolation threshold as the output attribute. We establish that the machine learning models outperform three existing empirical estimators of bond percolation threshold, and extend this experiment to predict site and explosive percolation. Further, we compared the performance of our models in predicting the percolation threshold using RMSE values. The gradient boosting regressor, multilayer perceptron and random forests regression models achieve the least RMSE values among considered models
    • …
    corecore