18 research outputs found

    Learning Robot Activities from First-Person Human Videos Using Convolutional Future Regression

    Full text link
    We design a new approach that allows robot learning of new activities from unlabeled human example videos. Given videos of humans executing the same activity from a human's viewpoint (i.e., first-person videos), our objective is to make the robot learn the temporal structure of the activity as its future regression network, and learn to transfer such model for its own motor execution. We present a new deep learning model: We extend the state-of-the-art convolutional object detection network for the representation/estimation of human hands in training videos, and newly introduce the concept of using a fully convolutional network to regress (i.e., predict) the intermediate scene representation corresponding to the future frame (e.g., 1-2 seconds later). Combining these allows direct prediction of future locations of human hands and objects, which enables the robot to infer the motor control plan using our manipulation network. We experimentally confirm that our approach makes learning of robot activities from unlabeled human interaction videos possible, and demonstrate that our robot is able to execute the learned collaborative activities in real-time directly based on its camera input

    One-Shot Observation Learning

    Get PDF
    Observation learning is the process of learning a task by observing an expert demonstrator. We present a robust observation learning method for robotic systems. Our principle contributions are in introducing a one shot learning method where only a single demonstration is needed for learning and in proposing a novel feature extraction method for extracting unique activity features from the demonstration. Reward values are then generated from these demonstrations. We use a learning algorithm with these rewards to learn the controls for a robotic manipulator to perform the demonstrated task. With simulation and real robot experiments, we show that the proposed method can be used to learn tasks from a single demonstration under varying conditions of viewpoints, object properties, morphology of manipulators and scene backgrounds
    corecore