
LA-U R- 9 8 - 2 5 0 4  
Approved for public release; 
distribution is unlimited. 

Title 

Author@) 

Submitted tc 

Los Alamos 
N A T l O  N A L  L A B O R A T O R Y  

2D NEURAL HARDWARE VERSUS 3D BIOLOGICAL 
ONES 

Valeriu Beiu, NIS-1 

International Symposium on Neural 
Computation, Vienna, Austria 

Los Alamos National Laboratory, an affirmative actionlequal opportunity employer, is operated by the University of California for the 
US. Department of Energy under contract W-7405-ENG-36. By acceptance of this article. the publisher recognizes that the US. 
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution. or to allow 
others to do so, for US. Government purposes. Los Alamos National Laboratory requests that the publisher ident i  this artide 
as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports 
academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint 
of a publication or guarantee its technical correctness. Form 836 (1 0196) 



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or 
assmcs any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any infomation, apparatus, product, or ptoce~s disclosed, or represents 
that its usc would not infringe privately owned rights. Reference herein to any sp- 
cific c o m m d  product, process, or service by trade name, trademark, manufac- 
tum,  or otherwise does not necessarily colutitute or imply its endorsement. m o m -  
mendation. or favoring by the United States Government or any agency thereof. 
The views and opinions of authors e x p d  h m i n  do not n d l y  state or 
reflect those of the United States Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



2D Neural Hardware Versus 3D Biological Ones 
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Abstract-This paper will presents important limitations of 
hardware neural nets as opposed to biological neural nets 
(i.e. the real ones}. We will start by discussing neural struc- 
tures and their biological inspirations, while mentioning 
the simplifications leading to artificial neural nets. Going 
further, the focus will be on hardware constraints. We will 
present recent results for three different alternatives of im- 
plementing neural networks: digital, threshold gate, and 
analog, while the area and the delay will be related to nec- 
rons’ fan-in and weights’ precision. Based on all of these, 
it will be shown why hardware implementations cannot 
cope with their biological inspiration with respect to their 
‘power of computation’: the mapping onto silicon lacking 
the third dimension of biological nets. This translates into 
reduced fan-in, and leads to reduced precision. The main 
conclusion is that we are faced with the following alterna- 
tives: ( i )  try to cope with the limitations imposed by silicon, 
by speeding up the computation of the elementary ‘silicon’ 
neurons; (ii} investigate solutions which would allow us to 
use the third dimension, e.g. using optical interconnections. 
Keywords-neural networks, Boolean functions/circuits, 
threshold gate circuits, analog circuits, circuit complexity, 
VLSI complexity, fan-in, size, precision (accuracy}. 

1. Introduction 
The model we shall discuss wants to duplicate the activity 
of the human brain. This is made of living neurons com- 
posed of a cell body and many outgrowths. One of these is 
the axon-which may branch into several collaterals. The 
axon is the ‘output’ of the neuron. The other outgrowths are 
the dendrites. The end of the axons from other neurons are 
connecting to the dendrites through ‘spines’. Active pumps 
in the nerve cell walls push sodium ions outside, while 
keeping fewer potassium ions inside. Therefore, their ten- 
dency is to keep the cell body at a small negative electric 
potential (-6OmV). The electrical balance varies at the exit 
point of the axon. If the electrical potential of the cell be- 
comes too positive (+10+15mV), the potential suddenly 
jumps to about +60mV. After a short delay of 2+3ms the 
potential returns to the normal negative value (-6OmV). 
This change of potentials is sequential and is called an ac- 
tion potential. The action potential travels down the axon 
and its branches (with a speed in the range l+lOm/s). This 

’ On leave of absence from the “Politehnica” University of Bucharest, 
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Bucharest, Rom2nia. 

variation of potential represents the signal sent by one neu- 
ron to its neighbours. The generation of the signal is 
achieved by summing the signals coming from the den- 
drites. The strength of the action potentials travelling along 
an axon are identical, nevertheless, the effects to the neigh- 
bouring cells are different. This is due to the rescaling effect 
which takes place at the synapse. Although over-simplified, 
this description of the living nerve cells is a correct repre- 
sentation of the system. Formally, a network is an acyclic 
graph having several input nodes, and some (at least one) 
output nodes. If a synaptic weight is associated with each 
edge, and each node computes the weighted sum of its in- 
puts to which a nonlinear activation function is then ap- 
plied: 

f ( x )  = f ( x l  ,..., x*) = ~ ( C , f , ~ ~ x , + e ) ,  (1) 
the network is a neural network (NN), with w, E IR the sy- 
naptic weights, 8 E IR known as the threshold, A being the 
fan-in, and CJ a non-linear activation function. Because the 
underlying graph is acyclic, the network does not have feed- 
back, and can.be layered. That is why such a network is 
also known as a multilayer feedforward neural network. 
The connection weights are quite important, as it is their 
modification that allows the NN to ‘learn’. The basic idea 
is to present the examples to the NN and change the weights 
in such a way as to improve the results (i.e., the outputs of 
the NN will be ‘closer’ to the desired values). The cost func- 
tions used to characterise a NN are depth (i.e., number of 
edges on the longest input-to-output path, or number of lay- 
ers) and size (i.e., number of neurons). 

In the last decade the tremendous impetus of VLSI tech- 
nology has made neurocomputer design a really lively re- 
search topic. Hundreds of designs have been already build, 
and some are available as commercial products. Still, we 
are far from the main objective as can be clearly seen from 
Figure I where the horizontal axis represents the number 
of synapses (i.e., the connectivity), while the vertical axis 
represents the ‘power of computation’ in connections per 
second (CPS). It becomes clear that biological NNs are far 
ahead of digital, analog and even future optical implemen- 
tations. This paper will try to explain why this is the case. 

For hardware implementations the area of the connec- 
tions counts, and the area of one neuron can be related to 
its associated weights, thus “comparing the number of 
nodes is inadequate for comparing the complexity of NNs 
as the nodes themselves could implement quite complex 
functions” (Williamson, 1990). That is why several authors 
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Figure 1. Different hardware alternatives for implementing artificial neural networks: (a) an enhanced version from (Glesner 
1994); (b) neurochips (circles) and classical computers (crosses) (for details see (Beiu, 1996b)). 

(Abu-Mostafa, 1988; Hammerstrom, 1988; Phatak & 
Koren, 1994) have taken into account the total number-of- 
connections, or the total number-ofbits needed to represent 
the weights and the thresholds (Bruck & Goodmann, 1988), 
or the sum of all the weights and the thresholds (Beiu et al., 
1994). The sum of all the weights and the thresholds-also 
applied for defining the minimum-integer threshold gate 
(TG) realisation of a Boolean function (BF)-has been re- 
cently used under the name of “total weight magnitude” in 
the context of computational learning theory for improving 
on several standard VC-theory bounds (Bartlett, 1996). A 
similar definition: Z w: has also been advocated (Zhang & 
Muhlenbein, 1993). Such approximations can easily be re- 
lated to assumptions on how the area of a chip scales with 
the weights (Beiu, 1996b. 1997b. 1998b3: 

fo; digial implementation, the areascales with the cu- 
mulative storage of weights and thresholds (as the bits 
for representing those weights and thresholds have to 
be stored); 
for analog implementations (e.g., using resistors or ca- 
pacitors) the same type of scaling is valid (although it 
is possible to come up with implementations having 
binary encoding of the parameters-for which the 
area would scale with the cumulative log-scale size of 
the parameters); 
some types of implementations (e.g.. transconduc- 
tance ones) even offer a constant size per element, thus 
in principle scaling only with the number of parame- 
ters (i. e., with the total number-of-connections). 

It is anyhow desirable to limit the range of parameter values 
(Wray & Green, 1995) because: ( i )  the maximum value of 
the fan-in (Hammerstrom, 1988; Walker et al., 1989); and 
(ii) the maximal ratio between the largest and the smallest 
weight cannot grow over a certain (technological) limit. 

Concerning the delay, two well-known models are: 
a simple capacitive one, which assumes that the 
delay is proportional to the input capacitance (Le., the 
delay proportional to the fan-in; 
the exact one assumes a distributed capacitance along 
any wire, hence the delay for propagating a signal is 
proportional to the length of the connecting wire. 

The paper starts by overviewing several results dealing 
with the approximation capabilities of NNs, and details up- 
per and lower bounds on the size of threshold gate circuits 
(TGCs). These are followed by solutions which are optimal 
with respect to some cost function. We show that both 
Boolean and TGCs require exponential size for implement- 
ing arbitrary BFs, while there are solutions which can be 
obtained using low precision and small fan-ins. Further, we 
argue that size-optimal solutions of discrete NNs can be ob- 
tained only in analog circuitry, but require very high preci- 
sion and largefan-ins (based on a fresh constructive 
solution for Kolmogorov’s superpositions). It follows that 
the mapping onto silicon-lacking the third dimension of 
biological nets-translates into limited fan-in and reduced 
precision. Several conclusions are ending the paper. 

2. Previous Results 
NNs have been experimentally shown to be quite effective 
in many applications (see Applications of Neural Networks 
in (Arbib, 1995), together with Part F: Applications of Neu- 
ral Computation and Part G: Neural Networks in Practice: 
Case Studies from (Fiesler & Beale, 1996)). This success 
has led researchers to undertake a rigorous analysis of their 
mathematical properties and has generated two directions 
of research for finding: (i) existence / constructive proofs 
for the ‘universal approximation problem’; (ii) tight bounds 
on the size needed by the approximation problem. 

2.1. Neural Networks as Universal Approximutors 

One line of research has concentrated on the approximation 
capabilities of NNs (Blum & Li, 1991; Ito, 1991; Funahashi 
& Nakamura, 1993; Ito, 1994). It was started in 1987 by 
Hecht-Nielsen (1987) and Lippmann (1987) who, together 
with LeCun (1987), were probably the f is t  to recognise that 
the specific format in (Sprecher, 1965, 1966) of the form: 

f ( X L  . - .%I  = E:=+; { ~ 4 [ C p : l a p W ( ~ p + q a ) l )  (2) 
of Kolmogorov’s superpositions (Kolmogorov, 1957) 
f ( x ,  ... xn) = ::,’ Q 4  (y J,  can be interpreted as a NN 
with one hidden layer. This gave an existence proof of the 



‘ approximation properties of NNs. The first nonconstructive 
proof was given in 1988 by Cybenko (1988, 1989) using a 
continuous activation function, and was independently pre- 
sented by hie and Miyake (1988). Similar results for radial 
basis functions were shortly reported (Hartman et al., 1989; 
Poggio & Girosi, 1989). Thus, the fact that NNs are com- 
putationally universal-with more or less restrictive condi- 
tions-when modifiable connections are allowed, was 
established. Different enhancements have been later pre- 
sented (for details see (Scarselli & Tsoi, 1998), and Chapter 
I in (Beiu, 1998~)): 

Funahashi (1989) proved the same result but in a more 
constructive way and also refined the use of Kolmo- 
gorov’s theorem in (Hecht-Nielsen, 1987), giving an 
approximation result for two-hidden-layer NNs; 
Hornik et al. (1989) showed that the continuity re- 
quirement for the output function can partly be re- 
moved; 

0 Hornik et al. (1990) also proved that a NN can ap- 
proximate simultaneously a function and its deriva- 
tive; 

0 Park and Sandberg (1991, 1993) used radial basis 
functions in the hidden layer, and gave an almost con- 
structive proof; 

0 Hornik (1991) showed that the continuity requirement 
can be completely removed, the activation function 
having to be ‘bounded and nonconstant’; 
Geva and Sitte (1992) proved that four-layered NNs 
with sigmoid activation function are universal ap- 
proximators; 
Kurkovd (1992) and Kurkovd et al. (1997) has dem- 
onstrated the existence of approximate superposition 
representations within the constraints of NNs, i.e. w 
and Qq can be approximated with functions of the 
form a, cs (b, x + c,) , where cs is an arbitrary activa- 
tion sigmoidal function; 

0 Mhaskar and Micchelli (1992, 1994) approach was 
based on the Fourier series of the function, by truncat- 
ing the infinite sum to a finite set, and rewriting e 
in terms of the activation function (which now has to 
be periodic); 

0 Koiran (1993) presented a new proof on the line of 
Funahashi’s proof (Funahashi, 1989), but more gen- 
eral in that it allows the use of units with ‘piecewise 
continuous’ activation functions; these include the 
particular but important case of TGs; 

0 Leshno et al. (1993) relaxed the condition for the ac- 
tivation function to ‘locally bounded piecewise con- 
tinuous’ (i.e., if and only if the activation function is 
not a polynomial), thus embedding as special cases al- 
most all the activation functions that have been re- 
ported in the literature; 

0 Hornik (1993) added to these results by proving that: 
(i) if the activation function is locally Riemann inte- 
grable and nonpolynomial, the weights and the thresh- 
olds can be constrained to arbitrarily small sets; and 
(ii) if the activation function is locally analytic, a sin- 
gle universal threshold will do; 

0 Funahashi and Nakamura (1993) showed that the uni- 

versal approximation theorem also holds for trajecto- 
ries of patterns; 
Sprecher (1993) has demonstrated that there are uni- 
versal hidden layers that are independent of the num- 
ber of input variables n; 
Barron (1993) described spaces of functions that can 
be approximated by the relaxed algorithm of Jones 
(1992) using functions computed by single-hidden- 
layer networks of perceptrons. 

All these results-with the partial exception of (Park & 
Sandberg, 1991; Kurkovd, 1992; Barron, 1993; Koiran, 
1993; Park & Sandberg, 1993)-were obtained “provided 
that suficiently many hidden units are available” (ix., with 
no claims on the size minimality). More constructive solu- 
tions have been obtained in very small depth later (Katsuura 
& Sprecher, 1994; Nees, 1994, 1996), but their size or the 
required precision grows fast with respect to the number of 
dimensions. Recently, Attali and Pagks (1997) have given 
an elementary proof based on the Taylor expansion and the 
Vandermonde determinant, yielding bounds for the design 
of the hidden layer and convergence results for the deriva- 
tives. An explicit numerical algorithm for superpositions 
has also been detailed (Sprecher, 1996a, 1996b, 1997). 

2.2. Threshold Gate Circuits 
The other line of research was to find the smallest size NN 
which can realise an arbitrary function given a set of m vec- 
tors from IR”. Many results have been obtained for TGs 
(Minnick, 1961). The first lower bound on the size of a TGC 
for “almost all” n-ary BFs (f : IB n+ IB) of: 

(3) 
was given by Neciporuk (1964). Later a very tight upper 
bound was proven in depth = 4 (Lupanov, 1973): 

size 2 2 ( 2 n / n ) 1 ’ 2 ~ { 1 + a [ ( 2 n / n ) 1 ’ 2 ~ } .  (4) 
A similar existence exponential lower bound of S2 ( 2  “I3) 
for arbitrary BFs can be found in (Siu et al., 1991), which 
also gives bounds for many particular but important BFs 
(see also (Roychowdhury et al., 1994)). 

For classification problems (f : IR ‘+ IB ‘), the first result 
was that a NN of depth = 3 and size = rn - 1 could compute 
an arbitrary dichotomy. The main improvements have been: 

0 Baum (1988) presented a TGC with one hidden layer 
having rrn / nl neurons capable of realising an arbitrary 
dichotomy on a set of m points in general position in 
IR’; if the points are on the corners of the n-dimen- 
sional hypercube, rn - 1 nodes are still needed; 

0 a slightly tighter bound of only rl + (rn - 2) /n l  neu- 
rons in the hidden layer for realising an arbitrary di- 
chotomy on a set of m points which satisfy a more 
relaxed topological assumption was proven in (Huang 
& Huang, 1991); the rn - 1 nodes condition was 
shown to be the least upper bound needed; 

0 Arai (1993) showed that m - 1 hidden neurons are 
necessary for arbitrary separability, but improved the 
bound for the dichotomy problem to m / 3  (without 
any condition on the inputs); 

size 2 2 (2 “/n> * l2 
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0 Beiu (1996a) has detailed existence lower and upper 
bounds: 2mlogm/n2.:size<2mlogm/n210gn (by 
estimating the entropy of the data-set); 
Beiu and De Pauw (1997) have presented several im- 
provements 2m /(nlogn) < size < 1.44m /n (see also 
(Beiu & Driighici, 1997; Beiu et al., 1998)). 

Other existence lower bounds for the arbitrary dichotomy 

a depth-2 TGC requires m / { n log(m / n  
0 a depth-3 TGC requires 2 (m/logm) ' " k s  in each 

of the two hidden layer (if m >> n '); 
0 an arbitrarily interconnected TGC without feedback 

needs (2m / logm) l2 TGs (if m >> n '), 
One study (Bulsari, 1993) has tried to unify these two 

lines of research by first presenting analytical solutions for 
the general NN problem in one dimension (having infinite 
size), and then giving practical solutions for the one-dimen- 
sional cases (i.e., including an upper bound on the size). 
Extensions to the n-dimensional case using three- and four- 
layers solutions were derived under piecewise constant ap- 
proximations, and under piecewise linear approximations 
(using ramps instead of sigmoids). 

2.3. Boolean Functions 

The particular case of BFs has been intensively studied 
(Parberry, 1994; Beiu, 1998~). Many results have been ob- 
tained for particular BFs (Siu et aL, 1991; Roychowdhury 
et al., 1994). A size-optimal result for BFs that have exactly 
m groups of ones in their truth table Fn, is: 
Proposition 1 (Red'kin? 1970) The complexity realisation 
(i.e., number of threshold elements) ofFn,, (the class of BFs 
f (xl x, . . . xn-,xn) that have exactly m groups of ones) is a t  
most 2 (2m) + 3. 

The construction has: a first layer of r(2m) '121 TGs (cOM- 
PARISONS) with fan-in=n and weights I 2n-1; a second 
layer of 2 [(m /2) 1'27 TGs of fan-in = n + r(2m) 'l21 and 
weights I 2 n; one more TG of fan-in = 2 r(m / 2) 1'21 and 
weights E {-I, + I }  in the third layer. 

This result-as are all the previous ones-is valid for un- 
limited fan-in TGs. A solution for limited fan-in TGCs is: 

Proposition 2 (Home & Hush, 1994) Arbitrary B F s  of 
the form f : (0, 1 }" + { 0, 1 } w  can be implemented in a NN 
of perceptrons restricted to fan-in 2 with a node complexity 
of 0 { p 2 / (n + logp)} and requiring 0 (n) layers. 
Sketch ofproof Decompose each output BF into two sub- 
functions using Shannon's decomposition (Shannon, 1949): 

problem (Paugam-Moisy, 1992; Hassoun, 1995) are: 
TGs; 

- 
f (x, x,. 7 . .  xn-lxn) = XI fo (x2 . . . xn-lxn) + x1 f, (x2 . . . xn-lx"). 

By doing this recursively, the output BFs will be imple- 
mented by binary trees. To eliminate most of the lower level 
nodes, replace them with a subnetwork that computes all 
the possible BFs needed by the higher level nodes. Each 
subcircuit eliminates one variable and has three nodes (one 
OR and two ANDS). Thus, the upper tree has: 

size upper = 3 P . ~ n ; _ 4 ; 1 2 i =  3 p ~ 2 n - q - i )  (5 )  

nodes, and depth upper= 2 (n - q) . The subfunctions now de- 
pend on only q variables, and the lower subnetwork that 
computes all the possible BFs of q variables has: 

nodes, and depth lower= 2 q. That q which minimises the size 
(Le., size upper + size lower) is determined by solving the equa- 
tion d (size,,) /dq = 0, and gives: 

(7) 
By substituting eq. 7 in eq. 5 and eq. 6, the minimum size: 

is determined. il 

q = log{ n + logp - 2log(n + logp)}. 

size,, = 3 j ~ 2 ~ - ~  = 3p.2n/ (n+logp)  (8) 

3. "Optimal" Solutions 
It is known that implementing arbitrary BFs using classical 
Boolean gates (i.e., AND and OR gates) requires exponential 
size circuits. The known bounds foi size are also exponen- 
tial if TGCs are used to solve arbitrary BFs (Beiu, 1996b). 
These bounds reveal exponential gaps, and also suggest that 
TGCs with more layers (depth f small const. (Beiu, 1997a, 
1997b; Beiu & Makaruk, 1998)) might have a smaller size. 

Proposition 3 (Beiu h Makaruk, 1998) Arbitrary B F s  
f : { 0 , l  } n  + { 0,l }p can be implemented in a NN of per- 
ceptrons restricted to fan-in A in 0 (n /logA) layers. 

Sketch ofproof We use the approach of Horne & Hush 
(1994) for the case when the fan-in is limited to A. Each BF 
is decomposed in 2 A -  ' subfunctions. The 2 A -  inputs OR 
gate is decomposed in a A-ary tree. This eliminates A - 1 
variables and generates a depth = 1 + [(A - 1) / logAl tree of 
size = 2 A -  ' + r(2 A -  ' - 1) /(A - 1)l. Repeating this proce- 
dure recursively k times, we have: 

(9) depthupper = k . { 1 + r(A - 1) /logAl} 

We now generate all the possible subfunctions of q vari- 
ables with a subnetwork having: 

(11) depthlo,, = t(n-kA)/AJ { l+r(A- l)/logAl} 

From eq. 9 and eq. 11 we can estimate depth B F s ,  and from 
eq. 10 and eq. 12 size, as: 

= O(n/logA) (13) depth,,= (n/A)-(A/logA+ 1) 

size,, E p .  2 M-k + 2 A . 2 2 n - a - A  

concluding the proof. 0 

Propositkin 4 (Beia & Makarak 1998) All the cri t ical  
points of the size size,, (p, n, k, A) are relative minimum 
and are situated in the (close) vicinity of the parabola 
kA = n - log(n + logp). 

Sketch ofproof Equate the partial derivative to zero. 
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' asize,/ak = 0, and using the following notations kA = y, 
p = p (A - 1) /(A ln2), and taking logarithms of both sides: 

logP+2y-k-n = 2n-y-A, (15) 

with an approximate solution y= n - log(n + logp). Equat- 
ing asize,, / a A  = 0, leads to the same solution. This shows 
that the critical points are situated in the vicinity of the pa- 

P 

Proposition 5 (Beiu & Makaruk 1998) The minimum size 
is obtained for fan-in A = 2. 

Sketch of proof Compute size,, (n,  p., k, A) for the critical 
points k = (n  - logn) /A, and then show that: 

(16) 

Hence, the function is monotonically increasing and the 
P 

rabola kA = n - Iog(n + logp.). 

sizeiFs (n, p, A + 1) - sizezFs (n, p, A) > 0. 

minimum is obtained for the smallest fan-in A = 2. 
It is to be mentioned that the other relative minima (on, 

or in the vicinity of the parabola kA = n - logn) might be 
of practical interest as leading to networks having fewer 
layers (n / logA instead of n). 

as the first layer 
is represented by COMPARISONS (Le.. Fa, i) which can be de- 
composed to satisfy the limited fan-in condition (Beiu, 
1997a, 1997b, 1998a, 1998b; Beiu & Taylor, 1996). 
Proposmtion 6 (Beiu et al., 1994) The COMPARISON of two 
n-bit numbers can be computed by a A-ary tree NN having 
integer weights and thresholds bounded by 2 A / 2  for any 
3 S A I n .  

A similar result can be obtained for 

The size of the NN implementing one IF,,, function is: 
size, = 2nm.{J- + ._. + 1 ,  (17) 

A / 2  (A /2) Ip 

where depth,= rlogn/(logA - 1)1, but an enhancement is 
obtained if the fan-in is limited. The maximum number of 
dzperent BFs which can be computed in each layer is: 

2n/A A ( A / ~ ) ~ ~ P ~ ~ ~ - ~  (18) - 2n 2 A  2 n 2 A ( A / 2 )  ,... 1 2 A ' A / 2  ( ~ / 2 )  dePhm-1 

For large m (needed for achieving a certain precision 
(Beiu, 1998a; Wray & Green, 1995)), and / or large n, the 
first terms of the sum from eq. 17 will be larger than the 
equivalent ones from eq. 18. This is equivalent to the trick 
from (Horne & Hush, 1994), as the lower levels will com- 
pute all the possible functions using only limited fan-in 
COMPARISONS. Hence, the optimum size becomes: 

Following similar steps to the ones used in Proposition 
5, it is possible to show that the minimum size is obtained 
for very small fun-ins A 

Based on closer estimates of area and delay, results have 
also been proved for VLSI-efficient implementations of 
Fn,,, functions (Beiu 1997a, 1998b). 

= 3..  .6. 

Proposition 7 (Beiu 1997a) The VLSI-optimal NN which 
computes the COMPARISON of two n-bit numbers has small- 
constant fan-in 'neurons' with small-constant bounded 
weights and thresholds. 

The minimum AT2 is obtained for A opnm = 6.. .9 (as the 
proof has been obtained using several approximations: ne- 
glecting ceilings, using the complexity estimate, etc.). This 
result has been extended to IFn,m functions. We mention that 
there are similar small constants relating to our capacity of 
processing information (Miller, 1956). If a three dimen- 
sional hardware implementation would be possible, the en- 
ergy (Le., W2) will be minimised for A=36 ... 81, which 
is still small (as opposed to the fan-in of the nervous cells 
in the brain which is normally in the range lo3.. . lo4). 

A completely different approach is to use Kolmogorov' s 
superpositions, which shows that there are NNs having only 
2n + 1 neurons (Le., size-optimal) which can approximate 
any function. We start from a constructive solution for the 
general case (Sprecher, 1996a, 1996b, 1997). 
Proposition 8 (Sprecher, 199th) Define the function 
w : &+ 

(20) 
such that for each integer k E N: 

I - m ,  
n - 1  

- m r  -- " - 1  
k 

v ( Z r : l i r y - r )  = C ( 2  Y 
r =  1 - 

where i, = i, - (y- 2) (id and 

for r =  1,2, ..., k. 
Here y 2  2n + 2 is a base, &= [0, 11 is the unit interval, 
9 is  the set  of terminating rational numbers 
d/,=E,:,i,y-'defined on k E  N digits (O<i ,Sy-  1). 
Also, ( i , )=[ i , ]=O,  while for r 2 2 :  ( i , ) = O  when 
i,=O,1 ,..., y-2, ( i r ) = l  when i ,=y-1,  [ i J=O when 
i, = 0, 1, . .., y- 3, while [ i , ]  = 1 when i ,  = y- 2, y- 1. 

If we limit the functions to BFs, one digit (k= 1) is 
enough, which gives v (0.i L) = 0.i i.e. the identity func- 
tion w (x)  = x. Such a solution builds simple analog neurons 
having fan-in A I 2n + 1. The known weight bounds (hold- 
ing for A 2 4) are (Myhill & Kautz, 1961; Raghavan, 1988; 
Parberry, 1994; Sontag, 1996): 

'2(A-1)'2 < weight < (A+ 1)(A+1)'2/2A. (22) 

Thus, a precision of between A, and A logA bits per weight 
would be expected. Unfortunately, the constructive solution 
for Kolmogorov's superpositions requires a double expo- 
nential precision for w (eq. 20), and for the weights: 

m -@-1,"' (23) 
"-1 a p =  C r  

r = l  

For BFs precision is reduced to (2n + 2) -n, or 2nlogn bits 
per weight. Analog implementations are limited to just sev- 
eral bits of precision (Kramer, 1996), this being one of the 
reasons for investigations on precision (Denker & Wittner, 
1988; Holt & Hwang, 1993; Wray & Green, 1995; Steven- 
son & Huq, 1996), and on algorithms relying on limited 
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integer weights (Khan & Hines, 1994; Draghici & Sethi, 
1997; Beiu, 1998a). Due to the limitation on precision the 
solution for implementing BFs should decompose the given 
BF in simpler BFs which can be efficiently implemented 
based on Kolmogorov’s superpositions (i.e., we have to re- 
duce n to small values). The partial results from this first 
layer of analog building blocks can be combined using 
again Kolmogorov’s superpositions. The final analog im- 
plementation will requires more than three layers. It follows 
that a systematic solution which would utilise silicon to the 
best advantage would be to rewrite a given computation 
(i.e., set of BFs) in a base larger than 2 (e.g., in base 4 as 
in the previous example), and use Kolmogorov’s superpo- 
sitions for analog implementation of the digit-wise compu- 
tations in this larger base. 

4. Conclusions 
The main conclusion is that hardware implementations of 
NNs are highly limited by the two dimensional mapping 
into silicon, which leads to very limited fan-in and preci- 
sion. For example, arbitrary BFs can be implemented using: 

classical Boolean gates, but require exponential size; 
TGs, but (again) in exponential size (still, there are ex- 
ponential gaps between classical Boolean solutions 
and TG ones); 
analog building blocks in linear size (having linear 
fun-in and polynomial precision weights and thresh- 
olds>, the nonlinear activation function being the iden- 
tity function. 

Clearly, there are interesting fun-in dependent depth-size 
and urea-delay tradeoffs. Even more, there are optimal so- 
lutions having small constant fan-in values, and the prob- 
lem is not alleviated by futuristic three dimensional optical 
implementations. 

These results also suggest that: 
0 the brain does not optimise energy and power-like 

engineers do when designing integrated circuits-and 
might trade-off the slower individual speeds of its ele- 
mentary computing elements (thus, reducing power), 
for their higher connectivity (larger fun-ins); 
two dimensional silicon implementations are limited 
with respect to connectivity, and might only slightly 
compensate by using higher computing speeds (see 
Figure 1.a); 

0 three dimensional hardware implementations (e.g., 
optical) might be still lagging behind biological ones 
with respect to connectivity, but it is to be expect that 
the higher computing speed might eventually compen- 
sate for that. 

Future work should concentrate on finding closer esti- 
mates for analog / digital as well as optical implementa- 
tions. 
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