14,843 research outputs found

    Discovering Blind Spots in Reinforcement Learning

    Full text link
    Agents trained in simulation may make errors in the real world due to mismatches between training and execution environments. These mistakes can be dangerous and difficult to discover because the agent cannot predict them a priori. We propose using oracle feedback to learn a predictive model of these blind spots to reduce costly errors in real-world applications. We focus on blind spots in reinforcement learning (RL) that occur due to incomplete state representation: The agent does not have the appropriate features to represent the true state of the world and thus cannot distinguish among numerous states. We formalize the problem of discovering blind spots in RL as a noisy supervised learning problem with class imbalance. We learn models to predict blind spots in unseen regions of the state space by combining techniques for label aggregation, calibration, and supervised learning. The models take into consideration noise emerging from different forms of oracle feedback, including demonstrations and corrections. We evaluate our approach on two domains and show that it achieves higher predictive performance than baseline methods, and that the learned model can be used to selectively query an oracle at execution time to prevent errors. We also empirically analyze the biases of various feedback types and how they influence the discovery of blind spots.Comment: To appear at AAMAS 201

    PASS: a simple classifier system for data analysis

    Get PDF
    Let x be a vector of predictors and y a scalar response associated with it. Consider the regression problem of inferring the relantionship between predictors and response on the basis of a sample of observed pairs (x,y). This is a familiar problem for which a variety of methods are available. This paper describes a new method based on the classifier system approach to problem solving. Classifier systems provide a rich framework for learning and induction, and they have been suc:cessfully applied in the artificial intelligence literature for some time. The present method emiches the simplest classifier system architecture with some new heuristic and explores its potential in a purely inferential context. A prototype called PASS (Predictive Adaptative Sequential System) has been built to test these ideas empirically. Preliminary Monte Carlo experiments indicate that PASS is able to discover the structure imposed on the data in a wide array of cases

    Design for a Darwinian Brain: Part 1. Philosophy and Neuroscience

    Full text link
    Physical symbol systems are needed for open-ended cognition. A good way to understand physical symbol systems is by comparison of thought to chemistry. Both have systematicity, productivity and compositionality. The state of the art in cognitive architectures for open-ended cognition is critically assessed. I conclude that a cognitive architecture that evolves symbol structures in the brain is a promising candidate to explain open-ended cognition. Part 2 of the paper presents such a cognitive architecture.Comment: Darwinian Neurodynamics. Submitted as a two part paper to Living Machines 2013 Natural History Museum, Londo

    Learning Mazes with Aliasing States: An LCS Algorithm with Associative Perception

    Get PDF
    Learning classifier systems (LCSs) belong to a class of algorithms based on the principle of self-organization and have frequently been applied to the task of solving mazes, an important type of reinforcement learning (RL) problem. Maze problems represent a simplified virtual model of real environments that can be used for developing core algorithms of many real-world applications related to the problem of navigation. However, the best achievements of LCSs in maze problems are still mostly bounded to non-aliasing environments, while LCS complexity seems to obstruct a proper analysis of the reasons of failure. We construct a new LCS agent that has a simpler and more transparent performance mechanism, but that can still solve mazes better than existing algorithms. We use the structure of a predictive LCS model, strip out the evolutionary mechanism, simplify the reinforcement learning procedure and equip the agent with the ability of associative perception, adopted from psychology. To improve our understanding of the nature and structure of maze environments, we analyze mazes used in research for the last two decades, introduce a set of maze complexity characteristics, and develop a set of new maze environments. We then run our new LCS with associative perception through the old and new aliasing mazes, which represent partially observable Markov decision problems (POMDP) and demonstrate that it performs at least as well as, and in some cases better than, other published systems
    corecore