2,450 research outputs found

    Improving Cross-Lingual Transfer Learning for Event Detection

    Get PDF
    The widespread adoption of applications powered by Artificial Intelligence (AI) backbones has unquestionably changed the way we interact with the world around us. Applications such as automated personal assistants, automatic question answering, and machine-based translation systems have become mainstays of modern culture thanks to the recent considerable advances in Natural Language Processing (NLP) research. Nonetheless, with over 7000 spoken languages in the world, there still remain a considerable number of marginalized communities that are unable to benefit from these technological advancements largely due to the language they speak. Cross-Lingual Learning (CLL) looks to address this issue by transferring the knowledge acquired from a popular, high-resource source language (e.g., English, Chinese, or Spanish) to a less favored, lower-resourced target language (e.g., Urdu or Swahili). This dissertation leverages the Event Detection (ED) sub-task of Information Extraction (IE) as a testbed and presents three novel approaches that improve cross-lingual transfer learning from distinct perspectives: (1) direct knowledge transfer, (2) hybrid knowledge transfer, and (3) few-shot learning

    Towards Neuromorphic Gradient Descent: Exact Gradients and Low-Variance Online Estimates for Spiking Neural Networks

    Get PDF
    Spiking Neural Networks (SNNs) are biologically-plausible models that can run on low-powered non-Von Neumann neuromorphic hardware, positioning them as promising alternatives to conventional Deep Neural Networks (DNNs) for energy-efficient edge computing and robotics. Over the past few years, the Gradient Descent (GD) and Error Backpropagation (BP) algorithms used in DNNs have inspired various training methods for SNNs. However, the non-local and the reverse nature of BP, combined with the inherent non-differentiability of spikes, represent fundamental obstacles to computing gradients with SNNs directly on neuromorphic hardware. Therefore, novel approaches are required to overcome the limitations of GD and BP and enable online gradient computation on neuromorphic hardware. In this thesis, I address the limitations of GD and BP with SNNs by proposing three algorithms. First, I extend a recent method that computes exact gradients with temporally-coded SNNs by relaxing the firing constraint of temporal coding and allowing multiple spikes per neuron. My proposed method generalizes the computation of exact gradients with SNNs and enhances the tradeoffs between performance and various other aspects of spiking neurons. Next, I introduce a novel alternative to BP that computes low-variance gradient estimates in a local and online manner. Compared to other alternatives to BP, the proposed method demonstrates an improved convergence rate and increased performance with DNNs. Finally, I combine these two methods and propose an algorithm that estimates gradients with SNNs in a manner that is compatible with the constraints of neuromorphic hardware. My empirical results demonstrate the effectiveness of the resulting algorithm in training SNNs without performing BP

    3-Dimensional residual neural architecture search for ultrasonic defect detection

    Get PDF
    This study presents a deep learning methodology using 3-dimensional (3D) convolutional neural networks to detect defects in carbon fiber reinforced polymer composites through volumetric ultrasonic testing data. Acquiring large amounts of ultrasonic training data experimentally is expensive and time-consuming. To address this issue, a synthetic data generation method was extended to incorporate volumetric data. By preserving the complete volumetric data, complex preprocessing is reduced, and the model can utilize spatial and temporal information that is lost during imaging. This enables the model to utilize important features that might be overlooked otherwise. The performance of three architectures were compared. The first architecture is prevalent in the literature for the classification of volumetric datasets. The second demonstrated a hand-designed approach to architecture design, with modifications to the first architecture to address the challenges of this specific task. A key modification was the use of cuboidal kernels to account for the large aspect ratios seen in ultrasonic data. The third architecture was discovered through neural architecture search from a modified 3D Residual Neural Network (ResNet) search space. Additionally, domain-specific augmentation methods were incorporated during training, resulting in significant improvements in model performance, with a mean accuracy improvement of 22.4% on the discovered architecture. The discovered architecture demonstrated the best performance with a mean accuracy increase of 7.9% over the second best model. It was able to consistently detect all defects whilst maintaining a model size smaller than most 2-dimensional (2D) ResNets. Each model had an inference time of less than 0.5 seconds, making them efficient for the interpretation of large amounts of data

    Performance and Competitiveness of Tree-Based Pipeline Optimization Tool

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceAutomated machine learning (AutoML) is the process of automating the entire machine learn-ing workflow when applied to real-world problems. AutoML can increase data science produc-tivity while keeping the same performance and accuracy, allowing non-experts to use complex machine learning methods. Tree-based Pipeline Optimization Tool (TPOT) was one of the first AutoML methods created by data scientists and is targeted to optimize machine learning pipe-lines using genetic programming. While still under active development, TPOT is a very prom-ising AutoML tool. This Thesis aims to explore the algorithm and analyse its performance using real word data. Results show that evolution-based optimization is at least as accurate as TPOT initialization. The effectiveness of genetic operators, however, depends on the nature of the test case

    Machine learning applications in search algorithms for gravitational waves from compact binary mergers

    Get PDF
    Gravitational waves from compact binary mergers are now routinely observed by Earth-bound detectors. These observations enable exciting new science, as they have opened a new window to the Universe. However, extracting gravitational-wave signals from the noisy detector data is a challenging problem. The most sensitive search algorithms for compact binary mergers use matched filtering, an algorithm that compares the data with a set of expected template signals. As detectors are upgraded and more sophisticated signal models become available, the number of required templates will increase, which can make some sources computationally prohibitive to search for. The computational cost is of particular concern when low-latency alerts should be issued to maximize the time for electromagnetic follow-up observations. One potential solution to reduce computational requirements that has started to be explored in the last decade is machine learning. However, different proposed deep learning searches target varying parameter spaces and use metrics that are not always comparable to existing literature. Consequently, a clear picture of the capabilities of machine learning searches has been sorely missing. In this thesis, we closely examine the sensitivity of various deep learning gravitational-wave search algorithms and introduce new methods to detect signals from binary black hole and binary neutron star mergers at previously untested statistical confidence levels. By using the sensitive distance as our core metric, we allow for a direct comparison of our algorithms to state-of-the-art search pipelines. As part of this thesis, we organized a global mock data challenge to create a benchmark for machine learning search algorithms targeting compact binaries. This way, the tools developed in this thesis are made available to the greater community by publishing them as open source software. Our studies show that, depending on the parameter space, deep learning gravitational-wave search algorithms are already competitive with current production search pipelines. We also find that strategies developed for traditional searches can be effectively adapted to their machine learning counterparts. In regions where matched filtering becomes computationally expensive, available deep learning algorithms are also limited in their capability. We find reduced sensitivity to long duration signals compared to the excellent results for short-duration binary black hole signals

    Dataset Distillation with Convexified Implicit Gradients

    Full text link
    We propose a new dataset distillation algorithm using reparameterization and convexification of implicit gradients (RCIG), that substantially improves the state-of-the-art. To this end, we first formulate dataset distillation as a bi-level optimization problem. Then, we show how implicit gradients can be effectively used to compute meta-gradient updates. We further equip the algorithm with a convexified approximation that corresponds to learning on top of a frozen finite-width neural tangent kernel. Finally, we improve bias in implicit gradients by parameterizing the neural network to enable analytical computation of final-layer parameters given the body parameters. RCIG establishes the new state-of-the-art on a diverse series of dataset distillation tasks. Notably, with one image per class, on resized ImageNet, RCIG sees on average a 108% improvement over the previous state-of-the-art distillation algorithm. Similarly, we observed a 66% gain over SOTA on Tiny-ImageNet and 37% on CIFAR-100

    Data-efficient neural network training with dataset condensation

    Get PDF
    The state of the art in many data driven fields including computer vision and natural language processing typically relies on training larger models on bigger data. It is reported by OpenAI that the computational cost to achieve the state of the art doubles every 3.4 months in the deep learning era. In contrast, the GPU computation power doubles every 21.4 months, which is significantly slower. Thus, advancing deep learning performance by consuming more hardware resources is not sustainable. How to reduce the training cost while preserving the generalization performance is a long standing goal in machine learning. This thesis investigates a largely under-explored while promising solution - dataset condensation which aims to condense a large training set into a small set of informative synthetic samples for training deep models and achieve close performance to models trained on the original dataset. In this thesis, we investigate how to condense image datasets for classification tasks. We propose three methods for image dataset condensation. Our methods can be applied to condense other kinds of datasets for different learning tasks, such as text data, graph data and medical images, and we discuss it in Section 6.1. First, we propose a principled method that formulates the goal of learning a small synthetic set as a gradient matching problem with respect to the gradients of deep neural network weights that are trained on the original and synthetic data. A new gradient/weight matching loss is designed for robust matching of different neural architectures. We evaluate its performance in several image classification benchmarks and explore the usage of our method in continual learning and neural architecture search. In the second work, we propose to further improve the data-efficiency of training neural networks with synthetic data by enabling effective data augmentation. Specifically, we propose Differentiable Siamese Augmentation and learn better synthetic data that can be used more effectively with data augmentation and thus achieve better performance when training networks with data augmentation. Experiments verify that the proposed method obtains substantial gains over the state of the art. While training deep models on the small set of condensed images can be extremely fast, their synthesis remains computationally expensive due to the complex bi-level optimization. Finally, we propose a simple yet effective method that synthesizes condensed images by matching feature distributions of the synthetic and original training images when being embedded by randomly sampled deep networks. Thanks to its efficiency, we apply our method to more realistic and larger datasets with sophisticated neural architectures and obtain a significant performance boost. In summary, this manuscript presents several important contributions that improve data efficiency of training deep neural networks by condensing large datasets into significantly smaller synthetic ones. The innovations focus on principled methods based on gradient matching, higher data-efficiency with differentiable Siamese augmentation, and extremely simple and fast distribution matching without bilevel optimization. The proposed methods are evaluated on popular image classification datasets, namely MNIST, FashionMNIST, SVHN, CIFAR10/100 and TinyImageNet. The code is available at https://github.com/VICO-UoE/DatasetCondensation

    Machine-learning-aided design optimization of internal flow channel cross-sections

    Get PDF

    NovelCraft: A Dataset for Novelty Detection and Discovery in Open Worlds

    Full text link
    In order for artificial agents to successfully perform tasks in changing environments, they must be able to both detect and adapt to novelty. However, visual novelty detection research often only evaluates on repurposed datasets such as CIFAR-10 originally intended for object classification, where images focus on one distinct, well-centered object. New benchmarks are needed to represent the challenges of navigating the complex scenes of an open world. Our new NovelCraft dataset contains multimodal episodic data of the images and symbolic world-states seen by an agent completing a pogo stick assembly task within a modified Minecraft environment. In some episodes, we insert novel objects of varying size within the complex 3D scene that may impact gameplay. Our visual novelty detection benchmark finds that methods that rank best on popular area-under-the-curve metrics may be outperformed by simpler alternatives when controlling false positives matters most. Further multimodal novelty detection experiments suggest that methods that fuse both visual and symbolic information can improve time until detection as well as overall discrimination. Finally, our evaluation of recent generalized category discovery methods suggests that adapting to new imbalanced categories in complex scenes remains an exciting open problem.Comment: Published in Transactions on Machine Learning Research (03/2023

    Curve Your Enthusiasm: Concurvity Regularization in Differentiable Generalized Additive Models

    Full text link
    Generalized Additive Models (GAMs) have recently experienced a resurgence in popularity due to their interpretability, which arises from expressing the target value as a sum of non-linear transformations of the features. Despite the current enthusiasm for GAMs, their susceptibility to concurvity - i.e., (possibly non-linear) dependencies between the features - has hitherto been largely overlooked. Here, we demonstrate how concurvity can severly impair the interpretability of GAMs and propose a remedy: a conceptually simple, yet effective regularizer which penalizes pairwise correlations of the non-linearly transformed feature variables. This procedure is applicable to any differentiable additive model, such as Neural Additive Models or NeuralProphet, and enhances interpretability by eliminating ambiguities due to self-canceling feature contributions. We validate the effectiveness of our regularizer in experiments on synthetic as well as real-world datasets for time-series and tabular data. Our experiments show that concurvity in GAMs can be reduced without significantly compromising prediction quality, improving interpretability and reducing variance in the feature importances
    • …
    corecore