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When Constants Are Important 
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Abstract - In this paper we discuss several complexity aspects pertaining to neural networks, commonly 

known as the ‘curse of dimensionality’. The focus will be on: (i) size complexity and depth-size tradeofss; 

(ii) Complexity of learning; and (iii) precision and limited interconnectivity. Results have been obtained 

for each of these problems when dealt with separately, but few things are known as to the links amongst 

them. We start by presenting known results and try to establish connections between them. These show 

that we are facing very diflcult problems - exponential growth in either space (i.e. precision and size) 

and/or time (i.e. learning and depth) - when resorting to neural networks for solving general problems. 

The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff 

Further directions for research are pointed out in the conclusions. 

Keywords - neural networks, size complexity, complexity of learning, precision, interconnectivity (fan-in). 

1. Introduction 

A network is an acyclic graph having several input nodes (inputs) and some (at least one) 

output nodes (outputs). If with each edge a synaptic weight is associated and each node com- 

putes the weighted sum of its inputs to which a nonlinear activation function is then applied 

(artificial neuron, or simply neuron): 

the network is a neural network (NN), with wi E IR called the synaptic weights, 6 E IR known 

as the threshold, A being the fan-in to one neuron, and o a non-linear activation function. Such 

NNs are commonly characterised by two cost functions: (i) its depth (i.e. the number of layers); 

and (ii) its size (i.e. the number of neurons). 

* On leave of absence from the Department of Computer Science, “Politehnica” University of Bucharest, Spl. 
Independentei 313, RO-77206 Bucharest, Romlinia. 
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The paper is structured in four parts. In section 2 we detail some previous results for the 

size, precision and fan-in required by NNs, and the complexity of learning. As the parameters 

involved are scaling exponentially, we shall present in section 3 a solution for lowering some 

constants relating to size. Conclusions as well as open problems are ending the paper. 

2. Previous Results 

NNs have been shown to be quite effective in many applications (see Applications of Neural 

Networks in [3], and Part F: Applications of Neural Computation, Part G: Neural Networks 

in Practice: Case Studies from [22]). This success has generated two directions of research: 

one to find existence/constructive proofs for the “universal approximation problem; ” 

another one to find tight bounds on the size needed by the approximation problem. 

2.1. Depth and Size 

The first line of research has concentrated on the approximation capabilities of NNs. It was 

started in 1987 [26, 40, 411 by showing that Kolmogorov’s superpositions [37] can be inter- 

preted as a NN. The first nonconstructive proof has been given using a continuous activation 

function [19, 20, 291. Different enhancements have been later presented (see overview in [12]), 

but all these results -with the partial exception of [4, 36, 391 - were obtained “provided 

that suficiently many hidden units are available. ” This has led to more constructive solutions 

[35, 47, 481, and recently to an explicit numerical algorithm for superpositions [57]. These 

solutions are obtained in very small depth, but their size grows very fast. 

The other line of research was to find the smallest size NN which can realize an arbitrary 

function given a set of m vectors from R”. Many results have been obtained for NNs having 

a threshold activation function [lo, 551. One of the first lower bounds on the size of a NN 

for “almost all” n-ary Boolean functions (BFs) was size 2 2 (2%~)’ / 2  [46]. Later, a very tight 

upper bound size I 2 (2”/n):’ ’ 2 ~  { 1 + R [(2‘“/n)’ 12]} has been proven in depth = 4 [42]. Similar 

exponential bounds can be found in [17], while [54] gives an SZ (2 “ I 3 )  lower bound for ar- 
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bitrary BFs. For classification problems, one of the first results was that a NN of depth=3 

and size = m - 1 could compute an arbitrary dichotomy. The main improvements have been: 

Baum [6] presented a NN with one hidden layer having rm/nl neurons if the points 

are in general position (if the points are binary vectors, m - 1 nodes are needed); 

a slightly tighter bound rl + (m-2) /n l  was proven in [28] for a more relaxed topological 

assumption; the m - 1 condition was shown to be the least upper bound; 

Arai [2] showed that m - 1 hidden neurons are necessary, but improved the bound for 

the dichotomy problem to m / 3  (without any condition on the inputs). 
n -  1 These results show that the size grows exponentially, as m 1 2  . The existence lower 

bounds for the arbitrary dichotomy problem are also exponential (see [24, 501): 

a depth-2 NN requires at least m / [n log(m / n ) ]  hidden neurons if 3n I m I 2  n -  '; 
a depth-3 NN requires at least 2 (m/logm) ' I2  neurons in each of the two hidden layer 

2 if n <<m I 2 n - 1 ;  

an arbitrarily interconnected NN without feedback needs (2m /logm) I2 neurons if 
2 n 

One study tried to unify these two lines of research [18] by first presenting analytical so- 

lutions in one dimension (having infinite size!), and then giving practical solutions for the 

one-dimensional cases (i.e. including an upper bound on the size). Extensions to the n-dimen- 

sional case using three- and four-layers solutions were derived under piecewise constant ap- 

proximations, and under piecewise linear approximations. 

As can been seen, the known bounds for size are exponential for arbitrary functions, but: 

they reveal a gap between the upper and the lower bounds; and 

they suggest that NNs with more hidden layers (depth #constant) have a smaller size. 

The only clear exception is given by Kolmogorov's superpositions theorem which shows that 

a NN having only 2n + 1 neurons in the hidden layer can approximate any function. 

rxl is the ceiling of x, Le., the smallest integer greater than or equal to x, and LKJ is the floor of x, i.e., the largest 
integer less than or equal to x. In this paper all the logarithms are taken to base 2. 
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2.2. Complexity of Learning 

I The outcomes presented previously have proven the intrinsic power of NNs and have stimu- 

lated a more practical line of research for finding and/or improving learning algorithms. 

These algorithms are based on the learning ability of NNs. The key idea is to progressively 

modify the weights during several training phases, such that the NN can finally perform a 

specific task. Many learning rules are inspired by the generalized Hebb rule [25]; still, there 

are algorithms (e.g., the constructive ones), which do not stick to this rule [9, 451. This ‘teach- 

ing’ can be achieved in three ways: (i) supervised, when for each input of the learning set, 

the desired output is known; (ii) reinforced, when a reward is given to the NN by the envi- 

ronment on its response to a given input; (iii) unsupervised, when the goal associated to each 

input is not pre-defined. Learning techniques suffer from the inherent error correction function 

(which does not guarantee that the global minimum will ever be reached), and from the very 

long time needed for solving the problem [30, 31, 32, 34, 531 (few exceptions are known for 

particular cases [7, 331). Minsky and Papert [44] showed that training times increase very rap- 

idly and have even written that: “ ... the entire structure of recent connectionist theories might 

be built on quicksand: it is all based on toy-sized problems with no theoretical analysis to 

show that perj4omance will be maintained when the models are scaled up to realistic size. The 

connectionist authors fail to read our work as a warning that networks, like brute force, scale 

very badly.” The hope that learning time could be reduced by using more complex activation 

functions has fallen short of its expectations; it has been proven that training a 3-node NN is: 

(i) NP-complete if (5 is the linear threshold function [16]; (ii) NP-complete if (r is the piecewise 

linear activation function [21]; (iii) NP-hard if (5 is a sigmoid activation function [56]. 

The constructive class of learning algorithms [9] (also some of the so-called VLSI-friendly 

learning algorithms [45]), are successively adding neurons and/or layers for obtaining a better 

and better approximation on the given data-set. Because for certain problems the size grows 

exponentially, such algorithms will also require an exponential time to build the network. 
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2.2. Precision and Interconnectivity 

Because most NNs are (and have been) simulated, two aspects which have been in too 

many cases neglected are the precision of weights and thresholds and the fun-in of the neurons. 

When hardware implementations of NNs have been thought of [38, 451, precision and inter- 

connectivity became important [ 151. 

Finite precision computation has started to be analysed [27, 591, and it was shown that in 

most cases several bits suffice [lo, 12, 451. Recently it was proven [5] that the generalization 

error of NNs used for classification depends on the size of the weights, rather than the number 

of weights by showing that the misclassification probability converges as 0 ((cA)’/G). Here 

A is the sum of the magnitude of the weights, 2 is the depth, m is the number of examples, 

and c is a constant. Beside supporting heuristics that attempt to keep the weights small during 

training, this also suggests that NNs having more layers are converging faster ! 

Interconnectivity has been analysed in relation to the urea of a VLSI chip [23], and it was 

shown that the urea grows as the cube of the node’s fun-in (A ). Recently, the fact that 

AT2-optimal digital circuits are obtained for small constant fun-ins has been proven [l l] .  

3 

The known weight bounds: 1.618 A < weight < (A + 1) / 2  *, show that we can ex- 

pect to need between A and A 1ogA bits per weight [49, 511. They also show that interconnec- 

tivity and precision are interrelated, and we should mention that fun-in also relates to depth, 

as smaller fun-ins lead to deeper NNs (larger depths). 

3. Lowering Some Constants 

The starting point is E k , m  which has been defined as “the class of Boolean functions 

f (xl, x2, . . . , xk) that have exactly m groups of ones” [52]. By allowing m to grow exponentially 

with respect to k, Fk, m= & (the set of all k-ary Boolean functions). Red’kin [52] presents a 

solution (based on COMPARISONS) achieving an excellent 2 G+ 3 size in depth-3, but requir- 

ing exponential precision and polynomial fun-in. Another solution [9, 141, having polynomial 
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weights and thresholds (weights < 2 A’2), constructs fan-in = A NNs of 0 (mk/A) size and 

0 (log(mk)/logA) depth. It can be adapted to accept real inputs by properly quantizing the 

input space [14]. Based on computing the entropy of the data-set, the way the quantization 

should be done was detailed [SI. It links both to size complexity [%I, and to connectivity [l]. 

The result is that the number of bits required to solve a dichotomy is 0 (mn), or more precisely: 

i 

k = #bits < rnn [log ( D / d )  + 5/21 (2) 

I 

If m and/or k are large (enough), the first terms in (3) will be larger than the equivalent ones 

in (4) because the same BFs are redundantly computed many times. The simple solution to 

lower the size is to use the smallest term given either by (3) or by (4). 

~ 

where D is the largest, and d the smallest distance between examples from the two different 

classes. The size of the NN depends on this quantization process [13]. Equation (2)  has been 
obtained using a whole n-dimensional ball of radius D and volume n: n / 2  D n /T(n/2 + 1) to 

upper bound the space containing the examples. Because the examples belonging to one class 

are always inside the intersection of two n-dimensional balls, the result can be improved by 

computing the volume of the intersection of two n-dimensional balls [13], giving: 

k = #bits < [log ( D / d )  + 1.83961 2 

and showing reduction on some constants (1/2 instead of 1; 1.8396 instead of 2.5). 

The size complexity of the NN implementing one F‘,m function has been computed as: 

+ ... + 1 size (k, m, A) = (3) 

[12, 141, but a substantial enhancement can be obtained as the fun-in is limited. Due to that 

limitation, the maximum number of different BFs which can be computed in each layer is: 

2k/A . 2  A (A / 2 )  depth-* 
? * . e ?  

2k/A . A (A/2) (2k/A).2A,  - 
A/2 (A / 2)  depth-1 

(4) 
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Figure 1. Different NNs (obtained by varying the fun-in) for solving any classification problem de- 
fined by 2048 examples having 64 binary inputs each (for more explanations see text). 

For a better understanding we have considered the following example: k = 64 binary inputs 

(roughly equivalent to n = 8  real inputs) and m=2048 examples (an extremely small set as 

compared to 2 64 = 1.84 . 10 19). Different solutions have been obtained by varying the fan-in, 

and some of them can be seen in Figure 1, where the vertical axis represents the number of 

layers, while the area of the rectangles represents the number of gates (in each layer). The area 

of dark tinted rectangles represent redundant neurons which can be discarded. The area of light 

tinted rectangles represents the number of needed neurons in each layer. The size of the dif- 

Table 1. 

The exact size and depth for 2048 examples of 64 bits each when varying the fan-in. 
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ferent NNs are represented by the sum of the area of all the light tinted rectangles (instead of 

the area of all the rectangles). Numerical results are presented in Table 1. For this example, 

the smallest NN is obtained for A =  10, in depth =4, while the size is reducedfiom 331,776 

neurons to 82,740 neurons, i.e. by 75% ! This is significant, and for larger values of m and/or 

k the percentage is even larger. 

4. Conclusions and Open Problem 

In this paper we have first presented a short overview for some complexity aspects relating 

to NNs. As most known bounds are exponential, we have then focused on reducing some 

constants, and have shown constructively how to lower the size of NNs for classification prob- 

l em.  An open question is to compute a bound for the last solution we have detailed. 

Relating to Kolmogorov’s theorem two open questions are: (i) can we determine the sy- 

naptic weights of such a NN in a reasonable amount of time (and if yes, how); and (ii) which 

is the precision required by these weights. 
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