6,208 research outputs found

    Learning from Multi-View Multi-Way Data via Structural Factorization Machines

    Full text link
    Real-world relations among entities can often be observed and determined by different perspectives/views. For example, the decision made by a user on whether to adopt an item relies on multiple aspects such as the contextual information of the decision, the item's attributes, the user's profile and the reviews given by other users. Different views may exhibit multi-way interactions among entities and provide complementary information. In this paper, we introduce a multi-tensor-based approach that can preserve the underlying structure of multi-view data in a generic predictive model. Specifically, we propose structural factorization machines (SFMs) that learn the common latent spaces shared by multi-view tensors and automatically adjust the importance of each view in the predictive model. Furthermore, the complexity of SFMs is linear in the number of parameters, which make SFMs suitable to large-scale problems. Extensive experiments on real-world datasets demonstrate that the proposed SFMs outperform several state-of-the-art methods in terms of prediction accuracy and computational cost.Comment: 10 page

    A Broad Learning Approach for Context-Aware Mobile Application Recommendation

    Full text link
    With the rapid development of mobile apps, the availability of a large number of mobile apps in application stores brings challenge to locate appropriate apps for users. Providing accurate mobile app recommendation for users becomes an imperative task. Conventional approaches mainly focus on learning users' preferences and app features to predict the user-app ratings. However, most of them did not consider the interactions among the context information of apps. To address this issue, we propose a broad learning approach for \textbf{C}ontext-\textbf{A}ware app recommendation with \textbf{T}ensor \textbf{A}nalysis (CATA). Specifically, we utilize a tensor-based framework to effectively integrate user's preference, app category information and multi-view features to facilitate the performance of app rating prediction. The multidimensional structure is employed to capture the hidden relationships between multiple app categories with multi-view features. We develop an efficient factorization method which applies Tucker decomposition to learn the full-order interactions within multiple categories and features. Furthermore, we employ a group ℓ1−\ell_{1}-norm regularization to learn the group-wise feature importance of each view with respect to each app category. Experiments on two real-world mobile app datasets demonstrate the effectiveness of the proposed method

    A Comparative Study of Pairwise Learning Methods based on Kernel Ridge Regression

    Full text link
    Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction or network inference problems. During the last decade kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify existing kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency and spectral filtering properties. Our theoretical results provide valuable insights in assessing the advantages and limitations of existing pairwise learning methods.Comment: arXiv admin note: text overlap with arXiv:1606.0427
    • …
    corecore