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Abstract
Learning neural networks using only few available information is an import-
ant ongoing research topic with tremendous potential for applications. In this
paper, we introduce a powerful regularizer for the variational modeling of
inverse problems in imaging. Our regularizer, called patch normalizing flow
regularizer (patchNR), involves a normalizing flow learned on small patches
of very few images. In particular, the training is independent of the considered
inverse problem such that the same regularizer can be applied for different
forward operators acting on the same class of images. By investigating the
distribution of patches versus those of the whole image class, we prove that our
model is indeed a maximum a posteriori approach. Numerical examples for
low-dose and limited-angle computed tomography (CT) as well as superresolu-
tion of material images demonstrate that our method provides very high quality
results. The training set consists of just six images for CT and one image for
superresolution. Finally, we combine our patchNR with ideas from internal
learning for performing superresolution of natural images directly from the
low-resolution observation without knowledge of any high-resolution image.
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1. Introduction

Solving inverse problems with limited access to training data is an active field of research.
In inverse problems, we aim to reconstruct an unknown ground truth image x from some
observation

y= noisy( f(x)), (1)

where f is an ill-posed forward operator and ‘noisy’ describes some noise model. In the recent
years learning-based reconstruction methods as supervisely trained neural networks on large
datasets [37, 68] and conditional generative models [6, 28, 57, 75] attained a lot of attention.
However, for many applications like medical or material imaging, the acquisition of a large
database of ground truth images or pairs of ground truth images and observations is very costly
or even impossible [48, 89]. Model-based approaches assume that the forward operator f is
known and aim to minimize a variational functional of the form

J (x;y) =D( f(x),y)+λR(x), λ > 0, (2)

where D is a data-fidelity term which depends on the noise model and measures how well the
reconstruction fits to the observation andR is a regularizer which copes with the ill-posedness
and incorporates prior information. Over the last years, learned regularizers like the total deep
variation [46, 47] or adversarial regularizers [55, 58, 63] as well as extensions of plug-and-
play and unrolled methods [24, 78, 84, 88] with learned denoisers [32, 35, 67, 91] showed
promising results, see [8, 59] for an overview.

Furthermore, many papers leveraged the tractability of the likelihood of normalizing flows
(NFs) to learn a prior [9, 30, 85, 86, 90] or use conditional variants to learn the posterior [12,
53, 79, 87] They utilize the invertibility to optimize over the range of the flow together with the
Gaussian assumption on the latent space. Also, diffusion models [39, 40, 76, 77] have shown
great generative modelling capabilities and have been used as a prior for inverse problems.
Moreover, other generative models, such as GANs [4, 26, 60] or VAEs [44], have been used as
a regularizer, see the recent review [20] and references therein. However, even if these methods
allow an unsupervised reconstruction, their training is often computationally costly and a huge
amount of training images is required.

One possibility to reduce the training effort consists in using only small image patches.
Denoising methods based on the comparison of similar patches provided state-of-the-art
methods [13, 16, 49, 50] for a long time. Recently, the approximation of patch distributions of
images was successfully exploited in certain papers [3, 18, 27, 31, 33, 34, 71]. In particular,
[93] proposed the negative log likelihood of all patches of an image as a regularizer, where
the underlying patch distribution was assumed to follow a Gaussian mixture model (GMM)
which parameters were learned from few clean images. This method is still competitive to
many approaches based on deep learning and several extensions were suggested recently [22,
61, 72]. However, even though GMMs can approximate any probability density function if
the number of components is large enough, they suffer from limited flexibility in case of a
fixed number of components, see [23] and the references therein. Moreover the subsequent
reconstruction procedure detailed in [93] is computationally expensive.
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In this paper, we propose to use a regularizer which incorporates a NF learned on small
image patches, usually of size 6× 6. NFs were introduced in [19, 66], see also [70] for its con-
tinuous counterpart. They build upon invertible neural networks and allow for explicit density
evaluation. Our PatchNR consists of a NF which is trained to approximate the distribution of
patches. As the structure of small patches is usually much simpler than those of whole images,
it appears that their approximation is more accurate. Moreover, as a large database of patches
can be extracted from few images, we require only a very small amount of training images.
Once the patchNR is learned, we use the negative log likelihood of all patches as regularizer
in (2) for its reconstruction. Indeed we will prove that our model can be obtained by a max-
imum a posteriori (MAP) approach. Since the regularizer is only specific to the considered
image class, but not to the inverse problem, it can be applied for different forward operat-
ors as, e.g. for low-dose computed tomography (CT) and limited-angle CT without additional
training. This is in contrast to data-based methods as filtered backprojection (FBP)+UNet,
where the network has to be trained for each new forward operator separately.

We demonstrate by numerical examples that our patchNR admits high quality results for
low-dose and limited-angle CT as well as superresolution. Moreover, we combine patchNRs
with ideas from internal learning to perform superresolution on natural images without any
training data. Internal learning [25, 73] is based on the observation that the patches within
natural images are self-similar across the scales. In our case, this leads to the idea to train
the patchNR on the low-resolution observation instead of a dataset of training images. We
demonstrate on the BSD68 dataset that zero-shot superresolution with patchNRs outper-
forms comparable methods including the original zero shot super-resolution (ZSSR) paper
by [73]. Finally, let us mention that recent works have explored meta-learning for efficient
one gradient step reconstruction [74], applications to light field superresolution [15] and CT
superresolution [92].

The paper is organized as follows: We start by explaining the training of our patchNR and
the variational reconstruction model in section 2. Our approach is integrated into the MAP
framework in section 3, i.e. the patchNR defines a probability density on the full image space.
In section 4, we evaluate the performance of our model in CT and superresolution and use the
patchNR also for zero-shot superresolution. Finally, conclusions are drawn in section 5.

2. Patch NFs in variational modeling

In the following, we assume that we are given a small number of high quality example images
x1, . . .,xM ∈ Rd1×d2—indeedM= 1 orM= 6 in our numerical examples - from a certain image
class as CT, material or texture images. Our method consists of two steps, namely i) learning
a NF for approximating the patch distribution of the example images, and ii) establishing a
variational model which incorporates the learned patchNR in the regularizer.

2.1. Learning patchNRs

Let p1, . . .,pN ∈ Rs1×s2 , si � di, i = 1,2 denote all possibly overlapping patches of the example
images, where we assume that the patches p1, . . .,pN are realizations of an absolute continu-
ous probability distribution Q with density q. We aim to approximate q by a NF. For sim-
plicity, we rearrange the images and the patches columnwise into vectors of size d= d1d2
and s := s1s2, respectively. Then we learn a diffeomorphism T = Tθ : Rs → Rs such that
Q≈ T#PZ := PZ ◦ T −1, where PZ is a s-dimensional standard normal distribution. To this
end, we set our NF T to be an invertible neural network with parameters collected in θ. There
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were several approaches in the literature to construct such invertible neural networks [5, 14,
19, 43, 54]. In this paper, we adapt the architecture from [5]. In order to train our NF, we aim
to minimize the (forward) Kullback-Leibler divergence

KL(Q,T#PZ) :=
ˆ
Rs

log

(
dQ

dT#PZ

)
dQ= Ep∼Q

[
log

(
q(p)

)
]−Ep∼Q

[
log

(
pT#PZ(p)

)]
,

where we set the expression to +∞ if Q is not absolutely continuous with respect to T#PZ.
The first term on the right-hand side is a constant independent of the parameters θ. Thus, using
the change-of-variables formula for probability density functions of push-forward measures
pT#PZ = pZ(T −1)|det(∇T −1)|, we obtain that the above formula is up to a constant equal to

−Ep∼Q
[
log

(
pZ(T −1(p)

)
+ log

(∣∣det(∇T −1(p))
∣∣)],

where∇T −1 denotes the Jacobian matrix of T −1. By replacing the expectation by the empir-
ical mean of our training set, inserting the standard normal density pZ and neglecting some
constants, we finally obtain the loss function

L(θ) := 1
N

N∑
i=1

1
2

∥∥T −1(pi)
∥∥2 − log

(∣∣det(∇T −1(pi))
∣∣). (3)

We minimize this loss function using the Adam optimizer [42].

2.2. Reconstruction with PatchNRs

Once the patchNR T is learned, we aim to use it within a regularizer of the variationalmodel (2)
to solve the inverse problem (1). To this end, denote by Ei : Rd → Rs, i = 1, . . . ,Np the linear
operator, which extracts the ith (vectorized) patch from the unknown (vectorized) image x ∈
Rd. Then, we define our regularizer by the negative log likelihood of all patches under the
probability distribution learned by the patchNR. More precisely, we define the patchNR based
prior

1
s

Np∑
i=1

− log
(
pT#PZ

(
Ei(x)

))
,

where Np is the number of patches in the image x and s= s1s2 the number of pixels in a patch.
Similar to (3), this can be reformulated by the change-of-variables formula and by ignoring
some constants as

patchNR(x) :=
1
s

Np∑
i=1

1
2

∥∥T −1
(
Ei(x)

)∥∥2 − log
(∣∣det(∇T −1

(
Ei(x)

))∣∣).
Note that if we ignore the boundary of the image, the patchNR is translation invariant. That

is, a translation of the image does not change the value of the regularizer. Now, we reconstruct
our ground truth by minimizing the variational problem

J (x;y) =D( f(x),y)+λpatchNR(x), λ > 0, (4)

with respect to x. For the minimization, we use the Adam optimizer [42]. To speed up
the numerical computations, we use a stochastic gradient descent with batch size Np to
minimize (4).

4



Inverse Problems 39 (2023) 064006 F Altekrüger et al

Note that the resulting optimization problem is non-convex and therefore the choice of the
initialization is important. In our experiments we initialize this optimization with a coarse
reconstruction, i.e. a bicubic interpolation for superresolution or the FBP for CT.

Remark 1 (Relation to EPLL). Our patchNR is closely related to the expected patch log like-
lihood (EPLL) prior proposed by [93]. Here, the authors use the prior defined as

EPLL(x) =
1
Np

Np∑
i=1

− log
(
p
(
Ei(x)

))
,

where p is the probability density function of a GMM approximating the patch distribution
of the image class of interest. However, GMMs have a limited expressiveness and can only
hardly approximate complicated probability distributions induced by patches [23]. Further, the
reconstruction process proposed in [93] is computationally very costly even though a reduction
of the computational effort was considered in several papers [61, 72]. Indeed, we will show in
our numerical examples that the patchNR clearly outperforms the reconstructions from EPLL.

3. Analysis of patch NFs

In this section, we investigate the patch distribution which is approximated by the patchNR.
More precisely, we show that any probability density on the class of images induces a probabil-
ity density on the space of patches and vice versa.Wewill use this to interpret the minimization
of the variational problem (4) as maximizing the posterior distribution.

Remark 2. Considering the inverse problem (1) as a Bayesian inverse problem

Y= noisy(f(X)),

whereX and Y are random variables, Bayes’ theorem implies that maximizing the log-posterior
distribution log(pX|Y=y(x)) can be written as

arg maxx{log(pX|Y=y(x))}= arg maxx
{
− logpY|X=x(y)− logpX(x)

}
.

Consequently, the data-fidelity term and the regularizer in (2) correspond to the negative
log likelihood D( f(x),y) =− logpY|X=x(y) and to the negative log prior R(x) =− logpX(x),
respectively.

LetX : Ω→ Rd withX∼ PX be a d-dimensional random variable on the space of images. By
Ẽi : Rd → Rd−s we denote the linear operator which extracts all pixels from a d-dimensional
image, which do not belong to the i-th patch. Further, with ETi and ẼTi we designate the trans-
posed operators of Ei and Ẽi, respectively. Let I : Ω→{1, . . .,Np} be a random variable which
follows the uniform distribution on {1, . . .,Np}. Then, the random variable ω 7→ EI(ω)(X(ω))
describes the selection of a random patch from a random image. We call the distribution Q of
EI(X) the patch distribution corresponding to PX . The following lemma provides an explicit
formula for the density of Q.

Lemma 3. Let PX be a probability distribution on Rd with density pX and let I and X be
stochastically independent. Then, also the corresponding patch distribution Q is absolutely
continuous with density

q(p) =
1
Np

Np∑
i=1

ˆ
Rd−s

pX
(
ET
i (p)+ ẼT

i (x̃)
)
dx̃.
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Proof. Let A ∈ B(Rs) be an arbitrary Borel set. Then, we have by Bayes’ theorem that

Q(A) =
Np∑
i=1

P(I= i)Ei#PX(A) =
1
Np

Np∑
i=1

PX(E
−1
i (A)) =

1
Np

Np∑
i=1

ˆ
Rd

1A
(
Ei(x)

)
pX(x)dx.

Now, we use the decomposition

Rd = Ker(Ei)⊕ Im(ET
i ) = Im(ẼT

i )⊕ Im(ET
i ).

With Fubini’s theorem, EiET
i = I and EiẼT

i = 0, this is equal to

Q(A) =
1
Np

Np∑
i=1

ˆ
Rs

ˆ
Rd−s

1A(Ei(E
T
i (p)+ ẼT

i (x̃)))pX(E
T
i (p)+ ẼT

i (x̃))dx̃dp

=
1
Np

Np∑
i=1

ˆ
Rs

ˆ
Rd−s

1A(p)pX(E
T
i (p)+ ẼT

i (x̃))dx̃dp

=

ˆ
A

1
Np

Np∑
i=1

ˆ
Rd−s

pX(E
T
i (p)+ ẼT

i (x̃))dx̃dp.

This proves the claim.

For the proof of the reverse direction, namely that given a probability measure Q on the
space of patches, the patchNR defines a probability density function on the space of all images,
we need the following lemma. It states that the density induced by a NF with a Gaussian latent
distribution is up to a constant bounded from below and above by the density of certain normal
distributions. In particular, it has exponential asymptotic decay. Note that similar questions
about bi-Lipschitz continuous diffeomorphisms were investigated more detailed in [29, 36].

Lemma 4. Let T : Rs → Rs be a diffeomorphism with Lipschitz constants Lip(T )⩽ K and
Lip(T −1)⩽ L and let PZ =N (0, I). Then, it holds

1
LsKs

N
(
p|T (0),

1
L2
I

)
⩽ pT#PZ(p)⩽ LsKsN (p|T (0),K2I)

for any p ∈ Rs.

Proof. Using the Lipschitz continuity of T , we obtain

1
K2

‖p−T (0)‖2 = 1
K2

‖T (T −1(p))−T (0)‖2 ⩽ ‖T −1(p)− 0‖2 = ‖T −1(p)‖2.

Now, applying the change-of-variables formula and that |det(∇T −1(p))|⩽ Ls, we conclude

pT#PZ(p) = pZ(T −1(p))|det(∇T −1(p))|⩽ Ls

(2π)s/2
exp

(
−1

2
‖T −1(p)‖2

)
⩽ Ls

(2π)s/2
exp

(
− 1

2K2
‖p−T (0)‖2

)
= LsKsN (p|T (0),K2I).
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This shows the second inequality. For the first inequality, note that by the inverse function
theorem

∇T −1(p) =∇T −1(T (T −1(p))) = (∇T (T −1(p)))−1.

Using the Lipschitz continuity of T , this implies∣∣det(∇T −1(p)
)∣∣= ∣∣∣det(∇T

(
T −1(p)

))∣∣∣−1
⩾ 1/Ks.

Further, by the Lipschitz continuity of T −1 it holds that

‖T −1(p)‖2 = ‖T −1(p)−T −1(T (0))‖2 ⩽ L2‖p−T (0)‖2.

Putting the things together yields

pT#PZ(p) = pZ(T −1(p))|det(∇T −1(p))|⩾ 1
Ks(2π)s/2

exp

(
−1

2
‖T −1(p)‖2

)
⩾ 1
Ks(2π)s/2

exp

(
−L2

2
‖p−T (0)‖2

)
=

1
LsKs

N
(
p|T (0),

1
L2
I

)
.

This completes the proof.

Remark 5. Lemma 4 implies coercivity of − log(pT#PZ). Since every pixel is covered by at
least one patch, this yields the coercivity of the patchNR. If the data fidelity term is bounded
from below and continuous, this implies the existence of a minimizer for the variational prob-
lem (4).

Now, we can show that the patchNR defines a probability distribution on the space of all
images. This allows a MAP interpretation of the variational problem (4).

Proposition 6. Let PZ =N (0, I) and let T : Rs → Rs be a bi-Lipschitz diffeomorph-
ism, i.e. Lip(T )<∞ and Lip(T −1)<∞. Then, for any ρ> 0, the function φ(x) =
exp(−ρpatchNR(x)) belongs to L1(Rd), where

patchNR(x) =
1
s

Np∑
i=1

− log
(
pT#PZ(Ei(x))

)
.

Proof. Using lemma 4, there exists some C> 0 such that it holds

ˆ
Rd

φ(x)dx=
ˆ
Rd

 Np∏
i=1

pT#PZ(Ei(x))

ρ/s

dx

⩽ C
ˆ
Rd

 Np∏
i=1

N (Ei(x)|T (0),K2I)

ρ/s

dx

= C
ˆ
Rd

Np∏
i=1

s∏
j=1

N ((Ei(x))j|(T (0))j,K
2)ρ/sdx,

where (Ei(x))j is the jth element from Ei(x). Since (Ei(x))j = xσ(i,j) for some mapping
σ : {1, . . .,Np}×{1, . . .,s}→ {1, . . .,d} and using Fubini’s theorem, this simplifies to

7
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C
ˆ
Rd

Np∏
i=1

s∏
j=1

N (xσ(i,j)|(T (0))j,K
2)ρ/sdx

= C
ˆ
Rd

d∏
k=1

∏
(i,j)∈σ−1({k})

N (xk|(T (0))j,K
2)ρ/sdx

= C
d∏

k=1

ˆ
R

∏
(i,j)∈σ−1({k})

N (x|(T (0))j,K
2)ρ/sdx.

Here σ−1({k}) denotes the preimage of σ which denotes the set of all index pairs (i, j) such
that (Ei(x))j = xk for x ∈ Rd. As each pixel in the images is covered by at least one patch, this
set is non-empty. Using the fact that products and powers of normal densities are integrable,
we obtain that this expression is finite and the proof is complete.

4. Numerical examples

In this section, we demonstrate the performance of our method. We focus on linear inverse
problems, but the approach can also be extended to non-linear forward operators. First, in
section 4.3, we apply the patchNR to low-dose CT in a full angle and a limited angle setting
and present an empirical convergence study for the optimization of the objective functional.
Afterwards, in section 4.2, we consider superresolution on material data. This is a typical set-
ting, where only little data is available and superresolution is needed to obtain sufficient detail
for material research [17, 38, 65]. Lastly, we extend our findings to zero-shot superresolution
in section 4.3. To get a better impression on the very good performance of our method, we
added more numerical examples in appendix B4.

Comparison Methods We compare our method with established methods from the literature,
in particular with

• Wasserstein Patch Prior (WPP) [3, 31],
• EPLL [93],
• Local Adversarial Regularizer (localAR) [63],

since these methods also work on patches and are model-based. Note that we optimized the
EPLL GMM prior using a gradient descent optimizer ourselves, as the half quadratic splitting
proposed originally by the authors of [93] is much more expensive for the superresolution and
CT forward operator. Moreover, we include comparisons with

• Plug-and-play forward backward splitting with DRUNet (DPIR) [91],
• Deep image prior in combination with a TV prior (DIP+TV) [10, 82],
• data-based methods as the post-processing UNet (FBP+UNet) [37, 68] for CT and an

asymmetric CNN (ACNN) [81] for superresolution.

4 The code for all experiments is written in PyTorch [62] and is available athttps://github.com/FabianAltekrueger/
patchNR.
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Details on the comparison methods are given in appendix A. Note that post-processing
approaches are no longer the state-of-the-art for CT reconstruction, but are still widely used
and serve as comparison methods. Currently some learned iterative methods provide better
results [2].

Architecture of PatchNR For the architecture we use that there exists a universal approximation
theorem [80] in weak topology. Therefore, a sufficiently large NF can approximate arbitrary
probability distributions. We use five GlowCoupling blocks and permutations in an alternating
manner, where the coupling blocks are from the freely available FrEIA package5. The three-
layer subnetworks are fully connected with ReLU activation functions and 512 nodes resulting
in 2908520 learnable parameters. The patchNR is trained on 6× 6 patches, i.e. s = 36. For
each image class, we trained the patchNR using Adam optimizer [42] with a learning rate of
0.0001, a batch size of 32 and for 750 000 optimizer steps. Training took about 2.5 h on a
single NVIDIA GeForce RTX 2080 super GPU with 8 GB GPU memory.

4.1. Computed tomography

For CT we use the LoDoPaB dataset [51]6 for low-dose CT imaging. It is based on scans of
the Lung Image Database Consortium and Image Database Resource Initiative [7] which serve
as ground truth images, while the measurements are simulated. The dataset contains 35 820
training images, 3522 validation images and 3553 test images. Here the ground truth images
have a resolution of 362× 362px. The LoDoPab dataset uses a two-dimensional parallel beam
geometry with equidistant detector bins. The forward operator is the discretized linear Radon
transformation and the noise can be modelled using a Poisson distribution. Concretely, we
consider the inverse problem

y= f(x)+ η, where η =−f(x)− 1
µ
log

( Ñ1

N0

)
, Ñ1 ∼ Pois

(
N0 exp(−f(x)µ)

)
.

Here N0 = 4096 is the mean photon count per detector bin without attenuation and
µ= 81.358 58 is a normalization constant. In order to compute the corresponding data-fidelity
term, we see that the observation y can be rewritten by

y=− 1
µ
log

( Ñ1

N0

)
,

and thus exp(−yµ)N0 = Ñ1 ∼ Pois(
(
N0 exp(−f(x)µ)

)
. Since we assume that the pixels are

corrupted independently and the negative log-likelihood of a Poisson distributed random vari-
able is given by the Kullback–Leibler divergence, we have

− logp(exp(−yµ)N0|exp(−f(x)µ)N0) =
d∑
i=1

− logp(exp(−yiµ)N0|exp(−f(x)iµ)N0)

=
d∑
i=1

e−f(x)iµN0 + e−yiµN0
(
f(x)iµ− log(N0)

)
.

5 Available at https://github.com/VLL-HD/FrEIA.
6 Available at https://zenodo.org/record/3384092#.Ylglz3VBwgM.
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Figure 1. Ground truth images used for training the patchNR (CT).

Figure 2. Full angle CT using different methods. The zoomed-in part is marked with a
white box in the ground truth image. Our approach gives significantly better results than
the model-based comparison methods. Top: full image. Bottom: zoomed-in part.

Table 1. Full angle CT. Averaged quality measures and standard deviations of the recon-
structions. The best values are marked in bold.

FBP DIP + TV EPLL localAR patchNR FBP+UNet
(data-based)

PSNR 30.37 ± 2.95 34.45 ± 4.20 34.89 ± 4.41 33.64 ± 3.74 35.19 ± 4.52 35.48 ± 4.52
SSIM 0.739 ± 0.141 0.821 ± 0.147 0.821 ± 0.154 0.807 ± 0.145 0.829 ± 0.152 0.837 ± 0.143
Runtime 0.03 s 1514.33 s 36.65 s 30.03 s 48.39 s 0.46 s

Thus, the concrete form of (4) we aim to minimize, is given by

J (x;y) =
d∑
i=1

e−f(x)iN0 + e−yiN0
(
f(x)i − log(N0)

)
+λR(x).

We trained the patchNR using patches of a small set ofM= 6 handpicked CT ground truth
images of size 362× 362 illustrated in figure 1. Once trained, the patchNR can be used both for
the full angle CT and the limited angle CT setting, where we use a regularization parameterλ=
700 s

Np
, a random subset of Np = 40000 overlapping patches in each iteration and the Adam

optimizer with a learning rate of 0.005. To avoid boundary artifacts, we extend the image
by reflection padding of 4 pixels when evaluating the patchNR. While for full angle CT we
optimized over 300 iterations, for limited angle CT 3000 iterations are used.

Full angle CT For full angle CT we consider 1000 equidistant angles between 0 and π. In
figure 2 we compare different methods for full angle low-dose CT imaging. Here the patchNR
yields better results than DIP+TV and localAR, in particular the edges are sharper and more
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Figure 3. Limited angle reconstruction of the ground truth CT image using different
methods. The zoomed-in part is marked with a white box in the ground truth image. The
improvement of the image quality by our method is even better visible than in figure 2.
Top: full image. Middle and bottom: zoomed-in parts.

Table 2. Limited angle CT. Averaged quality measures and standard deviations of the
reconstructions. The best values are marked in bold.

FBP DIP + TV EPLL localAR patchNR FBP+UNet
(data-based)

PSNR 21.96 ± 2.25 32.57 ± 3.25 32.78 ± 3.46 31.06 ± 2.95 33.20 ± 3.55 33.75 ± 3.58
SSIM 0.531 ± 0.097 0.803 ± 0.146 0.801 ± 0.151 0.779 ± 0.142 0.811 ± 0.151 0.820 ± 0.140
Runtime 0.02 s 1770.89 s 127.21 s 53.47 s 485.93 s 0.53 s

realistic in the reconstruction of patchNR. Visually, there are only small differences between
patchNR and FBP+UNet observable, although FBP+UNet is a data-based method trained on
35 820 image pairs, while we only used 6 ground truth images for training the patchNR. The
quality measures averaged over the first 100 test images of the LoDoPaB dataset in table 1
confirm these observations.Peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) were evaluated on an adaptive data range. Note that the diversity of the test
set causes relatively high standard deviations.

Limited angle CT Now we consider the limited angle CT reconstruction problem, i.e. instead
of considering equidistant angles between 0 and π we only have a subset of angles. In our
experiment we cut off the first and last 100 angles, i.e. we cut off 36◦ out of 180◦. This leads
to a much worse FBP reconstruction. In figure 3, we compare the different reconstruction
methods for the limited angle problem. Although the FBP shows a very bad reconstruction in
the 36◦ part, where the angles are cut off, the patchNR can reconstruct these details well and
in a realistic manner. In particular, the edges of patchNR reconstruction are preserved, while
for the other methods these have a pronounced blur, see table 2 for an average of the quality
measures over the first 100 test images.

Empirical convergence analysis for full angle CT To reconstruct the ground truth image from
given measurements y, we minimize the functional J (x;y) in (4) w.r.t. x using the Adam
optimizer. The resulting optimization problem is non-convex and the final minimizer could
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Figure 4. The PSNR for the first two test images per iteration of the optimization
process.

Table 3. Comparison of full angle CT results for different patch sizes. Averaged quality
measures and standard deviations of the reconstructions.

Patch size s= 4× 4 s= 6× 6 s= 8× 8 s= 10× 10

PSNR 35.00 ± 4.45 35.19 ± 4.52 35.20 ± 4.58 35.17 ± 4.56
SSIM 0.825 ± 0.153 0.829 ± 0.152 0.827 ± 0.154 0.828 ± 0.154

depend on the initialization. In our experiments, it has proven useful to start the optimization
with a rough reconstruction. For both full angle CT and limited angle CT we choose a FBP
reconstruction. In order to empirically test the convergence of J (x;y) we evaluated the PSNR
during the optimization process. In figure 4 we visualize the PSNR per iteration for the first
two images of the test dataset and show reconstructions at iteration 0, 150 and 300. It can be
seen that the PSNR is steadily rising during the optimization. Arguably for the left image in
figure 4 we could have chosen even more iterations.

Ablation studies for full angle CT First, we trained the patchNR for patch sizes 4× 4,6×
6,8× 8 and 10× 10. In table 3 we tested the sensitivity w.r.t. the patch size. For all patch
sizes we extracted 40 000 patches per iteration and used the optimal regularization parameter
λ (which is set to 1600 s

Np
, 700 s

Np
, 400 s

Np
and 250 s

Np
for the patch sizes 4× 4,6× 6,8× 8 and

10× 10, respectively). We can observe that a larger patch size leads to slightly more blurry
images. However the PSNR seems to change very little within different patch sizes, therefore
we observe that our method is quite robust against the choice of the patch size.

Next, in table 4 we show reconstruction results for different numbers of patches used per
iteration. Here we consider the patch size 6× 6 and use the regularization parameter λ= 700.
We see that the PSNR slightly increases with number of patches, while the SSIM seems to get
worse at some point.

Finally, we examine the choice of the training set. In table 5 we evaluate the patchNR with
patch size 6× 6 and λ= 700, when trained on 1, 6 or 50 images. Obviously, for the CT dataset
one training image is not enough to learn the patch distribution. This can be explained by the
diversity of the CT dataset, see e.g. figure 1.

In table 6 we varied the training set of 6 images and evaluated the model on 3 different
choices. In total we trained the patchNR 15 times on 6 randomly chosen training images of the
LoDoPaB dataset and then evaluated on the test set. Again we consider the patch size 6× 6
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Table 4. Comparison of full angle CT results for varying number of patches per itera-
tion. Averaged quality measures and standard deviations of the reconstructions.

Extracted patches
per iteration 20 000 30 000 40 000 50 000 60 000

PSNR 35.04 ± 4.39 35.16 ± 4.49 35.19 ± 4.52 35.21 ± 4.55 35.21 ± 4.56
SSIM 0.829 ± 0.148 0.829 ± 0.151 0.829 ± 0.152 0.828 ± 0.153 0.828 ± 0.154

Table 5. Comparison of full angle CT results for different sets of 6 ground truth images.
Averaged quality measures and standard deviations of the reconstructions.

Number of training images 1 6 50

PSNR 33.68 ± 3.57 35.19 ± 4.52 35.24 ± 4.60
SSIM 0.802 ± 0.127 0.829 ± 0.152 0.827 ± 0.156

Table 6. 40 000 extracted patches per iteration. Patch size s= 6× 6. Regularization
parameter λ= 700. 6 random training images. Averaged quality measures and stand-
ard deviations of the reconstructions.

Worst run Our run Best run Mean ± standard deviation

PSNR 34.90 ± 4.39 35.19 ± 4.52 35.26 ± 4.60 35.13 ± 0.09
SSIM 0.825 ± 0.153 0.829 ± 0.152 0.828 ± 0.154 0.827 ± 0.001

and a regularization parameter λ= 700 and used 40 000 extracted patches per iteration. Note
that the bad case in table 6 comes from a very noisy ground truth training set of the patchNR.

Overall, we see that the method is quite robust towards certain hyperparameter changes,
and it can even be a matter of taste which ones to prefer as the image metrics do not always
agree.

4.2. Superresolution

We choose the forward operator f as a convolution with a 16× 16 Gaussian blur kernel with
standard deviation 2 and subsampling with stride 4. To keep the dimensions consistent, we
use zero-padding. For the experiments, we extract a dataset of 2D slices of size 600× 600
from a 3D material image of size 2560× 2560× 2120, which has been acquired by synchro-
tron micro-computed tomography. We consider a composite (‘SiC Diamonds’) obtained by
microwave sintering of silicon and diamonds, see [83]. We generate observations which we
call low resolution images by using the predefined forward operator and adding additive Gaus-
sian noise with standard deviation σ= 0.01, i.e. we have

y= f(x)+ η, where η ∼N (0,σ2I).

Consequently, from a Bayesian viewpoint the negative log likelihood− log(pY|X=x(y)) can be,
up to a constant, rewritten as

− log(pY|X=x(y))∝− log
(
exp(−‖f(x)− y‖2/(2σ2)

)
=

1
2σ2

‖f(x)− y‖2.

Thus the concrete form of (4) is given by

J (x) =
1

2σ2
‖f(x)− y‖2 + ρR(x) = ‖f(x)− y‖2 +λR(x),

with λ= 2ρσ2.
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Figure 5. Comparison of different methods for superresolution. The zoomed-in part
is marked with a white box in the ground truth image. Having in particular a look to
disconnected parts in the lower right corner the improvement of the reconstruction by
our method becomes evident. Top: full image. Bottom: zoomed-in part.

Table 7. Superresolution. Averaged quality measures and standard deviations of the high
resolution reconstructions. The best values are marked in bold.

bicubic DPIR DIP+TV EPLL WPP patchNR ACNN
(not shown) (not shown) (data-based)

PSNR 25.63 ± 0.56 27.78 ± 0.53 27.99 ± 0.54 28.11 ± 0.55 27.80 ± 0.37 28.53 ± 0.49 28.89 ± 0.53
SSIM 0.699 ± 0.012 0.770 ± 0.011 0.764 ± 0.007 0.779 ± 0.010 0.749 ± 0.011 0.780 ± 0.008 0.804 ± 0.010
Runtime 0.0002 s 56.62 s 234.00 s 60.28 s 387.28 s 150.79 s 0.03 s

The patchNR is trained on patches of only M= 1 example image of size 600× 600. For
reconstruction, we use the regularization parameter λ= 0.15 s

Np
, the random subset of over-

lapping patches is of size Np = 130000 in each iteration and we optimize over 300 itera-
tions using the Adam optimizer with a learning rate of 0.03. Since we do not want to con-
sider boundary effects, we cut off a boundary of 40 pixels before evaluating the quality
measures.

In figure 5 we compare different methods for reconstructing the high resolution image x
from the given low-resolution observation y. As initialization we choose the bicubic interpol-
ation. The patchNR yields very clear and better images than the other model-based methods,
visually and in terms of the quality metrics; see table 7 for an average over 100 test images.
In particular, the reconstruction of patchNR is less blurry than the DIP+TV and WPP recon-
struction, specifically in regions between edges.

4.3. Zero-shot superresolution with PatchNRs

In the case of superresolution, we can train the patchNR even without any training image.
To this end, we combine some concepts of zero-shot superresolution by internal learning [25,
73] with patchNRs. In these approaches, the main assumption is that the patch distribution of
natural images is self-similar across the scales. Consequently, the patch distributions of the
same image at different resolutions should be similar. Motivated by this observation, we train
the patchNR on the low-resolution observations such that we do not longer require any sample
from the high-resolution ground truth.

In the following, we consider the case, where we have given one single low-resolution
observation at training time and additionally the forward operator at test time. In particular,
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Figure 6. Zero-shot superresolution for three images from the BSD68 dataset. The
zoomed-in part is marked with a white box in the ground truth image. Top: full image.
Bottom: zoomed-in part. Reproduced from https://www2.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds/

Table 8. Zero-shot superresolution. Averaged quality measures and standard deviations
of the reconstructions of BSD68 dataset. The best values are marked in bold.

L2-TV DIP+TV ZSSR DualSR patchNR

PSNR 28.35 ± 3.55 28.44 ± 3.69 28.83 ± 3.57 28.64 ± 3.47 29.08 ± 3.58
SSIM 0.820 ± 0.072 0.821 ± 0.087 0.834 ± 0.066 0.829 ± 0.061 0.846 ± 0.061
Runtime 13.12 s 171.51 s 56.64 s 53.47 s 132.36 s

we do not require access to any high-resolution ground truth image and therefore the method is
fully unsupervised. We train the patchNR on the patches from the low-resolution observation ,
where the training data is enriched by rotating and mirror reflecting of the patches such that we
get 8 times more training patches. Note that in this setting the patchNR needs to be retrained
for every new observation.

First we use a convolution with a 16× 16 Gaussian blur kernel with standard deviation
1 and stride 2 as forward operator and add Gaussian noise with standard deviation 0.01 on
the low-resolution observation. The patchNR is trained for 10 000 optimizer steps with a
learning rate of 0.0001, a batch size of 128 and a patch size of 6× 6. Then, for reconstruc-
tion, we use a random subset of Np = 80000 patches per iteration, a regularization parameter
λ= 0.25 s

Np
and optimize over 60 iterations using the Adam optimizer with a learning rate

of 0.01. As comparison baselines we use L2-TV [69], DIP+TV, ZSSR [73] and DualSR
[21]. We test the methods on the BSD68 dataset [56]and the resulting quality measures are
given in table 8. In figure 6 we present three reconstruction examples of the test set. Recon-
structions of the patchNR lead to less blurry images and in particular structures and edges
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Figure 7. Zero-shot superresolution. The zoomed-in part is marked with a white box
in the ground truth image. Top: full image. Bottom: zoomed-in part. Top: full image.
Bottom: zoomed-in part.

Table 9. Zero-shot superresolution. Averaged quality measures and standard deviations
of the high-resolution reconstructions. The best values are marked in bold.

L2-TV DIP+TV ZSSR DualSR patchNR

PSNR 27.85 ± 0.55 27.99 ± 0.54 27.44 ± 0.55 27.64 ± 0.57 27.94 ± 0.55
SSIM 0.768 ± 0.008 0.764 ± 0.007 0.758 ± 0.008 0.764 ± 0.008 0.776 ± 0.009
Runtime 38.11 s 234.00 s 42.43 s 46.55 s 120.47 s

are preserved. In contrast, in L2-TV and DIP+TV some parts of the images are smoothed
out.

In a second experiment we consider the same forward operator as in section 4.2, that is a
convolution with a 16× 16Gaussian blur kernel with standard deviation 2 and stride 4, and add
Gaussian noise with standard deviation 0.01 on the low-resolution observation. The patchNR
is trained for 10 000 optimizer steps with a learning rate of 0.0001, a batch size of 128 and a
patch size of 6× 6. Then, for reconstruction, we use a random subset of Np = 50000 patches
per iteration, a regularization parameter λ= 0.25 s

Np
and optimize over 60 iterations using the

Adam optimizer with a learning rate of 0.01
We test the methods on the same test images as in section 4.2. In figure 7 we compare

the reconstructions of the different methods. We can observe a visually similar quality of
the reconstructions for the DIP+TV and patchNR, while the other methods lead to a sig-
nificant blur in the reconstructions. This can be also seen in the resulting quality measures
given in table 9. Note that here we do not consider natural images but material data and the
assumption of self-similarity between different scales is not fulfilled. Consequently, we can-
not expect a good reconstruction of the both methods ZSSR and DualSR. The methods L2-
TV and DIP+TV do not need these assumptions and thus perform well on the data, while
there is a slight worsening in the quality of the patchNR in contrast to section 4.2. This
nicely demonstrates the gain of using a small amount of ground truth data for training the
patchNR.

5. Discussion and conclusions

In this paper, we introduced patchNRs, which are patch-based NFs used for regularizing the
variational modeling of inverse problems. Learning patchNRs requires only few ground truth
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images. In particular no paired data is necessary. We demonstrated the performance of our
method by numerical examples and showed that it leads to better results than comparable,
established methods, visually and in terms of the quality measures. Note that it is not clear how
patch based learning influences biases in datasets. Using a small number of images can be very
dangerous as these datasets are easily imbalanced. Further research needs to be invested into
understanding howmany images are sufficient for an adequate patch representation of a dataset
and when the patch representation can be used as a prior for inverse problems. Moreover,
quality measures for images are not sufficient for judging the quality of an image, in particular
in medical applications. Further evaluation with medical expertise needs to be done before
drawing any conclusions. Moreover, all patch-based methods are essentially limited in the
sense that they can not capture global image correlations. Furthermore, NFs are often not able
to capture out of distribution data [45], so if a patch is far away from the patch ‘manifold’,
the likelihoods might be meaningless. However, it is an open question whether patch-based
learning mitigates this effect.

The patchNR can be extended into several directions. First, we want to use the regularizer
for training NNs in an model-based way for a fast reconstruction of several observations. Then
the patchNR can be applied for uncertainty quantification by using, e.g. invertible architectures
[5, 19, 28] or Langevin sampling methods [77].
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Appendix A. Comparison methods

• Bicubic interpolation. For superresolution, the simplest comparison is the bicubic
interpolation [41], which is based on the local approximation of the image by polynomi-
als of degree 3.
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• FBP and UNet. For CT a classical method is the FBP, described by the adjoint Radon
transform [64]. We used the ODL implementation [1] for our experiments. There we choose
the filter type Hann and a frequency scaling of 0.641. In order to improve the image quality
of the FBP, a post-processing network can be learned. Here we consider the popular choice
of a UNet (FBP+UNet) [68], which was used in [37] for CT imaging. We use the imple-
mentation from [52]7, which is a network with 610 673 parameters trained on the 35 820
training images of LoDoPaB dataset. Training took around 1 week.

• Wasserstein Patch Prior. The idea of the WPP [3, 31]8 is to use the Wasserstein-2 distance
between the patch distribution of the reconstruction and the patch distribution of a given
reference image. Here a high resolution reference image x̃ (or a high-resolution cutout)
with a similar patch distribution as the unknown high resolution image x is needed. For
a representation of structures of different sizes, x and x̃ are considered at different scales
x1 = x, x̃1 = x̃,xl = Axl−1, x̃l = Ax̃l−1 for a downsampling operator A.
Then the aim is to minimize the functional

J (x) =D(f(x),y)+λ
L∑
l=1

W2
2(µxl ,µx̃l),

where the patch distributions of x and x̃ are defined by

µxl =
1
Nl

Nl∑
i=1

δPi xl ,µx̃l =
1

Ñl

Ñl∑
i=1

δPi x̃l .

• Deep Image Prior with TV regularization. The idea of the DIP [82] is to solve the optim-
ization problem

θ̂ ∈ arg minθD(f(Gθ(z)),y),

where Gθ is a convolutional neural network with parameters θ and z is a randomly chosen
input. Then, the reconstruction x̂ is given by x̂= Gθ(z). For CT we used a network with
2973 880 trainable parameters and for superresolution the network has 2162 561 trainable
parameters. It was shown in [82] that DIP admits competitive results for many inverse prob-
lems. A combination of DIP with the TV (DIP+TV) regualizer was successfully used in
[10]9 for CT reconstruction. Here the optimization problem is extended to

θ̂ ∈ arg minθD(f(Gθ(z)),y)+TV((Gθ(z)).

Note that each reconstruction with the DIP+TV requires the training of a neural network.
In contrast to WPP and patchNR, the DIP+TV is a data-free method, i.e. it does not require
any clean image for training. We tested a pre-trained variant of the DIP+TV on the same
training images. However, this did not improve the results significantly. Note that warm-start

7 Available at https://jleuschn.github.io/docs.dival/dival.reconstructors.fbpunet_reconstructor.html.
8 We use the original implementation from [31] available at https://github.com/johertrich/Wasserstein_Patch_Prior.
9 For superresolution, we use the original implementation from [82] available at https://github.com/DmitryUlyanov/
deep-image-prior in combinationwith a TV regulariser; for CT, we use the original implementation from [10] available
at https://github.com/jleuschn/dival/blob/master/dival/reconstructors.
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intialization techniques were proposed in [11]. Here, the authors observed faster reconstruc-
tion times for a pre-trained DIP but not significantly better results. Therefore we stick to the
random initialization.

• Plug-and-Play Forward Backward Splitting with DRUNet. In Plug-and-Play methods,
first introduced by [84], the main idea is to consider an optimization algorithm from convex
analysis for solving (2) and to replace the proximal operator with respect to the regularizer
by a more general denoiser. Here, modify the forward backward splitting algorithm

xn+1 = proxηR(xn− η∇xD(f(xn),y))

for minimizing the functional (2) by the iteration

xn+1 = G(xn− η∇xD( f(xn),y)), (A.1)

where G is a neural network trained for denoising natural images. We use the DRUNet
(DPIR) from [91] as denoiser and run (A.1) for 100 iterations. Note that the denoiser is
trained on natural images and not on images from the specific image domain. However, as
we have given only very few clean images from the considered image domain it is impossible
to train a denoiser with comparable quality on them.

• Local Adversarial Regularizer. The adversarial regularizer was introduced in [55] and this
framework was recently applied for learning patch-based regularizers (localAR) [63]. The
idea is to train a network rθ as a critic between patch distributions in order to distinguish
between clean and degraded patches. The network is trained by minimizing

D(θ) = Ez∼Pc
[
rθ(z)

]
−Ez∼Pn

[
rθ(z)

]
+µEz∼Pi

[
(‖∇zrθ(z)‖2 − 1)2

]
,

where Pc and Pn are the distributions of clean and noisy patches, respectively, and Pi is the
distribution of all lines connecting samples in Pc and Pn. Then the aim is to minimize the
functional

J (x) =D(f(x),y)+λ
1
|I|

∑
i∈I

rθ(Pi(x)).

For our experiments we used the code of [63], but instead of patch size 15 we used the
patch size 6 and replaced the fully convolutional discriminator by a discriminator with 2
convolutional layers, followed by 4 fully connected layers. This results in a network with
198 529 trainable parameters and a training time of 1 h.

• Expected Patch Log Likelihood. The EPLL prior [93] assumes that the patch distribution
of the ground truth can be approximated by a GMM p fitted to the patch distribution of the
reference images. Reconstruction is done by minimizing the functional

J (x) =D(f(x),y)−λ
N∑
i=1

p(Pi (x)).

The GMMwe used has 200 components resulting in 140 400 trainable parameters and train-
ing takes 3 h. In [93] the authors used half quadratic splitting to optimize this objective func-
tion. For our experiments we implemented the GMM in PyTorch and used the Adam [42]
optimizer. This is because we are not aware how to efficiently implement the half quadratic
splitting for the CT forward operator.
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• Asymmetric CNN. The ACNN [81] is a 23-layer CNN with 1071 104 parameters trained
in a data-based way on 28 paired images pairs of the composite ‘SiC Diamonds’ using the
L2 loss function. Training took 10 h.

• Zero Shot Super-Resolution. For ZSSR [73] the main assumption is that the patch distri-
bution of natural images is self-similar across the scales. Exploiting this fact, a lightweight
CNN with 887 040 parameters is trained in a supervised fashion on a paired dataset gener-
ated by the low-resolution image itself. This dataset is created by downsampling the low-
resolution image to obtain a lower-resolution image and is enlarged by data augmentation
like random rotations, random crops or mirror reflections. A high-resolution prediction is
then created by applying the trained model to the low-resolution observation. For our exper-
iments we reimplemented the ZSSR.

• DualSR. The idea of DualSR [21]10 is a dual-path pipeline, where an upsampling GAN
learns the upsampling process and a downsampling GAN learns the degradation model,
trained on cropped parts of the low-resolution image. This method can be used for blind
superresolution, but since we know the forward operator in our case, we replace the
downsampling GAN by the given degradation process. The model has 247 490 trainable
parameters.

10 We use the original implementation available at https://github.com/memad73/DualSR.
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Appendix B. Further examples

Here we give some more examples of our experiments from section 4; see figures B1–B3.

Figure B1. Full angle reconstruction of the ground truth CT image using different meth-
ods. The zoomed-in part is marked with a white box in the ground truth image. Top: full
image. Bottom: zoomed-in part.
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Figure B2. Limited angle reconstruction of the ground truth CT image using different
methods. The zoomed-in part is marked with a white box in the ground truth image.
Top: full image. Bottom: zoomed-in part.
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Figure B3. Comparison of different methods for superresolution. The zoomed-in part is
marked with a white box in the ground truth image. Top: full image. Bottom: zoomed-in
part.

23



Inverse Problems 39 (2023) 064006 F Altekrüger et al

ORCID iDs

Fabian Altekrüger https://orcid.org/0000-0002-9628-4735
Alexander Denker https://orcid.org/0000-0002-7265-261X
Paul Hagemann https://orcid.org/0009-0006-9679-5654
Johannes Hertrich https://orcid.org/0000-0003-4433-8604
Peter Maass https://orcid.org/0000-0003-1448-8345

References

[1] Adler J et al 2018 Operator discretization library (ODL) (https://doi.org/10.5281/zenodo.249479)
[2] Adler J and Öktem O 2018 Learned primal-dual reconstruction IEEE Trans. Med. Imaging

37 1322–32
[3] Altekrüger F and Hertrich J 2022 WPPNets and WPPFlows: the power of Wasserstein patch priors

for superresolution (arXiv:2201.08157)
[4] Anirudh R, Thiagarajan J J, Kailkhura B and Bremer T 2018 An unsupervised approach to solving

inverse problems using generative adversarial networks (arXiv:1805.07281)
[5] Ardizzone L, Kruse J, Rother C and Köthe U 2019 Analyzing inverse problems with invertible

neural networks 7th Int. Conf. on Learning Representations, ICLR 2019 (New Orleans, LA)
[6] Ardizzone L, Lüth C, Kruse J, Rother C and Köthe U 2019 Guided image generation with condi-

tional invertible neural networks (arXiv:1907.02392)
[7] Armato S G et al 2011 The lung image database consortium (LIDC) and image database resource

initiative (IDRI): a completed reference database of lung nodules on CT scans Med. Phys.
38 915–31

[8] Arridge S, Maass P, Öktem O and Schönlieb C-B 2019 Solving inverse problems using data-driven
models Acta Numer. 28 1–174

[9] AsimM, Daniels M, Leong O, Ahmed A and Hand P 2020 Invertible generative models for inverse
problems: mitigating representation error and dataset bias Proc. 37th Int. Conf. on Machine
Learning (Proc. Machine Learning Research) vol 119, ed H D III and A Singh (PMLR) pp
399–409

[10] Baguer D O, Leuschner J and Schmidt M 2020 Computed tomography reconstruction using deep
image prior and learned reconstruction methods Inverse Problems 36 094004

[11] Barbano R, Leuschner J, Schmidt M, Denker A, Hauptmann A, Maaß P and Jin B 2021 Is deep
image prior in need of a good education? (arXiv:2111.11926)

[12] Batzolis G, Carioni M, Etmann C, Afyouni S, Kourtzi Z and Schönlieb C B 2021 CAFLOW: con-
ditional autoregressive flows (arXiv:2106.02531)

[13] Buades A, Coll B and Morel J-M 2005 A non-local algorithm for image denoising 2005 IEEE
Computer Society Conf. on Computer Vision and Pattern Recognition vol 2 (IEEE) pp 60–65

[14] ChenR, Behrmann J, DuvenaudDK and Jacobsen J-H 2019Residual flows for invertible generative
modeling Advances in Neural Information Processing Systems vol 32 (Curran Associates, Inc.)

[15] Cheng Z, Xiong Z, Chen C, Liu D and Zha Z-J 2021 Light field super-resolution with zero-
shot learning Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR)
pp 10010–9

[16] Dabov K, Foi A, Katkovnik V and Egiazarian K 2009 BM3D image denoising with shape-adaptive
principal component analysis SPARS’09-Signal Processing With Adaptive Sparse Structured
Representations

[17] Dahari A, Kench S, Squires I and Cooper S J 2021 Super-resolution of multiphase materials
by combining complementary 2d and 3d image data using generative adversarial networks
(arXiv:2110.11281)

[18] Delon J and Houdard A 2018 Gaussian priors for image denoising Denoising of Photographic
Images and Video (Berlin: Springer) pp 125–49

[19] Dinh L, Sohl-Dickstein J and Bengio S 2017 Density estimation using real NVP 5th Int. Conf.
on Learning Representations, ICLR 2017 (Conf. Track Proc.) (Toulon, France) (available at:
OpenReview.net)

[20] Duff M, Campbell N D F and Ehrhardt M J 2021 Regularising inverse problems with generative
machine learning models (arXiv:2107.11191)

24

https://orcid.org/0000-0002-9628-4735
https://orcid.org/0000-0002-9628-4735
https://orcid.org/0000-0002-7265-261X
https://orcid.org/0000-0002-7265-261X
https://orcid.org/0009-0006-9679-5654
https://orcid.org/0009-0006-9679-5654
https://orcid.org/0000-0003-4433-8604
https://orcid.org/0000-0003-4433-8604
https://orcid.org/0000-0003-1448-8345
https://orcid.org/0000-0003-1448-8345
https://doi.org/10.5281/zenodo.249479
https://doi.org/10.1109/TMI.2018.2799231
https://doi.org/10.1109/TMI.2018.2799231
https://arxiv.org/abs/2201.08157
https://arxiv.org/abs/1805.07281
https://arxiv.org/abs/1907.02392
https://doi.org/10.1118/1.3528204
https://doi.org/10.1118/1.3528204
https://doi.org/10.1017/S0962492919000059
https://doi.org/10.1017/S0962492919000059
https://doi.org/10.1088/1361-6420/aba415
https://doi.org/10.1088/1361-6420/aba415
https://arxiv.org/abs/2111.11926
https://arxiv.org/abs/2106.02531
https://arxiv.org/abs/2110.11281
https://OpenReview.net
https://arxiv.org/abs/2107.11191


Inverse Problems 39 (2023) 064006 F Altekrüger et al

[21] Emad M, Peemen M and Corporaal H 2021 DualSR: zero-shot dual learning for real-world super-
resolution Proc. IEEE/CVF Winter Conf. on Applications of Computer Vision pp 1629–38

[22] Friedman R and Weiss Y 2021 Posterior sampling for image restoration using explicit patch priors
(arXiv:2104.09895)

[23] Genovese C R and Wasserman L 2000 Rates of convergence for the Gaussian mixture sieve Ann.
Stat. 28 1105–27

[24] Gilton D, Ongie G and Willett R 2019 Learned patch-based regularization for inverse problems in
imaging 2019 IEEE 8th Int. Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP) (IEEE) pp 211–5

[25] Glasner D, Bagon S and Irani M 2009 Super-resolution from a single image 2009 IEEE 12th Inter-
national Conference on Computer Vision (IEEE) pp 349–56

[26] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Ben-
gio Y 2014 Generative adversarial nets Advances in Neural Information Processing Systems vol
27, ed Z Ghahramani, M Welling, C Cortes, N Lawrence and K Weinberger (Curran Associates,
Inc.)

[27] Granot N, Feinstein B, Shocher A, Bagon S and Irani M 2022 Drop the GAN: in defense of patches
nearest neighbors as single image generative models Proc. IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR) pp 13460–9

[28] Hagemann P, Hertrich J and Steidl G 2021 Stochastic normalizing flows for inverse problems: a
Markov Chains viewpoint (arXiV:2109.11375)

[29] Hagemann P and Neumayer S 2021 Stabilizing invertible neural networks using mixture models
Inverse Problems 37 085002

[30] Helminger L, Bernasconi M, Djelouah A, Gross M H and Schroers C 2021 Generic image restora-
tion with flow based priors 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition
Workshops (CVPRW) pp 334–43

[31] Hertrich J, Houdard A and Redenbach C 2021 Wasserstein patch prior for image superresolution
(arXiv:2109.12880)

[32] Hertrich J, Neumayer S and Steidl G 2021 Convolutional proximal neural networks and plug-and-
play algorithms Linear Algebr. Appl. 631 203–34

[33] Hertrich J, Nguyen D P L, Aujol J-F, Bernard D, Berthoumieu Y, Saadaldin A and Steidl G 2021
PCA reduced Gaussian mixture models with applications in superresolution Inverse Problems
Imaging 15 1135–69

[34] Houdard A, Bouveyron C and Delon J 2018 High-dimensional mixture models for unsupervised
image denoising (HDMI) SIAM J. Imaging Sci. 11 2815–46

[35] Hurault S, Leclaire A and Papadakis N 2022 Gradient step denoiser for convergent plug-and-play
Int. Conf. on Learning Representations

[36] Jaini P, Kobyzev I, Yu Y and Brubaker M 2020 Tails of lipschitz triangular flows Int. Conf. on
Machine Learning (PMLR) pp 4673–81

[37] Jin KH,McCannMT, Froustey E andUnserM 2017Deep convolutional neural network for inverse
problems in imaging IEEE Trans. Image Process. 26 4509–22

[38] Jung J, Na J, Park H K, Park J M, Kim G, Lee S and Kim H S 2021 Super-resolving material micro-
structure image via deep learning for microstructure characterization and mechanical behavior
analysis npj Comput. Mater. 7 96

[39] Kawar B, Elad M, Ermon S and Song J 2022 Denoising diffusion restoration models ICLR Work-
shop on Deep Generative Models for Highly Structured Data

[40] Kawar B, Vaksman G and Elad M 2021 SNIPS: solving noisy inverse problems stochastically
Advances in Neural Information Processing Systems ed A Beygelzimer, Y Dauphin, P Liang
and J W Vaughan

[41] Keys R 1981 Cubic convolution interpolation for digital image processing IEEE Trans. Acoust.
Speech Signal Process. 29 1153–60

[42] Kingma D P and Ba J 2015 Adam: a method for stochastic optimization Int. Conf. on Learning
Representations

[43] KingmaD P and Dhariwal P 2018 Glow: generative flowwith invertible 1x1 convolutions Advances
in Neural Information Processing Systems vol 31

[44] Kingma D P and Welling M 2014 Auto-encoding variational bayes 2nd Int. Conf. on Learning
Representations, ICLR 2014 (Conf. Track Proc.) (Banff, AB, Canada) ed Y Bengio and Y LeCun

25

https://arxiv.org/abs/2104.09895
https://doi.org/10.1214/aos/1015956709
https://doi.org/10.1214/aos/1015956709
https://arxiv.org/abs/2109.11375
https://doi.org/10.1088/1361-6420/abe928
https://doi.org/10.1088/1361-6420/abe928
https://arxiv.org/abs/2109.12880
https://doi.org/10.1016/j.laa.2021.09.004
https://doi.org/10.1016/j.laa.2021.09.004
https://doi.org/10.3934/ipi.2021053
https://doi.org/10.3934/ipi.2021053
https://doi.org/10.1137/17M1135694
https://doi.org/10.1137/17M1135694
https://doi.org/10.1109/TIP.2017.2713099
https://doi.org/10.1109/TIP.2017.2713099
https://doi.org/10.1038/s41524-021-00568-8
https://doi.org/10.1038/s41524-021-00568-8
https://doi.org/10.1109/TASSP.1981.1163711
https://doi.org/10.1109/TASSP.1981.1163711


Inverse Problems 39 (2023) 064006 F Altekrüger et al

[45] Kirichenko P, Izmailov P and Wilson A G 2020 Why normalizing flows fail to detect out-of-
distribution data Advances in Neural Information Processing Systems vol 33, ed H Larochelle,
M Ranzato, R Hadsell, M Balcan and H Lin (Curran Associates, Inc.) pp 20578–89

[46] Kobler E, Effland A, Kunisch K and Pock T 2020 Total deep variation for linear inverse problems
Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition pp 7549–58

[47] Kobler E, Effland A, Kunisch K and Pock T 2021 Total deep variation: a stable regularization
method for inverse problems IEEE Trans. Pattern Anal. Mach. Intell. 44 9163–80

[48] Kohli MD, Summers RM and Geis J R 2017Medical image data and datasets in the era of machine
learning-whitepaper from the 2016 C-MIMI meeting dataset session J. Digit. Imaging 30 392–9

[49] Laus F, Nikolova M, Persch J and Steidl G 2017 A nonlocal denoising algorithm for manifold-
valued images using second order statistics SIAM J. Imaging Sci. 10 416–48

[50] Lebrun M, Buades A and Morel J-M 2013 A nonlocal Bayesian image denoising algorithm SIAM
J. Imaging Sci. 6 1665–88

[51] Leuschner J, Schmidt M, Baguer D O and Maass P 2021 LoDoPaB-CT, a benchmark dataset for
low-dose computed tomography reconstruction Sci. Data 8 109

[52] Leuschner J et al 2021 Quantitative comparison of deep learning-based image reconstruction meth-
ods for low-dose and sparse-angle CT applications J. Imaging 7 44

[53] Liang J, Lugmayr A, Zhang K, Danelljan M, Van Gool L and Timofte R 2021 Hierarchical condi-
tional flow: a unified framework for image super-resolution and image rescaling IEEE Int. Conf.
on Computer Vision pp 4076–85

[54] Lugmayr A, Danelljan M, Van Gool L and Timofte R 2020 SRFlow: Learning the super-resolution
space with normalizing flow European Conf. on Computer Vision

[55] Lunz S, Öktem O and Schönlieb C-B 2018 Adversarial regularizers in inverse problems Advances
in Neural Information Processing Systems vol 31

[56] Martin D, Fowlkes C, Tal D and Malik J 2001 A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring ecological statistics Proc.
8th IEEE Int. Conf. on Computer Vision. ICCV 2001 vol 2 (IEEE) pp 416–23

[57] Mirza M and Osindero S 2014 Conditional generative adversarial nets (arXiv:1411.1784)
[58] Mukherjee S, Carioni M, Öktem O and Schönlieb C-B 2021 End-to-end reconstruction meets data-

driven regularization for inverse problems Advances in Neural Information Processing Systems
vol 34 pp 21413–25

[59] Ongie G, Jalal A, Metzler C A, Baraniuk R G, Dimakis A G and Willet R 2020 Deep learning
techniques for inverse problems in imaging (arXiv:2005.06001)

[60] Pan X, Zhan X, Dai B, Lin D, Loy CC and Luo P 2020 Exploiting deep generative prior for versatile
image restoration and manipulation European Conf. on Computer Vision (ECCV)

[61] Parameswaran S, Deledalle C, Denis L and Nguyen T Q 2019 Accelerating GMM-based patch
priors for image restoration: three ingredients for a 100x speed-up IEEE Trans. Image Process.
28 687–98

[62] Paszke A et al 2019 PyTorch: An Imperative Style, High-Performance Deep Learning Library
Advances in Neural Information Processing Systems vol 32, ed HWallach, H Larochelle, A Bey-
gelzimer, F d’Alché Buc, E Fox and R Garnett (Curran Associates, Inc.) pp 8024–35

[63] Prost J, Houdard A, Almansa A and Papadakis N 2021 Learning local regularization for vari-
ational image restoration Int. Conf. on Scale Space and Variational Methods in Computer Vision
(Springer) pp 358–70

[64] Radon J 1986 On the determination of functions from their integral values along certain manifolds
IEEE Trans. Med. Imaging 5 170–6

[65] Reid E J, Drummy L F, Bouman C A and Buzzard G T 2022 Multi-resolution data fusion for super
resolution imaging IEEE Trans. Comput. Imaging 8 81–95

[66] Rezende D and Mohamed S 2015 Variational inference with normalizing flows Int. Conf. on
Machine Learning (PMLR) pp 1530–8

[67] Romano Y, Elad M and Milanfar P 2017 The little engine that could: regularization by denoising
(RED) SIAM J. Imaging Sci. 10 1804–44

[68] Ronneberger O, Fischer P and Brox T 2015 U-Net: convolutional networks for biomedical image
segmentationMedical Image Computing and Computer-Assisted Intervention (MICCAI) (LNCS
vol 9351) (Berlin: Springer) pp 234–41

[69] Rudin L I, Osher S and Fatemi E 1992 Nonlinear total variation based noise removal algorithms
Physica D 60 259–68

26

https://doi.org/10.1109/TPAMI.2021.3124086
https://doi.org/10.1109/TPAMI.2021.3124086
https://doi.org/10.1007/s10278-017-9976-3
https://doi.org/10.1007/s10278-017-9976-3
https://doi.org/10.1137/16M1087114
https://doi.org/10.1137/16M1087114
https://doi.org/10.1137/120874989
https://doi.org/10.1137/120874989
https://doi.org/10.1038/s41597-021-00893-z
https://doi.org/10.1038/s41597-021-00893-z
https://doi.org/10.3390/jimaging7030044
https://doi.org/10.3390/jimaging7030044
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/2005.06001
https://doi.org/10.1109/TIP.2018.2866691
https://doi.org/10.1109/TIP.2018.2866691
https://doi.org/10.1109/TMI.1986.4307775
https://doi.org/10.1109/TMI.1986.4307775
https://doi.org/10.1109/TCI.2022.3140551
https://doi.org/10.1109/TCI.2022.3140551
https://doi.org/10.1137/16M1102884
https://doi.org/10.1137/16M1102884
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1016/0167-2789(92)90242-F


Inverse Problems 39 (2023) 064006 F Altekrüger et al

[70] Ruthotto L and Haber E 2021 An introduction to deep generative modeling DMV Mitteilungen
44 1–24

[71] Sandeep P and Jacob T 2016 Single image super-resolution using a joint GMMmethod IEEE Trans.
Image Process. 25 4233–44

[72] Shi H, Traonmilin Y and Aujol J-F 2021 Compressive learning for patch-based image denoising
HAL Preprint hal-03429102

[73] Shocher A, Cohen N and Irani M 2018 Zero-shot’ super-resolution using deep internal learning
Proc. IEEE Conference on Computer Vision and Pattern Recognition pp 3118–26

[74] Soh J W, Cho S and Cho N I 2020 Meta-transfer learning for zero-shot super-resolution Proc.
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR)

[75] Sohn K, Lee H and Yan X 2015 Learning structured output representation using deep conditional
generative models Advances in Neural Information Processing Systems vol 28

[76] Song Y and Ermon S 2019 Generative modeling by estimating gradients data distribution Advances
in Neural Information Processing Systems vol 32, ed H Wallach, H Larochelle, A Beygelzimer,
F d’Alché-Buc, E Fox and R Garnett (Curran Associates, Inc.)

[77] Song Y, Shen L, Xing L and Ermon S 2022 Solving inverse problems in medical imaging with
score-based generative models The 10th Int. Conf. on Learning Representations

[78] Sreehari S, Venkatakrishnan S V, Wohlberg B, Buzzard G T, Drummy L F, Simmons J P and Bou-
man CA 2016 Plug-and-play priors for bright field electron tomography and sparse interpolation
IEEE Trans. Comput. Imaging 2 408–23

[79] Sun H, Mehta R, Zhou H, Huang Z, Johnson S, Prabhakaran V and Singh V 2019 DUAL-GLOW:
Conditional flow-based generative model for modality transfer IEEE Int. Conf. on Computer
Vision pp 10610–9

[80] Teshima T, Ishikawa I, Tojo K, Oono K, Ikeda M and Sugiyama M 2020 Coupling-based invertible
neural networks are universal diffeomorphism approximators Proc. 34th Int. Conf. on Neural
Information Processing Systems (NIPS’20) (Vancouver, BC)

[81] Tian C, Xu Y, Zuo W, Lin C-W and Zhang D 2021 Asymmetric CNN for image superresolution
IEEE Trans. Syst. Man Cybern. 52 3718–30

[82] Ulyanov D, Vedaldi A and Lempitsky V 2018 Deep image prior Proc. IEEE Conf. on Computer
Vision and Pattern Recognition pp 9446–54

[83] Vaucher S, Unifantowicz P, Ricard C, Dubois L, Kuball M, Catala-Civera J-M, Bernard D, Stam-
panoni M and Nicula R 2007 On-line tools for microscopic and macroscopic monitoring of
microwave processing Physica B 398 191–5

[84] Venkatakrishnan S V, Bouman C A and Wohlberg B 2013 Plug-and-play priors for model based
reconstruction 2013 IEEE Global Conf. on Signal and Information Processing (IEEE) pp 945–8

[85] Wei X, Gorp H V, Carabarin L G, Freedman D, Eldar Y C and van Sloun R 2022 Deep unfolding
with normalizing flow priors for inverse problems IEEE Trans. Signal Process. 70 2962–71

[86] Whang J, Lei Q and Dimakis A 2021 Solving inverse problems with a flow-based noise model Proc.
38th Int. Conf. on Machine Learning (Proc. Machine Learning Research) vol 139, ed M Meila
and T Zhang (PMLR) pp 11146–57

[87] Winkler C, Worrall D, Hoogeboom E and Welling M 2019 Learning likelihoods with conditional
normalizing flows (arXiv:1912.00042)

[88] XiaW, Lu Z, Huang Y, Shi Z, Liu Y, Chen H, Chen Y, Zhou J and Zhang Y 2021MAGIC: manifold
and graph integrative convolutional network for low-dose ct reconstruction IEEE Trans. Med.
Imaging 40 3459–72

[89] Xu C S, Hayworth K J, Lu Z, Grob P, Hassan A M, García-Cerdán J G, Niyogi K K, Nogales E,
Weinberg R J and Hess H F 2017 Enhanced FIB-SEM systems for large-volume 3D imaging
eLife 6 e25916

[90] Yu J J, Derpanis K G and Brubaker M A 2020 Wavelet flow: fast training of high resolution nor-
malizing flows Advances in Neural Information Processing Systems vol 33, ed H Larochelle,
M Ranzato, R Hadsell, M Balcan and H Lin (Curran Associates, Inc.) pp 6184–96

[91] Zhang K, Li Y, Zuo W, Zhang L, Van Gool L and Timofte R 2021 Plug-and-play image restoration
with deep denoiser prior IEEE Trans. on Pattern Analysis and Machine Intelligence

[92] Zhang Z, Yu S, Qin W, Liang X, Xie Y and Cao G 2020 Ct super resolution via zero shot learning
(arXiv:2012.08943)

[93] Zoran D and Weiss Y 2011 From learning models of natural image patches to whole image restor-
ation IEEE Int. Conf. on Computer Vision (IEEE) pp 479–86

27

https://doi.org/10.1002/gamm.202100008
https://doi.org/10.1002/gamm.202100008
https://doi.org/10.1109/TIP.2016.2588319
https://doi.org/10.1109/TIP.2016.2588319
https://doi.org/10.1109/TCI.2016.2599778
https://doi.org/10.1109/TCI.2016.2599778
https://doi.org/10.1109/TSMC.2021.3069265
https://doi.org/10.1109/TSMC.2021.3069265
https://doi.org/10.1016/j.physb.2007.04.064
https://doi.org/10.1016/j.physb.2007.04.064
https://doi.org/10.1109/TSP.2022.3179807
https://doi.org/10.1109/TSP.2022.3179807
https://arxiv.org/abs/1912.00042
https://doi.org/10.1109/TMI.2021.3088344
https://doi.org/10.1109/TMI.2021.3088344
https://doi.org/10.7554/eLife.25916
https://doi.org/10.7554/eLife.25916
https://arxiv.org/abs/2012.08943

	PatchNR: learning from very few images by patch normalizing flow regularization
	1. Introduction
	2. Patch NFs in variational modeling
	2.1. Learning patchNRs
	2.2. Reconstruction with PatchNRs

	3. Analysis of patch NFs
	4. Numerical examples
	4.1. Computed tomography
	4.2. Superresolution
	4.3. Zero-shot superresolution with PatchNRs

	5. Discussion and conclusions
	Appendix A. Comparison methods
	Appendix B. Further examples
	References




