14 research outputs found

    Warmstarting of Model-based Algorithm Configuration

    Full text link
    The performance of many hard combinatorial problem solvers depends strongly on their parameter settings, and since manual parameter tuning is both tedious and suboptimal the AI community has recently developed several algorithm configuration (AC) methods to automatically address this problem. While all existing AC methods start the configuration process of an algorithm A from scratch for each new type of benchmark instances, here we propose to exploit information about A's performance on previous benchmarks in order to warmstart its configuration on new types of benchmarks. We introduce two complementary ways in which we can exploit this information to warmstart AC methods based on a predictive model. Experiments for optimizing a very flexible modern SAT solver on twelve different instance sets show that our methods often yield substantial speedups over existing AC methods (up to 165-fold) and can also find substantially better configurations given the same compute budget.Comment: Preprint of AAAI'18 pape

    Learning Multiple Defaults for Machine Learning Algorithms

    Get PDF
    The performance of modern machine learning methods highly depends on their hyperparameter configurations. One simple way of selecting a configuration is to use default settings, often proposed along with the publication and implementation of a new algorithm. Those default values are usually chosen in an ad-hoc manner to work good enough on a wide variety of datasets. To address this problem, different automatic hyperparameter configuration algorithms have been proposed, which select an optimal configuration per dataset. This principled approach usually improves performance, but adds additional algorithmic complexity and computational costs to the training procedure. As an alternative to this, we propose learning a set of complementary default values from a large database of prior empirical results. Selecting an appropriate configuration on a new dataset then requires only a simple, efficient and embarrassingly parallel search over this set. We demonstrate the effectiveness and efficiency of the approach we propose in comparison to random search and Bayesian Optimization

    OBOE: Collaborative Filtering for AutoML Model Selection

    Full text link
    Algorithm selection and hyperparameter tuning remain two of the most challenging tasks in machine learning. Automated machine learning (AutoML) seeks to automate these tasks to enable widespread use of machine learning by non-experts. This paper introduces OBOE, a collaborative filtering method for time-constrained model selection and hyperparameter tuning. OBOE forms a matrix of the cross-validated errors of a large number of supervised learning models (algorithms together with hyperparameters) on a large number of datasets, and fits a low rank model to learn the low-dimensional feature vectors for the models and datasets that best predict the cross-validated errors. To find promising models for a new dataset, OBOE runs a set of fast but informative algorithms on the new dataset and uses their cross-validated errors to infer the feature vector for the new dataset. OBOE can find good models under constraints on the number of models fit or the total time budget. To this end, this paper develops a new heuristic for active learning in time-constrained matrix completion based on optimal experiment design. Our experiments demonstrate that OBOE delivers state-of-the-art performance faster than competing approaches on a test bed of supervised learning problems. Moreover, the success of the bilinear model used by OBOE suggests that AutoML may be simpler than was previously understood

    Auto-Sklearn 2.0: The Next Generation

    Full text link
    Automated Machine Learning, which supports practitioners and researchers with the tedious task of manually designing machine learning pipelines, has recently achieved substantial success. In this paper we introduce new Automated Machine Learning (AutoML) techniques motivated by our winning submission to the second ChaLearn AutoML challenge, PoSH Auto-sklearn. For this, we extend Auto-sklearn with a new, simpler meta-learning technique, improve its way of handling iterative algorithms and enhance it with a successful bandit strategy for budget allocation. Furthermore, we go one step further and study the design space of AutoML itself and propose a solution towards truly hand-free AutoML. Together, these changes give rise to the next generation of our AutoML system, Auto-sklearn (2.0). We verify the improvement by these additions in a large experimental study on 39 AutoML benchmark datasets and conclude the paper by comparing to Auto-sklearn (1.0), reducing the regret by up to a factor of five
    corecore