43,519 research outputs found

    Using fuzzy logic to integrate neural networks and knowledge-based systems

    Get PDF
    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems

    A new data-driven neural fuzzy system with collaborative fuzzy clustering mechanism

    Full text link
    Ā© 2015 Elsevier B.V. In this paper, a novel fuzzy rule transfer mechanism for self-constructing neural fuzzy inference networks is being proposed. The features of the proposed method, termed data-driven neural fuzzy system with collaborative fuzzy clustering mechanism (DDNFS-CFCM) are; (1) Fuzzy rules are generated facilely by fuzzy c-means (FCM) and then adapted by the preprocessed collaborative fuzzy clustering (PCFC) technique, and (2) Structure and parameter learning are performed simultaneously without selecting the initial parameters. The DDNFS-CFCM can be applied to deal with big data problems by the virtue of the PCFC technique, which is capable of dealing with immense datasets while preserving the privacy and security of datasets. Initially, the entire dataset is organized into two individual datasets for the PCFC procedure, where each of the dataset is clustered separately. The knowledge of prototype variables (cluster centers) and the matrix of just one halve of the dataset through collaborative technique are deployed. The DDNFS-CFCM is able to achieve consistency in the presence of collective knowledge of the PCFC and boost the system modeling process by parameter learning ability of the self-constructing neural fuzzy inference networks (SONFIN). The proposed method outperforms other existing methods for time series prediction problems

    Using Fuzzy Logic for Performance Evaluation in Reinforcement Learning

    Get PDF
    Current reinforcement learning algorithms require long training periods which generally limit their applicability to small size problems. A new architecture is described which uses fuzzy rules to initialize its two neural networks: a neural network for performance evaluation and another for action selection. This architecture is applied to control of dynamic systems and it is demonstrated that it is possible to start with an approximate prior knowledge and learn to refine it through experiments using reinforcement learning

    Distilling Deep RL Models Into Interpretable Neuro-Fuzzy Systems

    Full text link
    Deep Reinforcement Learning uses a deep neural network to encode a policy, which achieves very good performance in a wide range of applications but is widely regarded as a black box model. A more interpretable alternative to deep networks is given by neuro-fuzzy controllers. Unfortunately, neuro-fuzzy controllers often need a large number of rules to solve relatively simple tasks, making them difficult to interpret. In this work, we present an algorithm to distill the policy from a deep Q-network into a compact neuro-fuzzy controller. This allows us to train compact neuro-fuzzy controllers through distillation to solve tasks that they are unable to solve directly, combining the flexibility of deep reinforcement learning and the interpretability of compact rule bases. We demonstrate the algorithm on three well-known environments from OpenAI Gym, where we nearly match the performance of a DQN agent using only 2 to 6 fuzzy rules

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    Real time control of nonlinear dynamic systems using neuro-fuzzy controllers

    Get PDF
    The problem of real time control of a nonlinear dynamic system using intelligent control techniques is considered. The current trend is to incorporate neural networks and fuzzy logic into adaptive control strategies. The focus of this work is to investigate the current neuro-fuzzy approaches from literature and adapt them for a specific application. In order to achieve this objective, an experimental nonlinear dynamic system is considered. The motivation for this comes from the desire to solve practical problems and to create a test-bed which can be used to test various control strategies. The nonlinear dynamic system considered here is an unstable balance beam system that contains two fluid tanks, one at each end, and the balance is achieved by pumping the fluid back and forth from the tanks. A popular approach, called ANFIS (Adaptive Networks-based Fuzzy Inference Systems), which combines the structure of fuzzy logic controllers with the learning aspects from neural networks is considered as a basis for developing novel techniques, because it is considered to be one of the most general framework for developing adaptive controllers. However, in the proposed new method, called Generalized Network-based Fuzzy Inferencing Systems (GeNFIS), more conventional fuzzy schemes for the consequent part are used instead of using what is called the Sugeno type rules. Moreover, in contrast to ANFIS which uses a full set of rules, GeNFIS uses only a limited number of rules based on certain expert knowledge. GeNFIS is tested on the balance beam system, both in a real- time actual experiment and the simulation, and is found to perform better than a comparable ANFIS under supervised learning. Based on these results, several modifications of GeNFIS are considered, for example, synchronous defuzzification through triangular as well as bell shaped membership functions. Another modification involves simultaneous use of Sugeno type as well as conventional fuzzy schemes for the consequent part, in an effort to create a more flexible framework. Results of testing different versions of GeNFIS on the balance beam system are presented

    Integrating Symbolic and Neural Processing in a Self-Organizing Architechture for Pattern Recognition and Prediction

    Full text link
    British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225
    • ā€¦
    corecore