232,027 research outputs found

    A tutorial on recursive models for analyzing and predicting path choice behavior

    Full text link
    The problem at the heart of this tutorial consists in modeling the path choice behavior of network users. This problem has been extensively studied in transportation science, where it is known as the route choice problem. In this literature, individuals' choice of paths are typically predicted using discrete choice models. This article is a tutorial on a specific category of discrete choice models called recursive, and it makes three main contributions: First, for the purpose of assisting future research on route choice, we provide a comprehensive background on the problem, linking it to different fields including inverse optimization and inverse reinforcement learning. Second, we formally introduce the problem and the recursive modeling idea along with an overview of existing models, their properties and applications. Third, we extensively analyze illustrative examples from different angles so that a novice reader can gain intuition on the problem and the advantages provided by recursive models in comparison to path-based ones

    Enabling Robots to Communicate their Objectives

    Full text link
    The overarching goal of this work is to efficiently enable end-users to correctly anticipate a robot's behavior in novel situations. Since a robot's behavior is often a direct result of its underlying objective function, our insight is that end-users need to have an accurate mental model of this objective function in order to understand and predict what the robot will do. While people naturally develop such a mental model over time through observing the robot act, this familiarization process may be lengthy. Our approach reduces this time by having the robot model how people infer objectives from observed behavior, and then it selects those behaviors that are maximally informative. The problem of computing a posterior over objectives from observed behavior is known as Inverse Reinforcement Learning (IRL), and has been applied to robots learning human objectives. We consider the problem where the roles of human and robot are swapped. Our main contribution is to recognize that unlike robots, humans will not be exact in their IRL inference. We thus introduce two factors to define candidate approximate-inference models for human learning in this setting, and analyze them in a user study in the autonomous driving domain. We show that certain approximate-inference models lead to the robot generating example behaviors that better enable users to anticipate what it will do in novel situations. Our results also suggest, however, that additional research is needed in modeling how humans extrapolate from examples of robot behavior.Comment: RSS 201

    PatchNR: Learning from Very Few Images by Patch Normalizing Flow Regularization

    Get PDF
    Learning neural networks using only few available information is an important ongoing research topic with tremendous potential for applications. In this paper, we introduce a powerful regularizer for the variational modeling of inverse problems in imaging. Our regularizer, called patch normalizing flow regularizer (patchNR), involves a normalizing flow learned on small patches of very few images. In particular, the training is independent of the considered inverse problem such that the same regularizer can be applied for different forward operators acting on the same class of images. By investigating the distribution of patches versus those of the whole image class, we prove that our model is indeed a MAP approach. Numerical examples for low-dose and limited-angle computed tomography (CT) as well as superresolution of material images demonstrate that our method provides very high quality results. The training set consists of just six images for CT and one image for superresolution. Finally, we combine our patchNR with ideas from internal learning for performing superresolution of natural images directly from the low-resolution observation without knowledge of any high-resolution image

    Location-aware computing: a neural network model for determining location in wireless LANs

    Get PDF
    The strengths of the RF signals arriving from more access points in a wireless LANs are related to the position of the mobile terminal and can be used to derive the location of the user. In a heterogeneous environment, e.g. inside a building or in a variegated urban geometry, the received power is a very complex function of the distance, the geometry, the materials. The complexity of the inverse problem (to derive the position from the signals) and the lack of complete information, motivate to consider flexible models based on a network of functions (neural networks). Specifying the value of the free parameters of the model requires a supervised learning strategy that starts from a set of labeled examples to construct a model that will then generalize in an appropriate manner when confronted with new data, not present in the training set. The advantage of the method is that it does not require ad-hoc infrastructure in addition to the wireless LAN, while the flexible modeling and learning capabilities of neural networks achieve lower errors in determining the position, are amenable to incremental improvements, and do not require the detailed knowledge of the access point locations and of the building characteristics. A user needs only a map of the working space and a small number of identified locations to train a system, as evidenced by the experimental results presented

    Anti-Aliasing Add-On for Deep Prior Seismic Data Interpolation

    Full text link
    Data interpolation is a fundamental step in any seismic processing workflow. Among machine learning techniques recently proposed to solve data interpolation as an inverse problem, Deep Prior paradigm aims at employing a convolutional neural network to capture priors on the data in order to regularize the inversion. However, this technique lacks of reconstruction precision when interpolating highly decimated data due to the presence of aliasing. In this work, we propose to improve Deep Prior inversion by adding a directional Laplacian as regularization term to the problem. This regularizer drives the optimization towards solutions that honor the slopes estimated from the interpolated data low frequencies. We provide some numerical examples to showcase the methodology devised in this manuscript, showing that our results are less prone to aliasing also in presence of noisy and corrupted data
    corecore