247,360 research outputs found

    Federated learning for medical imaging radiology

    Get PDF
    Federated learning (FL) is gaining wide acceptance across the medical AI domains. FL promises to provide a fairly acceptable clinical-grade accuracy, privacy, and generalisability of machine learning models across multiple institutions. However, the research on FL for medical imaging AI is still in its early stages. This paper presents a review of recent research to outline the difference between state-of-the-art [SOTA] (published literature) and state-of-the-practice [SOTP] (applied research in realistic clinical environments). Furthermore, the review outlines the future research directions considering various factors such as data, learning models, system design, governance, and human-in-loop to translate the SOTA into SOTP and effectively collaborate across multiple institutions

    Brain Segmentation ? A Case study of Biomedical Cloud Computing for Education and Research

    Get PDF
    Medical imaging is widely adopted in Hospitals and medical institutes, and new ways to improve existing medical imaging services are regularly exploited. This paper describes the adoption of Cloud Computing is useful for medical education and research, and describes the methodology, results and lesson learned. A working Bioinformatics Cloud platform can demonstrate computation and visualisation of brain imaging. The aim is to study segmentation of brains, which divides the brain into ten major regions. The Cloud platform has these two functions: (i) it can highlight each region for ten different segments; and (ii) it can adjust intensity of segmentation to allow basic study of brain medicine. Two types of benefits are reported as follows. Firstly, all the medical student participants are reported to have 20% improvement in their learning satisfaction. Secondly, 100% of volunteer participants are reported to have positive learning experience

    NiftyNet: a deep-learning platform for medical imaging

    Get PDF
    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this application requires substantial implementation effort. Thus, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. NiftyNet provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on TensorFlow and supports TensorBoard visualization of 2D and 3D images and computational graphs by default. We present 3 illustrative medical image analysis applications built using NiftyNet: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. NiftyNet enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.Comment: Wenqi Li and Eli Gibson contributed equally to this work. M. Jorge Cardoso and Tom Vercauteren contributed equally to this work. 26 pages, 6 figures; Update includes additional applications, updated author list and formatting for journal submissio
    • …
    corecore