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Abstract

Even though the technologyofneuralnetshas been successfullyappliedto im-

age analysis,signalprocessing,and patternrecognition,most realworld problems

are too complex to be solvedpurelyby neuralnetworks. Two important issues

regardingthe applicationof neuralnetworks to complex problems are (1) the inte-

grationof neuralcomputing and symbolic reasoning,and (2) the monitoring and

controlof neuralnetworks. Most hybrid models attempt to integrateneuralnet

and symbolic processingtechnologiesat the levelof basicdata representationand

data manipulation mechanisms. However, intrinsic differences in the low-level data

processing of the two technologies limit the effectiveness of that approach. This

paper discusses the role of fuzzy logic in a hybrid architecture that combines the

two technologies at a higher, functional level. Fuzzy inference rules are used to

make plausible inference by combining symbolic information with soft data gener-

ated by neural nets. Neural networks are viewed as modules that perform flexible

classification from low-level sensor data. The symbolic system provides a global

shared knowledge base for communications and a set of control tasks for object-

oriented interface between neural network modules and the symbolic system. Fuzzy

action rules are used to detect situations under which certain control tasks need to

be invoked for neural network modules. The hybrid architecture, which supports

communication and control across multiple cooperative neural nets through the use

of fuzzy rules, enables the construction of modular, flexible, and extensible intelli-

gent systems, reduces the effort for developing and maintaining such systems, and

facilitates their application to complex real world problems that need to perform

low-level data classification as well as high-level problem solving in the presence of

uncertainty and incomplete information.
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1 Introduction

Recent development of neural network technology has demonstrated many promising

applications in the areas of pattern recognition, image processing, and speech recognition.

However, most real world problems are too complex to be solved purely by current neural

network technologies. This paper addresses two important issues regarding building

complex intelligent computer systems based on neural networks.

. How to integrate neural computing with symbolic reasoning?

A complex application usually can benefit from a synergistic integration of neural

computing and symbolic reasoning. For example, in anti-submarine warfare, one

might like to combine signal processing results computed in a neural net with sym-

bolic analyses of evidence such as database information (e.g., records of confirmed

vessel departures from port) and extended inference procedures (e.g., hypotheses

about plausible mission plans). Many other problems, ranging from speech and

vision to space applications, share this property of needing synergy between neural

nets and symbolic approaches.

. How to monitor and control the behavior of neural networks?

If one wishes to construct a real world application such as anti-submarine warfare

using neural networks, it is crucial to have mechanisms for interpreting and react-

ing to the results produced by the neural nets, so that the overall system can cope

with the rapidly changing and unanticipated situations. For example, after being

activated by an input pattern, a bidirectional associative memory, or BAM[ll],

might converge to a pattern not belonging to the set of training patterns. This

misclassification phenomenon can be caused by having overly similar or numer-

ous training patterns. In either case, the BAM needs to be modified (i.e., certain

training patterns need to be removed from the training set) to improve its perfor-

mance_ Therefore, the system needs a controller that oversees the behavior of the

neural networks. A general mechanism that supports the control across multiple

cooperative neural nets will enable the construction of modular, flexible, and ex-

tensible neural net systems, reduce the effort for developing and maintaining such

systems, and facilitate their application to complex real world problems. The need

of a higher-level system for evaluating the performance of neural networks has also

been suggested by other researchers [14].

This paper discusses the role of fuzzy logic in integrating neural networks and sym-

bolic systems and in supervising the behavior of neural networks. To do this, we propose

a hybrid architecture that uses fuzzy logic to combine the two technologies at a higher,
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functional level. Two types of fuzzy rules are supported by the architecture: fuzzy infer-

ence rules and fuzzy action rules. Fuzzy inference rules are used to assimilate the outputs

of neural nets, which are often soft data [24], into the symbolic system. Fuzzy action

rules are used to issue control tasks, which are implemented by methods in object-oriented

programming, for activating, training, and modifying neural nets. Neural networks are

viewed as modules that perform flexible classification. The symbolic system provides a

global shared knowledge base for Communications and a fuzzy rule interpreter for per-

forming rule-based reasoning.

Most hybrid models attempt to integrate neural net and symbolic processing tech-

nologies at the level of basic data representation and data manipulation mechanisms.

However, intrinsic differences in the low-level data processing of the two technologies

limit the effectiveness of that approach. In contrast, our approach combines the two

technologies at a higher, functional level. The symbolic system views neural networks

as modules that (1) extend its reasoning capabilities into flexible classification and data

associations, and (2) extend its learning capabilities into adaptive learning. Neural nets

each view the symbolic system as providing a global shared memory for communications

and a controller, built using fuzzy action rules, for activating, training, and monitoring

them. Fuzzy inference rules are used to pass data between the two subsystems; and fuzzy

action rules are used to pass action between the two.

The key features of the proposed architecture that will provide these desirable prop-

erties include the following:

. Fuzzy rules can invoke neural nets for testing "soft" (fuzzy) conditions in their

left-hand-sides.

. Recognition of situations requiring actions on neural networks is accomplished via

fuzzy action rules, whose actions are modified by the degree that the rules' condi-

tions are matched.

. Both high-level descriptions (e.g., input-output characterizations) and the behavior

(e.g., performance evaluations) of neural networks will be modeled using a princi-

pled frame-based language.

. The symbolic system will interact with neural nets through a set of generic func-

tions called control tasks. Control tasks will be implemented using methods in

object-oriented programming so that common methods can be shared, and specific

methods can override general ones.

In the following sections, we first discuss the background of this work, then we describe

the hybrid architecture with an emphasis on the features mentioned above. Finally, we

summarize the benefits of our approach.
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2 Background

2.1 Two Complementary Technologies: Neural Networks and

Artificial Intelligence

Neural networks and symbolic reasoning are two complementary approaches for achieving

the same goal: building autonomous intelligent systems. The major strengths of Neural

Networks are their capabilities for performing flexible classification and adaptive learning.

By automatically capturing similarities among training instances (i.e., adaptive learning),

neural networks are often able to perform flexible classification. That is, when given input

data which is similar, but not identical, to inputs upon which the system has been trained,

the network generates output similar to the trained responses. Consequently, a trained

neural network is able to classify data approximately even when that data is incomplete

or noisy. Thus, while most Ai systems cannot tolerate such data, neural networks promise

a system whose performance gracefully degrades under those circumstances.

On the other hand, neural networks have several major weaknesses. They have trouble

handling multiple instances of the same concept. Viewed as a pattern-matcher, they have

trouble dealing with patterns containing variables. They tend to be specialized for a

specific task. Solving complex tasks is likely to require cooperation between many neural

networks, but managing their intercommunication is not well-understood. Control of

the activation and learning behavior of these networks by higher-level modules is also

not well-understood. Because their internal representation is in a form that cannot be

comprehended by the user easily, it is hard to explain the rationale behind the output

of neural networks. Although some of these problems have been addressed by neural

network researchers (e.g., schema theory[2] addresses the first two issues), a neural net

approach that addresses all these problems is yet to be developed. The goal of this

research is to develop a comprehensive solution to these concerns using fuzzy logic and

existing AI techniques.

Certain AI techniques suggest solutions to the problems illustrated above. Different

instances of a concept are easily represented using frame-based knowledge representa-

tion systems. Variables often occur in patterns, which can be matched with data using

a pattern matching facility. The notion of supporting many independent modules that

communicate through a global knowledge base accessible to all modules is an idea central

to many AI systems. For example, blackboard architectures maintain a data structure

(the "blackboard") where all knowledge sources can post or retrieve information. Produc-

tion system architectures also have a working memory that all productions match their

conditions against and act upon. An AI system may also provide a higher-level con-

troller, often called the meta-level architecture, that has knowledge about the lower-level
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system and is able to control the lower-level system in various ways. The explanation

capabilities of AI systems have been enhanced by explicitly representing problem solving

strategies [15].

Our integration of AI capabilities with neural nets is designed to address these issues.

In Section 2.2, we explain the concerns driving the design. In Section 3, we detail our

approach.

2.2 Problems with Current Hybrid Approaches

Combining neural networks and AI is certainly not a new idea, but previous efforts have

not addressed the important issues raised above. A number of researchers have used

neural networks to reimplement AI techniques such as production systems and semantic

networks [19, 7]. Work in this area mainly demonstrates what neural networks can

do, not that their implementations are better than the conventional ones. Others have

applied neural networks to expert systems, natural language understanding, and other

areas that have mainly utilized conventional AI techniques[9]. Work in these first two

categories applies current neural net technologies, rather than addressing weaknesses of

neural nets. Furthermore, it has demonstrated neural net implementations of things that

AI can easily handle, rather than things that AI has great difficulties in doing (e.g.,

partial matching). A few researchers have introduced ideas from neural networks into

conventional AI techniques or architectures. For example, Anderson's ACT* architecture

incorporates the notion of "activation values" into the memory structure and the rule

base of a production system architecture [1]. Although such hybrid models do attempt to

augment the weaknesses of AI, they do not attempt to address issues regarding multiple

neural nets because there are no neural net modules in these connectionist models at

all. Finally, some efforts have introduced ideas from AI into neural nets. Network

regions, for instance, impose hierarchical structures from frame-based systems onto neural

networks[6]. Although concerned with the weakness of neural nets, these efforts have not

been able to overcome the two technologies' intrinsic differences in data representation

and data manipulation mechanisms.

In neural networks, data are represented in a distributed fashion within dynamic

networks and data manipulation involves numeric computations. In artificial intelligence,

each conceptual entity is represented as a unit composed of symbols and pointers to

other units, and data manipulation involves logical deduction and pattern matching.

Our approach to this mismatch of representations is to integrate AI, not with these

basic mechanisms of neural networks, but rather with their high-level functions: i.e.,

classification and data association. These refer to the capability of a neural net to take

an input pattern and either classify it with respect to some set of classes, or generate an
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output pattern most closely associated with the input pattern. Viewed at this functional

level, these capabilities are closely related to pattern matching and automated reasoning

functions in symbolic systems.

Based on these observations, we will describe a novel hybrid architecture that allevi-

ates the difficulties encountered by current hybrid models through the use of fuzzy logic

in integrating the two paradigms at their functional levels. The architecture provides an

extremely high degree of synergy between the approaches, along precisely the dimensions

required to facilitate ease of programming and enable scaling-up to larger problems.

2.3 Fuzzy Logic and Neural Networks

Several techniques for integrating fuzzy logic and neural networks have been suggested.

For instance, neural nets have been suggested for learning the membership functions of

a fuzzy set [16]. The learning techniques in neural nets have been applied to learning

fuzzy control rules [12]. Finally, fuzzy cognitive map suggests an approach for capturing

fuzzy knowledge within the framework of associative memories [10]. Our discussion here

will be focused on the roles of fuzzy logic in integrating multiple neural networks and

knowledge-based systems and in monitoring the performance of neural networks.

3 A Hybrid Architecture

A high-level block diagram of the proposed hybrid architecture is shown in Figure 1. The

architecture has four major components: (1) a set of neural net modules, (2) a symbolic

system consisting of a global knowledge base, (3) a fuzzy rule system that supports fuzzy

inference rules and fuzzy action rules, (4) and an object-oriented interface between the

symbolic system and the neural nets. The neural nets process data obtained either from

external sensor devices or from the knowledge base of the symbolic system. The global

knowledge base consists of a fuzzy database and a neural-network taxonomy that describes

meta-level knowledge about the neural nets themselves. The fuzzy database stores data

and hypotheses that can be uncertain, imprecise, or vague. The neural-net taxonomy

consists of neural-net classes, (shown as circles in Figure 1) and individual neural-net

objects that form the leaves of the taxonomy (shown as rectangles). For instance, the

neural-net object BAM1 belongs to the neural net class BAM (Bidirectional Associative

Memory), and inherits all the general properties (e.g., its training procedure and its

activation process) of the BAM class. There is one neural-net object for each neural

net module. The fuzzy rule base consists of two types of rules: fuzzy inference rules and

fuzzy action rules. Fuzzy inference rules make plausible inferences by combining symbolic
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information with the outputs of neural networks. Control tasks can be invoked either by

procedure calls or by fuzzy action rules to effect activation, learning, and modification of

neural networks. These control tasks are performed by selecting and executing methods

that are inherited through the neural network taxonomy.

The hybrid architecture is an extension of CLASP [23], an advanced AI programming

environment that fuses the best aspects of frames, rules, and object-oriented program-

ming. In the following sections, we discuss four major technical issues of the proposed

hybrid architecture:

1. Using fuzzy inference rules to combine the output of multiple neural networks with

symbolic information;

2. Modeling meta-level knowledge about neural networks in a symbolic knowledge

base;

3. Using a set of control tasks, which are implemented by methods in object-oriented

programming, to define the interface between symbolic systems and neural nets;

4. Using fuzzy action rules to recognize situations necessitating actions upon neural
networks.

Throughout the following discussion, we will use a sensor fusion system for anti-submarine

warfare as an example to illustrate our approach. This hypothetical system consists

of multiple neural nets for classifying various kinds of sensor input and for integrating

various information about submarines, along with a symbolic expert system for analyzing

the findings and planning anti-submarine strategies.

3.1 Fuzzy Inference Rules

We use fuzzy inference rules to assimilate the outputs of neural networks into the symbolic

system, because neural networks often generate classification results that are imprecise

in nature. For instance, a neural network that determines the hostility classification of a

submarine could generate a qualitative measure of hostility (e.g., hostility degree is 0.7),

or a membership values of several fuzzy sets (e.g., membership value of very-hostile is

0.6, membership value of hostile is 0.8, ... ).

A fuzzy inference rule checks certain soft conditions, than make a plausible conclu-

sion based on the degree those conditions are satisfied. The condition side of a fuzzy

rule consists of fuzzy conditions as well as non-fuzzy condition. A fuzzy condition can

be checked by invoking a neural net module in a data-driven fashion (i.e., the neural net
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If Source was lost due to fade-out in the NEAR-PAST, and

Similar source started up in an another frequency, and

Locations of the sources are relatively CLOSE

Then

The possibility that they are the same Source is MEDIUM.

Figure 2: An Example of Fuzzy Inference Rules and Data-driven Neural Nets

If Report exists for a vessel class Rose to be in the vicinity, and

Source likely to be associated with Rose has been detected,

TheExpect to find other Source types associated with Rose class.

Figure 3: An Example of Fuzzy Inference Rules

is activated by the arrival of data). From the symbolic system's point of view, neural

net modules act as predicates in a fuzzy rule's condition side that check a "soft" (fuzzy)

condition and return a number between zero and one indicating the degree of matching

(e.g., the membership value of a fuzzy set). Figure 2 shows an example of fuzzy infer-

ence rule 1 where source refers to some noise-producing objects, such as propellers and

shafts on ships. Fuzzy sets in the rules are expressed in uppercase. Suppose a neural

net NNl classifies sensor data from hydrophones into possible sources of the noise. The

fuzzy inference rule will combine the output of the neural net with other symbolic infor-

mation (e.g., the reason a source was lost, the location of the sources) to determine the

applicability of the rule.

In addition to use the output of a neural net in a data-driven fashion, a fuzzy inference

rule can also invoke a neural net in a goal-driven fashion. For instance, the fuzzy inference

rule in Figure 3 creates an expectation about the existence of certain source types. This

expectation can be verified by several neural net modules that classifies noise sources

associated with Rose class vessel.

1The examples in Figures 2 and 3 are two rules in HASP, a Blackboard system that analyzes sensor
data from hydrophone arrays for ocean surveillance mission [8].
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3.2 Modeling Meta-level Knowledge about Neural Networks

For a symbolic system to controlneural nets and to use them as modules that extend its

reasoning capabilities,it needs some information about the performance and the func-

tionalbehaviors (e.g.,input/output descriptions)of the neural nets. Such information

isparticularlycrucialfor integratingneural nets and symbolic systems, as they can not

easilycommunicate with each other otherwise. Our approach is to symbolically repre-

sent information about classesof neural networks and individual neural networks, using

a principledframe-based knowledge representationmechanism, calledterm subsumption

languages[17].Doing so offersthree important advantages.

io The model describes the functional behavior of neural networks in a way that helps

the symbolic system invoke neural nets to extend its capabilities. For instance, an

input/output description of a neural net allows the symbolic expert system to tell

when a question it is working on can be answered by activating a particular neural
net.

.

°

It provides the basic structure for our method inheritance mechanism (see Section

3.3). This allows general methods and specific methods to be described at their

appropriate abstraction level, which facilitates the sharing of common methods and

a saving of effort in developing and modifying them.

Finally, this approach enables the symbolic system to reason about the behavior

of neural networks using automatic classification reasoning capabilities of term

subsumption systems[18], which extend the system's knowledge about neural nets

beyond what's stated explicitly in the model.

Figure 4 shows an example of meta-level knowledge that might be kept about a neu-

ral net for classifying the hostility of a submarine based on its location, speed, direction

of movement, and depth. Several attributes need explanation. Reliability is the cu-

mulative performance measure of the neural net, while performance-measure records

the performance of the neural net's last activation. The reliability-threshold is the

minimum reliability of the neural network that the system can tolerate. A neural net

needs to be modified when its reliability is below its threshold value.

CLASP provides a rich term subsumption language, LOOM [13], for modeling meta-

level knowledge about neural nets. Term Subsumption Languages are knowledge repre-

sentation formalisms that employ a formal language, with a formal semantics, for the

definition of terms (more commonly referred to as concept or classes), and that deduce

whether one term subsumes (is more general that) another [17]. These formalisms gen-

erally descend from the ideas presented in KL-ONE [5]. Term subsumption languages
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Name : BACK,

Type : Three-layer- feedf orward

Learning: Back-propagat ion

Input: Location, speed, direction,

Output : Hostility

Training-status : Trained

Performance-measure : Sat isfact ory

Reliability: 0.9

Reliability-threshold: 0.7

depth

Figure 4: Meta-level Knowledge about a Neural Net

are a generalization of both semantic networks and frames because the languages have

well-defined semantics, which is often missing from frames and semantic networks [20, 4].

The major benefit of using a term subsumption language (e.g., LOOM) to model the

neural nets lies in its strong support for developing a consistent and coherent class tax-

onomy. This can be illustrated by the following example. Suppose the model defines

that (1) a possible-spurious-recognition-net is any noise-sensitive-net which has

two examplars that differ in less than two pixels; and, (2) CG1 is a neural net module of

type Carpenter-Grossberg-net, which is a kind of noise-sensitive-net. If CG, has

two examplars that differ only in one pixel, LOOM will infer that CG1 is a possible-

spurious-recognition-net. Thus, using a term subsumption language to model the

neural net taxonomy improves the consistency of the taxonomy, avoids redundancy in

the model, and minimizes human errors introduced into the meta-level knowledge base.

3.3 Control Tasks and Methods

To link a symbolic system and neural net modules, a hybrid system needs to define a set

of functions that interface between them. These functions facilitate the construction of a

layered hybrid system by serving as the intermediate layer between the symbolic system

and the neural nets. This layered approach means that hybrid systems will be built in a

flexible and extensible way because we can extend the intermediate layer with minimum

modification to the symbolic system and the neural nets.

Our approach to building the intermediate level has two major aspects. First, we

use a set of generic functions (called control tasks) to define the interaction between the

symbolic system and the neural networks. Second, we use methods in object-oriented
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activate-net 1

l encode-input I

1'
activate-input Ifor N cycles

convergence Icheck

decode output I

Figure 5: An example of control task decomposition

programming to implement control tasks.

Conceptually, we can view control tasks as messages sent back and forth between

symbolic systems and neural networks. Symbolic systems use control tasks to activate

and modify neural network modules; these, in turn, use control tasks to inform the sym-

bolic system about their input/output behaviors. For example, the symbolic system

would send an activate-net message to a neural network object in order to activate its

corresponding neural network module 2. Conversely, the neural network module would

send a set-performance-measure message to the neural net object in order to up-

date the neural net's performance-measure (possibly causing monitoring rules to be

triggered). Some of the basic control tasks supported by the architecture may include:

activate-net, train-net, set-training-status, set-performance-measure, update-

reliability, and remove-training-pattern.

Our approach increases the reusability of modules and reduces the cost of developing

and maintaining the system in two ways. First, it separates the purpose of a task from

its implementation. Using control tasks to indicate "what needs to be done" allows the

symbolic system and the neural nets to interact at an abstraction level that is indepen-

dent of their detailed implementations. Second, our approach facilitates decomposing

tasks into subtasks that can be shared by multiple neural nets. For example, the con-

trol task activate-net can be further decomposed into five subtasks as shown in Figure

5. By decomposing control tasks into subtasks, which are functional modules, we sep-

2A neural network module can also be activated by the arrival of sensor data
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arate application-specific modules (such as encode-input and decode-output 3) from

application-independent modules (such as activate-input).

CLASP offers a mechanism for defining generic functions (also called operators) that

can be invoked by rules or by function calls in any program [22]. CLASP's capability to

invoke generic functions by rules and by procedural call is important because it allows the

symbolic system to invoke control tasks by rule triggering, and the neural net modules

to initiate control tasks through procedural invocations.

Control tasks wiU be implemented using method inheritance mechanisms in CLASP's

object-oriented programming capabilities 4. The methods implementing control tasks are

attached to the neural net objects, which are organized into a taxonomy. An individual

neural net inherit all its methods from its parents in the taxonomy. To implement a

control task for a neural net N, the architecture finds a method for the task that is

inherited from the most specific parent of N. This approach increases the reusability of

methods, and avoids redundancy in defining similar methods. For example, although

different bidirectional associative memories (BAM's) may differ in how they encode and

decode symbolic information, they could all share the same activate-input method.

3.4 Fuzzy Action Rules

In addition to storing meta-level information about neural nets and specifying possible

control actions on a neural net, the symbolic system needs a mechanism for recognizing

situations within neural nets that indicate a need for action. Even though production

systems in artificial intelligence offers such a capability, they do not address the issue

of partial matching (accepting an approximate fit between observed data and a rule's

condition). A production system that takes into account the degree of partial matching

will enable the system to respond in a flexible way even in the face of incomplete or noisy

data.

Our approach is to use fuzzy action rules, a generalization of production rules, to issue

control task to neural net modules. Afuzzy action rule can use the degree its condition

is satisfied to adjust its action s. Depending on the partial matching result, a fuzzy action

rule may or may not be deemed applicable. For example, a rule may be viewed applicable

aIn our terminology, encoding refers to transforming raw sensor data or symbolic information into
neural net representations, and decoding refers to transforming neural net representations back into

symbolic form.
4Actually, the method-dispatching mechanism in CLASP is more general than those in object-oriented

programming languages (e.g., SMALLTALK-80) in that it allows programmers to describe more complex
situations in which a method applies [21].

5The partial matching results of fuzzy productions can also be used for conflict resolution[3].
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If neural net N is a kind of bidirectional associative memory, and

_ts classification results are UNSATISFACTORY,

Then decrease its reliability SLIGHTLY.

If the reliability of a neural net is VERY LOW,

Then set a goal to diagnose and fix the neural net and initialize

the priority of the goal to be proportional to the degree of matching.

Figure 6: Two Rules that Monitor the Performance of a Neural Net

only if the degree of matching is greater than a threshold value,

To iLlustrate how we use fuzzy action rules to control activation, training, and per-

formance of neural nets, two monitoring rules (paraphrased into English) are shown in

Figure 6. They monitor neural net modules by updating and acting on the modules'

performance measures. The first rule illustrates how our neural net taxonomy allows

rules to apply over whole classes of neural net modules. The second rule demonstrates

that actions of rules can be high level tasks which cause the symbolic system to pursue

further problem solving and diagnostic re_oning.

4 Summary

We have outlined a novel hybrid architecture that uses fuzzy logic to integrate neural

networks and knowledge-based systems. Our approach offers important synergistic ben-

efits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference

rules extend symbolic systems with approximate reasoning capabilities, which are used

for integrating and interpreting the outputs of neural networks. The symbolic system

captures meta-level information about neural networks and defines its interaction with

neural networks through a set of control tasks. Fuzzy action rules provides a robust

mechanism for recognizing the situations about neural networks that require certain con-

trol actions. The neural nets, on the other hand, offers flexible classification and adaptive

learning capabilities, which is crucial for dynamic and noisy environment. By combining

neural nets and symbolic systems at their functional level through the use of fuzzy logic,

our approach alleviates current difficulties in reconciling differences between the low-level

data processing mechanisms of neural nets and AI systems.

Our technical approach to achieving this high-level integration also offers several

advantages concerning the development and the maintenance of applications based on
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the hybrid architecture:

.

.

Fuzzy logic serves as a natural bridge that brings together subsymbolic processing

of neural networks and symbolic reasoning in knowledge-based systems.

The interface between symbolic system and neural nets can be modified easily

because it is implemented using a layered and modular approach.

3. Meta-level knowledge about neural nets is stored in a taxonomic structure that

facilitates the sharing of information and procedures (e.g., methods).

4. Representing information about neural nets using a principled AI knowledge repre-

sentation language enables the system to reason about the behavior of neural nets

using AI deductive reasoning capabilities.

The hybrid architecture, which supports communication and control across multi-

ple cooperative neural nets through the use of fuzzy rules, enables the construction of

modular, flexible, and extensible intelligent systems, reduces the effort for developing

and maintaining such systems, and facilitates their application to complex real world

problems that need to perform low-level data classification as well as high-level problem

solving in the presence of uncertainty and incomplete information.
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