11,030 research outputs found

    Implicitly Constrained Semi-Supervised Least Squares Classification

    Full text link
    We introduce a novel semi-supervised version of the least squares classifier. This implicitly constrained least squares (ICLS) classifier minimizes the squared loss on the labeled data among the set of parameters implied by all possible labelings of the unlabeled data. Unlike other discriminative semi-supervised methods, our approach does not introduce explicit additional assumptions into the objective function, but leverages implicit assumptions already present in the choice of the supervised least squares classifier. We show this approach can be formulated as a quadratic programming problem and its solution can be found using a simple gradient descent procedure. We prove that, in a certain way, our method never leads to performance worse than the supervised classifier. Experimental results corroborate this theoretical result in the multidimensional case on benchmark datasets, also in terms of the error rate.Comment: 12 pages, 2 figures, 1 table. The Fourteenth International Symposium on Intelligent Data Analysis (2015), Saint-Etienne, Franc

    Large Margin Multiclass Gaussian Classification with Differential Privacy

    Full text link
    As increasing amounts of sensitive personal information is aggregated into data repositories, it has become important to develop mechanisms for processing the data without revealing information about individual data instances. The differential privacy model provides a framework for the development and theoretical analysis of such mechanisms. In this paper, we propose an algorithm for learning a discriminatively trained multi-class Gaussian classifier that satisfies differential privacy using a large margin loss function with a perturbed regularization term. We present a theoretical upper bound on the excess risk of the classifier introduced by the perturbation.Comment: 14 page

    Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks

    Get PDF
    Transferability captures the ability of an attack against a machine-learning model to be effective against a different, potentially unknown, model. Empirical evidence for transferability has been shown in previous work, but the underlying reasons why an attack transfers or not are not yet well understood. In this paper, we present a comprehensive analysis aimed to investigate the transferability of both test-time evasion and training-time poisoning attacks. We provide a unifying optimization framework for evasion and poisoning attacks, and a formal definition of transferability of such attacks. We highlight two main factors contributing to attack transferability: the intrinsic adversarial vulnerability of the target model, and the complexity of the surrogate model used to optimize the attack. Based on these insights, we define three metrics that impact an attack's transferability. Interestingly, our results derived from theoretical analysis hold for both evasion and poisoning attacks, and are confirmed experimentally using a wide range of linear and non-linear classifiers and datasets

    Differentially Private Empirical Risk Minimization

    Full text link
    Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the ϵ\epsilon-differential privacy definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-preserving machine learning algorithm design. This method entails perturbing the objective function before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy, and provide generalization bounds for linear and nonlinear kernels. We further present a privacy-preserving technique for tuning the parameters in general machine learning algorithms, thereby providing end-to-end privacy guarantees for the training process. We apply these results to produce privacy-preserving analogues of regularized logistic regression and support vector machines. We obtain encouraging results from evaluating their performance on real demographic and benchmark data sets. Our results show that both theoretically and empirically, objective perturbation is superior to the previous state-of-the-art, output perturbation, in managing the inherent tradeoff between privacy and learning performance.Comment: 40 pages, 7 figures, accepted to the Journal of Machine Learning Researc
    • …
    corecore