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Abstract 

Let x be a vector of predictors and y a scalar response associated with 
it. Consider the regression problem of inferring the relationship between 
predictors and response on the basis of a sample of observed pairs (x,y). 
This is a familiar problem for which a variety of methods are available. 
This paper describes a new method based on the classifier system approach 
to problem solving. Classifier systems provide a rich framework for 
learning and induction, and they have been successfully applied in the 
artificial intelligence literature for some time: The present method enriches 
the simplest classifier system architecture with some new heuristics and 
explores its potential in a purely inferential context. A prototype called 
PASS (Predictive Adaptive Sequential System) has been built to test these 
ideas empirically. Preliminary Monte Carlo experiments indicate that PASS 
is able to discover the structure imposed on the data in a wide array of 
cases. 

Keywords: Regression analysis; Classifier systems; Machine learning. 

1 Introduction 

Let x be a vector of predictors and y a scalar response associated with 
it. Consider the regression problem of inferring the relationship between 
predictors and response on the basis of a sample of observed pairs (x,y). 
This is a familiar problem for which a variety of methods have been 
proposed in the statistical, machine learning and neural network literatures. 
Such methods can be categorized according to a number of basic 
dimensions, as ego type of processing (batch vs. sequential), purpose 
(estimative vs. predictive) or inferential engine (data-driven vs. model­
driven). Gi.ven the increasing volume of raw information and the advent of 
powerful computing systems, fully automatic approaches have received 
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much attention in recent years; hence computational complexity and degree 
of inherent parallelism are important considerations as well. Finally, since 
one of the goals of the analysis is to better understand the underlying data­
generating process, developers must also be concerned with output 
interpretability. 

This paper presents a new method based on the classifier system 
approach to problem solving, [Holland 1986,1989]. The new method is 
described in detail and put in perspective with respect to previous work in 
classifier system research. A prototype called PASS (Predictive Adaptive 
Sequential System) has been built to test the ideas empirically. Preliminary 
experimental results suggesting the usefulness of the method are outlined, 
and some of the weaknesses and strengths of the prototype pointed out. 

PASS has been designed to solve the particular problem in which x is a 
boolean vector of predictors (sometimes called the stimulus) and y varies 
over the unit interval (0,1). Only this caJlOnical version of the problem is 
considered throughout. Since any real number can be approximated by a 
binary expansion, continuous predictors can be handled in principle to any 
degree of accuracy, although the encoding procedure is open to some 
subtleties (see below). 

2 Classifier systems, genetic learning, data analysis and PASS 

This research borrows from and extends a simple classifier system (CS) 
architecture, [Holland 1986,1989]. Since many excellent works on CS 
theory are available, only a brief general introduction is provided here. 
For a thorough exposition including philosophical foundations, the reader 
is referred to the monograph [Holland et al. 1986]. 

In general, a CS models the process of adaptation of an organism or 
agent immersed in some environment. Organism and environment are 
continuously interacting: on one hand, the organism "perceives" a number 
of signals arising from the environment and reacts to them; on the other, 
the environment behaves as a dynamical system that may be partly affected 
by the organism's actions. Adaptation is the process whereby the organism 
learns a set of useful behavioral rules on the basis of all previous 
experience. At any given time, the set of rules entertained by the agent 
constitutes his current model of the situation: it provides him with a script 
specifying what to expect or what to do when certain environmental 
patterns are perceived. Rules are useful in that they lead to the agent's goal, 
namely, the (frequent) acquisition of reward, a special signal released by 
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the environment when some critical states ~re reached. In essence, the agent 
learns by a simple trial and error heuristic search: those rules in the model 
that prove useful are reinforced and maintained, so that they will be used 
again in future similar situations. Rules that do not yield the desired results 
are weakened and eventually discarded, leaving room for other plausible 
alternatives generated by the system's discovery mechanisms. 

Genetic learning is commonly understood as the branch of machine 
learning which essentially encompasses genetic algorithms (GAs) and CSs. 
The theory of the GA, based on simple selection and recombination ideas, 
was developed earlier in [Holland 1975]. The GA has since become widely 
recognized as a powerful optimization tool, and a relatively large body of 
research is available on both theory and applications, see ego [Davis and 
Steenstrup 1987] and [Goldberg 1989]. CSs make use of the GA albeit with 
a different purpose, namely, to provide a heuristic basis for the generation 
of new rules. However, its usefulness here has been subject to cogent 
criticism, cf. [Grefenstette 1987]. The main difficulty stems from the fact 
that the GA pursues a single optimal structure, while a typical CS looks for 
several target rules simultaneously. Thus, there is in principle no 
mechanism to prevent recombination of unrelated material. While some 
authors have suggested useful variations aimed to overcome this problem, 
cf. [Goldberg 1989], [Booker 1989], the overall effect of the GA within a 
CS seems far from understood, [Robertson and Riolo 1988], [Wilson and 
Goldberg 1989]. We will return to this issue later in the context of PASS. 
The point stressed here is that additional exploration heuristics should be 
much welcome in CS research; one such a source of "inspiration" is 
proposed below. 

In order to apply the CS architecture in a data-analytic context, we begin 
by associating the learning system with the statistical analyst and the 
environment with a stream of data. Then, we must inquire about both goals 
(what is it exactly that the system should learn to do?) and interaction 
channels (in what ways can the system affect the environment's behavior?). 
These notions are not unrelated: the richness of the interaction channel 
evidently constrains the range of goals available to the system. Furthermore, 
some statistical goals may be in conflict with the basic principles underlying 
the work of CSs (eg. CSs do not remember past observations explicitly, 
neither do they assume any kind of structure in the data source). 

An essential goal in all CSs is that of reducing uncertainty as much as 
possible by providing predictions of environmental response. PASS focuses 
on this idea by identifying the amount of reinforcement with predictive 
accuracy: the system is rewarded if and only if it is able to learn patterns in 
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the data stream that permit it to anticipate unseen responses. The more 
precise the (successful) prediction, the larger the reward. 

Among the various ways to design interaction channels between the 
learning system and the data stream, the simplest approach is to assume no 
interaction at all: the data stream is unaffected by any actions taken by the 
learner. Among such streams, the natural starting point consists in 
assuming a random sampling scheme. This scheme, quite common in 
machine learning and statistical research, currently constitutes a central 
assumption in PASS. Under the random sampling assumption, the 
environment consists of an (infinite) stream of independent, identically 
distributed vectors (x,y) drawn from some joint distribution. Time­
dependent data may also be treated within this framework (see ego [Packard 
1989]), but this possibility is not explored here. 

We are now ready to examine the system's basic cycle. PASS processes 
data pairs (x,y) one at a time. At each step, it first looks at the stimulus x, 
and its short-term and sole goal is to predict the associated response y. The 
system's model consists of a set of classifiers or elementary predictions for 
certain classes of stimuli. The current stimulus selects the subset of relevant 
classifiers through the usual (exact) matching process. These classifiers 
compete with each other, with the result that only a fraction of them are 
responsible for the system's prediction. This prediction is then contrasted 
with the response y. Reinforcement may be applied to individual classifiers 
in various well-known ways, although some schemes seem to exhibit more 
difficulties than others. So far, nothing is very different from other so­
called stimulus/response CSs. However, two novel features characterize the 
present approach. First, the system is evaluated according to the observed 
predictive efficacy: the higher the predictive probability assigned to the 
response, the better. Second, classifiers are granted the ability to remember 
a few observations temporarily, and this local memory forms the basis for 
the generation of new classifiers or the modification of existing ones. Each 
of these subprocesses is described in detail next. We begin by clarifying the 
nature of the present type of classifier. 

3 Knowledge representation in PASS 

PASS represents knowledge as an unstructured, evolving collection of 
elementary predictions called classifiers. The number of classifiers in the 
model is a system parameter; it will be suggested to some extent by the 
estimated degree of complexity in the data. Selection of the appropriate size 
in each case is crucial, for it affects the computational complexity (both 
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time and spacewise) of the algorithm, yet remains an open research issue. It 
has been suggested, [Robertson and Riolo 1988], that the larger the 
population size, the better (a conclusion that has been reached in PASS 
aswell). However, Riolo [1989] provides some conflicting insights on the 
effects of population size on the system's qualitative behavior. 

All classifiers in PASS have the following structure: 

IF s THEN PREDICT (d,f) {with strength S and recalling E}, 

where s is a hyperplane or schema in the boolean hypercube g-{O,l }n, 
(d,f) encodes a predictive distribution, S is a scalar reflecting the previous 
usefulness of the classifier and E is a list storing a few observations where 
the classifier "failed" (in a sense to be made precise shortly). Hyperplanes 
are represented as vectors whose components are 0,1 or 1, the "don't care" 
character (the more common symbol # has a special meaning in LISP). As 
usual, schemata from different classifiers may and are expected to overlap. 
An important feature of any given classifier is the specijicity D=D(s), the 
proportion of non-? in the schema s. 

Predictive distributions may be designed in various ways amenable to 
symbolic heuristic manipulation. At present, they are simply configured in 
terms of d, a boolean vector of arbitrary length (the support of the 
distribution), and f, a vector of probabilities over d. The coordinates of d 
correspond to an arbitrary number of equally-spaced subintervals of the 
unit interval; every support is thus characterized as the union of those 
subintervals tagged by 1's in d. The length of d in bits is called the 
resolution of the system. This parameter remains fixed throughout, 
although future versions may accommodate dynamic resolution (eg. 
:,ooming). Another quantity of interest is the number of 1's in d divided by 
the resolution; this is called the scope of d, and denoted by v-v(d). 

The reason why predictions are split into two components is 
operational: supports d, as well as schemata s, are amenable to direct 
manipulation by the system. This is not the case with f, which is always 
linked to d and otherwise beyond the system's control. By default, 
classifiers start off with a uniform prediction over d. Later, as relevant 
data are recorded, the coordinates of f are updated according to the 
observed frequencies. For example, the classifier 

(0??1??01) -> «0000001111), (.1, .1, .4, .4» 

(where redundant O's in f have been deleted) represents the working 

...._---_._-,­



6 
hypothesis that responses associated with stimuli satisfying. the given 
schema lie on (.6,1) and tend to concentrate on (.8,1). The exception list 
contains observations (x,y) previously processed by the classifier such that 
x is in s but y is not in d. For example, the exception list to the above 
classifier might include data {(OOOI0101), O.23952}, {(OllI1001), 
O.58637}, etc.; the information in the exception list is not used to build 
predictions. 

Besides the choice of resolution, two other constrains operate on the 
population of classifiers. More precisely, these constrains limit the space of 
predictive distributions entertained by the system. First, only convex 
supports are allowed (ie. those vectors d whose 1's are not isolated). This 
policy enhances the overall interpretability of the output and considerably 
simplifies the design of support-manipulating routines, but it complicates 
the representation of bimodal patterns in the data (see below). Second, both 
upper and lower bounds act on scope. The lower bound means no serious 
limitation, as sharp predictions may always emerge within broader 
supports. On the other hand, larger scopes may impair decisively the flow 
of exceptions. The onset of an upper bound on scope introduces a built-in 
bias against patterns in the data that are too diffuse to "fit" in one classifier: 
it assumes the existence of less diffuse patterns which become the actual 
targets of the search. 

The resulting knowledge representation is reminiscent of (and was 
partly motivated by) that in [Packard 1989], where, loosely speaking, 
constrains on support are replaced by an entropy-based explicit evaluation 
of uncertainty. However, Packard's treatment relies on batch-processing of 
a fixed data set and all learning is accomplished via the genetic algorithm. 
In contrast, the present, more flexible CS approach proceeds sequentially, 
allows other forms of learning and does not preclude the emergence of 
structure within the population of classifiers. 

4 Prediction, evaluation and reinforcement 

Once the system is provided with an initial set of classifiers, exposure to 
the data stream may begin. This paragraph explains how the system's 
predictive distribution is built, how performance is measured and how 
reinforcement can be applied. A few departures from the standard 
architecture are singled out. Some specific choices for system parameters 
are discussed later. 

As usual, all classifiers in the current population are checked for a 
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match with the incoming x. If there is no match at all, the observation (x,y) 
is stored in the no-match list and no further action is taken. The no-match 
list is searched by procedure scan when it reaches some user·specified 
length, with the result of possible addition of classifiers from time to time. 
Procedure scan is the primary heuristic tool in PASS and is described in 
the next section. 

As soon as there are one or more matches, the system enters the 
bidding/auction process. Each matched classifier bids an amount 

b ex I(D) S, 

where D is the classifier's specificity defined earlier, I(D) is some 
nondecreasing function of specificity (typically taken to be either the 
identity or a constant) and S is current strength. The size of the bid 
determines how likely is a given classifier to be used by the system. By 
selecting a subset of winners, the system seeks to concentrate on the most 
useful components of the current model. On the other hand, the auction is 
stochastic, so all matched classifiers have a positive probability of winning. 
The number of winners (say m) is usually fixed throughout. 

If there are less than m matched classifiers, all of them win and no 
competition is needed. Otherwise, effective bids are computed as B = 
baD~, and winners are chosen with probabilities proportional to B, that is, 

B' 
<I> i = P(i wins) = }: I Bj . 

J 

Parameters a and ~ are nonnegative and have been shown to play an 
important role in both the stability of some emergent structures and the 
asymptotic behavior of families of similar classifiers, cf. [Riolo 1987] and 
lCompiani et al. 1990] respectively. 

Winners pay for the right to guide the system by having its bid deducted 
from its strength; the remaining matched classifiers do not have their bids 
subtracted, but are not eligible for reward either. In addition to bid 
substraction, tax is collected at every step from all classifiers in the model. 
Tax is just a fixed fraction of strength needed primarily to reduce the 
strength of classifiers that are matched rarely if ever. Unless taxes are 
effective, the system has no way of getting rid of these useless classifiers. 

.--------1
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The system's predictive distribution, say r, is computed as the mixture 

of the individual winning predictions weighted by strength: 

f* ex ~ Si fi. 
I 

We now motivate the evaluation measure used in PASS. Given a 
collection of responses {Yi}, the standard measure of predictive efficacy is 
provided by the joint probability assigned to the collection; under the 
assumption of independence, this becomes the product of individual 
probabilities r(yj), ie. the probability assigned by r to the subinterval 
containing Yi. If the contributions from different responses are to be added 
together (eg. to obtain a moving average), performance should be based on 
the logarithms of these probabilities. However, since the support of r need 
not cover the whole unit interval, the central measure of performance in 
PASS is defined as 

Y(r,y) - 't [K + max{log r(y), -K}], 

if r(y);I!O (0 otherwise), where K>O is a truncation parameter and 'PO. 
Note that Y is 0 until f*{y) reaches above e-K , then Y>O and increases with 
f*{y). Parameter't is clearly irrelevant for evaluative purposes and could 
be set to 1 here; its role is discussed below. Selection of K may be guided 
by examining specific distributions. For example, assuming a resolution of 
]6 bits, the uniform distribution over the whole interval assigns 
probabilities r(y)=1116=.0625, whose logarithm equals -2.77, while the 
uniform distribution over the correct half assigns probabilities 
f*(y)= 1/8=.125, whose logarithm equals -2.08. In the experiments reported 
below, K and 't were set to 3 and 100 respectively. 

Let us finally discuss reinforcement and related issues. Depending on 
whether one focuses on partial or overall success as the basic criterion for 
reinforcement, two major regimes, called individual and ecological 
respectively, can be considered. We first discuss the former, which has 
proven most useful in practice, and briefly comment on the latter (a priori 
more congruent with the CS approach). 

Under individual reinforcement, each winner receives a reward that 
depends solely on its own prediction: a simple boolean measure of success 
is introduced (namely, d captures y), and predictions are categorized as 
success or failure. If successful, winning classifiers are granted a reward 
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R(v) ex: v-Y, with Y~O. No reward is given if the classifier is not successful, 
and a fraction of strength, say p, may be deducted as a penalty. Most 
experiments have been based on y=l and p=O, although y=O leads to similar 
results and O<p<.2 has proven useful. 

The previous measure of individual success has a second function in 
PASS, which applies to all matched classifiers regardless of reinforcement 
regime. Specifically, if d captures y, then y is used to update f, else (x,y) is 
stored in the classifier's exception list. Exception lists have limited capacity 
and are eventually passed on to the explain routine to search for 
regularities and modify the classifier base accordingly. 

Updating individual predictions is done as follows. Strictly speaking, 
classifiers do not store f but F, which is a counter vector ordinarily 
initialized at d (some of PASS's heuristic operators may reinitialize F 
differently; in particular, the coordinates of F are usually but not always 
integer-valued). If d captures y, the corresponding coordinate in F is 
increased by 1; whenever f is needed, it is computed from F by 
normalization. No reinitialization prevents f from approaching the 
(truncated) empirical distribution function based on all subsequent data 
filtered by s (thus, the initial F is always noninfonnative in that it is soon 
overwhelmed by data). Of course, more formal updating procedures are 
conceivable. 

Under ecological reinforcement, all winners receive the same reward 
depending on the system's success (regardless of their individual behavior). 
In PASS, this reward is precisely Y, the measure of perfonnance defined 
above. Parameter 't thus controls the intensity of reinforcement; it should 
be large enough to allow good classifiers to depart from the initial strength 
level rapidly. 

Although ecological reinforcement appears a priori more likely to 
support cooperative phenomena, experiments show that it brings two 
adverse effects. First, good classifiers are no longer guaranteed a fair 
reward because their predictions are often "contaminated". Second, poor 
alternatives (parasites) are sometimes systematically selected along with 
correct classifiers and thus prosper unduly. As a result, the distribution of 
strength over the population is more unifonn and learning is impaired. To 
be useful, ecological reinforcement probably needs to be adjusted in order 
to reflect also individual performance. 
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5 Heuristic operators 

The strength revision mechanism just described will eventually allocate 
strength so that the system exhibits the best possible performance given a 
fixed set of classifiers. To improve further, new classifiers are injected by 
the system's rule-discovery heuristic operators as described in this section. 
A few comments are in order before we review each operator in turn. 

Operators perform a variety of transformations on classifiers; 
classifiers may have their schemata s or predictions d modified, and new 
classifiers may be generated from one or more existing classifiers. When a 
classifier is modified, the old version disappears, that is, transformations in 
PASS are irreversible (some restrictions might be considered for the sake 
of efficiency). When new classifiers are generated, some classifiers must be 
deleted since the population size is limited. In 'PASS, exiting classifiers are 
selected in a deterministic way among those having lowest strengths. 
However, since no classifier should be lost without a fair chance to be 
tested, a minimum age is set for deletion (eg. 75 observations); as a result, 
the system may occasionally exceed the maximum number of classifiers 
(which thus acts as an attractor). Finally, critical design decisions concern 
the strength or prediction to be attached to new or modified classifiers; 
these are presented later. 

Procedure scan takes a list of I observations (x,y) and returns a list of 
classifiers based on concentration of response. scan can be used in three 
different contexts, depending on the nature of the input list: it can work on 
either a training sample in batch mode (thus providing a starting 
population; this option has not been used much), the no-match list or a 
classifier's exception list. The essential mechanism is the same regardless of 
context, and is described as follows. 

scan first sorts out the data according to their y values. It then scans 
through the list of sorted y-values by sliding a window of user-specified 
length w=w(I) (taken as 1.5/1). As soon as V (eg. 5) or more observations 
are found within the window, scan signals a concentration of response and 
tries to characterize it. It will first check whether the enclosed x-values 
show common coordinates. If so, it manufactures a new classifier whose 
schema contains such coordinates and whose prediction (approximately) 
reflects the location of the concentration; classifiers constructed in this way 
are termed S-classifiers. If there are no common coordinates, scan ignores 
the concentration and continues scanning. 

It will often be the case that some (or all) of the I observations in the 
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input list are not used in the generation of S-classifiers. As an attempt to 
avoid loss of useful information, scan also generates a tunable number of 
G-classifiers. Each G-classifier is based on a single unused observation: 
PASS simply generalizes at random the stimulus x and builds a prediction d 
by expanding (again, at random) the coordinate that contains the response. 
The idea is similar to the so-called Cover Detector operator, [Robert~on 

and Riolo 1988]. . 

Procedure explain is designed to exploit certain regularities in a 
classifier's exception list. It can modify existing classifiers or add new 
classifiers. It is triggered by currently useful (as measured by strength) and 
improvable (as measured by the estimated probability of individual success) 
classifiers when their exception lists reach certain critical length (say el). 
Thus, classifiers that are currently strong are favored, while classifiers that 
cover a substantial amount of mass may not be reasonably improved, so 
explain ignores them. 

When explain acts on this set of e1 exceptions, it first finds out 
whether or not the x-vectors exhibit common coordinates beyond those in 
the classifier's schema and whether or not the corresponding y-values tend 
to cluster (at present, the y-values are said to cluster whenever their range 
is less than some constant; more robust criteria may also be considered). 
On the basis of this information, explain branches into three cases, 
labeled F (no common coordinates), N (common coordinates but no cluster) 
and E (common coordinates and cluster). Different actions are taken in 
each case as follows. 

In case F, explain simply stretches the classifier's prediction, an action 
that it will execute unless d is not too large (in terms of the upper bound on 
scope) after a new bit is added to it. As an example, consider the summary: 

1 ???????O?O? 0000000000011100 
2 ???????O?O? 0101000000000011 
3 ???????O?O? 0000000000011110 

(Line] contains the classifier s -> d as it stands before the transformation 
applies, line 2 shows the location of the exceptions (it also shows that no 
extra common coordinates were found among them), and line 3 portrays 
the transformed classifier). 

In case N, explain thinks that the original classifier is too genera] and 
tends to specialize it. It first checks whether the classifier's schema is 
general enough (D < .25). When that is the case, s is augmented by 

---------1� 
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negating a randomly chosen new common coordinate; otherwise, no action 
is taken. Other variations are equally considerable: see cases Al and A2 
below. To illustrate (read lines as before): 

1 ?0????????1 0000000000111000 
2 ?0?0???1??1 1110000000000001 
3 ?0?????0??1 0000000000111000 

In case E, explain creates a new classifier (called an E-classifier) 
depicting the new regularity: s incorporates the set of common coordinates 
(or a random subset so that the new specificity remains below some 
constant), and d reflects approximately the location of the cluster. The 
following example is interpreted similarly, except that line 3 contains now 
the specialized version to be added to the model: 

1 ??10????1?? 0000000001111000 
2 1010????1?? 0000000000000111 
3 1010????1?? 0000000000001111 

Whenever a classifier is modified or a new classifier created, the old 
classifier's exception list is emptied. When no classifier is modified or 
generated at this stage, explain does not erase the exception list and simply 
quits. The exception list will then grow until a new threshold length is 
reached, say ez, where explain is invoked again (and the same selection 
filters applied as above). This time, however, explain passes the exception 
list directly on to procedure scan, whose ordinary output is further 
processed as follows. explain first removes those S-c1assifiers whose 
schemata do not enhance the original schema. Second, for each remaining 
S-classifier (if any), explain checks whether its prediction is not far away 
from the original classifier's prediction (at present, this is simply 
determined by the number of bits between predictions: if there are more 
than a threshold number of bits, then predictions are considered far away. 
Of course, this threshold depends on the system's resolution and maximum 
scope). 

When predictions are far away, the S-c1assifier is left untouched. 
Otherwise, explain replaces the S-classifier with a new classifier (called 
an AI-classifier) that combines the S-classifier's schema with the original 
prediction. It also introduces a second type of classifier, called an A2­
classifier, that combines the old schema with the new prediction. Any G­
classifiers produced by scan are returned in either case. Before exiting, the 
exception list is emptied (even if explain failed to produce new 
classifiers), so there are never more than ez observations in any exception 
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list. The following are some examples; the various lines show the original 
classifier along with the labelled addition(s) in each case: 

?10???1??1? 0000000000111110 
1 ?10???1??11 0000000000111110 A1 
2 ?10???1??1? 0000000000000111 A2 
3 ?10??11??1? 0000000000111110 A1 

01?????0??? 0000000000001111 
1 011???00??? 1110000000000000 S 

??10????0?? 0011110000000000 
1 ????0????10 1110000000000000 G 
2 0110???00?? 0000000000111110 S 

PASS uses also two additional operators, called GA (a particular genetic 
algorithm) and intersect. Unlike explain, GA and intersect are 
invoked periodically (eg. every 250 observations) after the system has been 
running for awhile, so each classifier has had some time to be tested and 
strength has been allocated accordingly. While the GA and intersect 
routines work independently of each other, they are invoked 
simultaneously because their mode of operation is similar. Specifically, 
both restrict mating among classifiers that are known to be related (see 
section 2). In PASS, classifiers are related because either their schemata are 
similar (so they tend to respond to the same stimuli) or their predictions 
point to the same region in the unit interval. Only the latter type of liaison 
is currently implemented, although experience shows that it is not very 
helpful (see below). Previous success with the former (see [Booker 1989]) 
suggests that it is probably a better alternative. 

Here are the details of the mating policy. The first parent classifier is 
selected with probability proportional to current strength (but, to provide 
some focus, only among those classifiers with above median strength). Now 
the unit interval is split into a smaller number of regions (say 4 or 5). The 
second parent classifier is then selected at random among those classifiers 
whose predictions lie on one of the regions addressed by the first parent 
classifier. For example, if the resolution is 16 and the unit interval is split 
into 4 regions, the prediction (0011100000000000) addresses the first 
two of them. 

GA renews about 8% of the population per activatioIl. FoHo\\'iog 
conventional practice, standard single-point crossover and mutation are 
included in GA; they apply to the schema part of classifiers only. Mutation 
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rate is set to .5%. One of the offspring schemata is randomly selected with 
either of its parents' d as initial prediction. To illustrate, consider the 
following example (the first two lines correspond to the parents and the 
third to the offspring respectively): 

1 ??0???1??1? 0000000000011111 
2 0?1??0????? 0000000000111110 

0?0???1??1? 0000000000111110 

intersect also renews about 8% of the population. This procedure 
does exactly what its name suggests: it intersects both schemata and 
predictions and returns what it found in common in the parent classifiers. 
Intersected schemata intend to distille the most general regions in stimulus 
space, while intersected predictions try to focus on the center of the target. 
No empty schemata (or predictions) are permitted; intersect predictions 
are expanded if the resulting scope is too low. Here is an example (same 
reading as before): 

1 ?011??????0 0000000001111100 
2 111???0???0 0000000000011111 

??1???????0 0000000000011100 

Classifiers arising from GA and intersect are called X and I­
classifiers respectively. 

Now that all classifier types have been defined, let us examine the 
strength and prediction assigned to them (see Table 1). 

Table 1. PASS initialization procedure 

Type Strength Prediction 
~,U,S,G,E 

F 
SO 
S 

fO ,
(f+fO)/2 

N,A1 S f 
A2 S fO 
I average fO 
X average f 

Here, R stands for randomly-generated and U for user-input. So denotes 
both the user-input initialization strength (for types R or U in the initial 
population) and the median strength of the current list of classifiers (for 
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15� 
types S, G, E to be introduced later). 

Classifiers R, U, S, G and E have their predictions initialized at fO =fO 
(d), the uniform distribution over d. Classifiers F ,N,Al and A2 all arise 
from a single classifier and maintain its strength S (an alternative is to set 
their strength to the dynamic SO). Classifiers Nand Al maintain also their 
prediction f. Classifier F mixes the old prediction with f d -- the uniform 
distribution over the augmented support. The strength of X and I 
classifiers is the average of their parent classifiers. 

6 Performance 

PASS is implemented in LISP-STAT, [Tierney 1990], occupies about 
104K and currently runs on a DEC-station 5000. The code is largely 
experimental in that no optimization effort has been made, so attention is 
focused on performance regardless of execution times. All experiments 
discussed below are based on simulated data. For the sake of brevity, only 
major resulls are outlined here; additional results are provided in 
[Muruzabal 1992]. 

Data (x,y) have been generated in two ways. The first and largest series 
of experiments refers to a mixture distribution on {O,I}n x (0,1) 
(sometimes called the environment) involving c~l concepts, each 
specifying a particular regularity to be observed from time to time. Note 
that the present notion of concept is slightly more general than the one 
usua]]y considered in concept learning (where it is understood as a subset 
of stimulus space). In particular, concepts are defined by triples (q,h,u), 
where O<q:s; 1 is the mixing proportion, h is a schema, and u is a 
distribution on (0,1). Without loss of generality, schemata hi are assumed 
disjoint (this seems a minimum coherency requirement and permits 
straightforward calculation of the optimal level of performance attainable 
by the system). The data source simply extends so far the standard 
paradigm in boolean learning, cf. [Wilson 1987]. If possible, however, the 
set of concepts is automatically augmented with noise; noise is devised as a 
special triple (qO,hO,uO), where uO denotes the uniform distribution over 
the unit interval and qO and hO represent respectively the complements of 
the sum of qi and the union of hi. The resuhing distribution can be seen as 
a particular case of the "signal vs. noise" paradigm (see ego [Titterington et 
al. 1985; section 6.3.2]). Sampling proceeds then as follows: a triple is 
selected at random according to the relative frequencies qi, (i=0,1, ..., c), x 
is obtained by either filling up the undefined coordinates in hi with 

-----.:.------------'--------------_._--­1--------­
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randomly chosen O's and 1's or simply choosing a string from hO, and y is 
taken as an independent realization of ui. A wide array of situations can be 
considered by varying the amount of noise, the number of concepts, the 
specificity of schemata h and the sharpness of distributions u. The model 
allows also for other types of regions hi, but these have not been 
investigated yet. 

In evaluating the system, I first consider an environment of moderate 
difficulty and analyze the system's behavior in detail; a baseline 
perfonnance level is thus obtained. I then modify the environment in 
various ways and compare perfonnance with respect to the baseline in each 
case. The environment used to detennine baseline performance is called 
Mll and is shown in Table 2 (for convenience, all distributions u are taken 
to obelong to the Beta family and are specified by their respective 
parameters). 

Table 2. Conceptual parameters (h,q,u) in the environment M11.� 
M11 is a stochastic generalization of the well-known multiplexer problem,� 

[Wilson 1987]).� 
Noise rate is 4%.� 

1 010??1????? 0.12 (5 1) 
2 101?????0?? 0.12 (1 5) 
3 101?????1?? 0.12 (5 1) 
4 111???????0 0.12 (1 5) 
5 OOOO??????? 0.12 (1 5) 
6 110??????1? 0.12 (5 1) 
7 011???0???? 0.12 (1 5) 
8 011???1???? 0.12 (5 1) 

M11 has been studied under the following system pali:uudeJs; It:suIutiun 
is set to 16 bits, and lower and upper limits on scope are .15 and .32 
respectively. Auction parameters are m=5, I(D)=D, a=1 and ~=3; a tax 
rate of .5% is in effect. Reinforcement is individual. Population size is set 
to 60 classifiers. Thresholds for exception lists are el=5 and e2=15. 
Performance seems fairly robust under one·at-a-time variations of these 
parameters. Seven runs of 7,000 trials were conducted, amI, fur each run, 
tIlt: aVt:la~c Vt:lfonnance Y was recorded every 75 trials. The median over 
runs was then smoothed according to the LOWESS algorithm, [Tierney 
1990]. Figure 1 shows the resulting learning curve. 
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Figure 1 

Median performance over 7 runs of 7,000 trials. 

m < x 1mm Ine s 2m 
4m < y 12m ine s 10 

This figure seems to indicate three different phases, each characterized 
by a different learning rate. Phase I, from time step 0 to 750 (10 in the 
graphic's scale), shows the steepest slope. In phase 11, from 750 to about 
4,500, learning accrues at a much slower yet steady rate. Beyond this point, 
some oscillation occurs; nonetheless, the system manages to improve a little 
further, reaching by the end of the run a maximum performance of 
approximately 114. 

How good is this level of performance? In general, the optimal level of 
performance equals the weighted average of the expected value of the 
reward Y at the best possible classifiers, where the weights are of course 
the corresponding frequencies. The best possible classifiers are those whose 
schemata coincide with the conceptual schemata hi and their predictions 
yield (on average) the highest Y. In M11, all concepts occur equally likely 
and have essentiaHy the same generating distribution, so the optimal level 
of performance boils down to .96 times the expected value of Y at the best 
possible prediction (simply ignoring the small contribution due to successes 
obtained by sheer chance when predicting noisy observations). What is the 
best possible prediction? It turns out that the expected value of Y is not a 
monotone function of scope, so the best possible prediction includes 
sometimes as many 1's as possible and sometimes fewer; these bits are 
always located, of course, at the most likely spots under the corresponding 

._------------_._--­1--------­
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conceptual distributions. Since the difference between the maximum 
expected Y and the expectation at the widest prediction is relatively small 
(in the present case, these numbers are 123.1 and 119.6 respectively), the 
latter may be preferred for consistency and simplicity, and indeed it is used 
to compute the percentages given below. 

Contrasting either figure with the observed 114 implies that the system 
is nearing the optimal performance level. Moreover, on average, the 
system finds 2.5 correct classifiers per run per concept (correct classifiers 
are those whose schemata match one of the conceptual schemata; correct 
classifiers nearly always exhibit a correct prediction). But not all concepts 
are typically covered by correct classifiers: more general classifiers 
attending each to more than one concept are found as well. A peculiar 
feature is that typically only a small fraction (about 20%) of the population 
is 1,000 observations old or older; out of those, many are less than 500 
observations old. Thus, the population undergoes constant renovation, and 
relatively few classifiers survive the heavy competition and intensive 
pruning. However, this phenomenon does not seem to interfere with 
performance, which never experiences severe reverses. It also suggests the 
convenience of an annealing schedule where the exploration rate is 
decreased as learning accrues. 

We know briefly discuss a few variations of Mll where rather 
satisfactory results were obtained; each of the following figures was 
obtained from a set of four independent runs of 4,000 trials each. 
Performance maintains above 80% of the "optimal" level when the 
specificity of conceptual schemata is decreased uniformly (from 4/11 to 
4/17) and when the noise rate is increased (from 4% to 20%). Performance 
remains above 70% when regularities are blurred -- using Beta(3,1) 
distributions instead of Beta(5,1) -- and even when stimuli themselves are 
contaminated by flipping at random coordinates from hi at a rate of 20%. 
These results indicate that PASS is able to detect useful patterns under 
relatively demanding conditions. 

PASS can also learn environments whose concepts exhibit different 
frequency rates (provided these are not very low). A virtually error-free 
level is achieved when regularities are characterized by sharper Beta(11 ,1) 
distributions; these regularities are naturally found faster. On the negative 
side, the system seems to have trouble picking up low-frequency concepts 
(as resources tend to be taken up by high-frequency concepts), and can not 
describe bimodal regularities (as ego those induced by Beta (112,112) 
distributions) even under ecological reinforcement (only the most likely 
modes are maintained in each case). These problems remain open for 
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future research. 

As regards system parameters, here are some preliminary insights based 
on experience with Mll. A moderate penalty seems useful, particularly 
during early stages of learning. It may not be necessary to let specificity 
affect the bidding/auction process (a controversial issue in the classifier 
system literature). It appears that the contribution to learning of 
intersect or GA is negligible relative to that of explain. In fact, the 
problem is similar for both procedures: whenever several concepts point to 
the same regions of the unit interval (as in M11), the restricted mating 
policy in PASS is insufficient to prevent fruitless mixing (see sections 2 and 
5). As mentioned earlier, a change in mating policy seems appropriate. 
Finally, as an alternative to keeping a fixed population size, we have 
achieved some success· by dynamically reducing it (along with the number 
of winners). This was done manually, although it could be obviously 
automated by looking at trends in the learning curve. The idea seems new 
in the classifier system framework and opens an interesting avenue in the 
direction of self-organization (see ego [Fritzke 1993]). 

PASS was also compared to the tree-oriented, continuous response 
algorithm (CON)FIRM, [Hawkins 1990]. Since FIRM proceeds in batch 
mode, this comparison prompts the study of resampling in PASS. 
Specifically, training samples of size 500 drawn from a "difficult" 
environment (not shown here) with 12 concepts and widely different Ui are 
made available to both FIRM and PASS, and trees output by FIRM are 
confronted with the resulting populations of classifiers after 4,000 
iterations. A PASS-like prediction is generated for each terminal node on 
the basis of the corresponding mean and standard deviation from the 
training sample. Performance is then analyzed in terms of a test sample of 
1,500 fresh observations from the same environment. To give an idea of 
the complexity of the task, the FIRM trees have an average of 23 terminal 
nodes, while PASS is restricted to 50 classifiers. 

Results are encouraging. In general, PASS does not perform much 
worse than FIRM, and sometimes it does just as well. This is meritorious, 
for PASS never has access to all data simultaneously. Further, it is not hard 
to devise simple environments where FIRM's one-predictor-at-a-time 
strategy fails to the point of quitting at the root node! In contrast, PASS is 
able to learn such environments, although it takes some time to do so. 
These conclusions are in general agreement with those reached in [Quinlan 
1988J (see also [Booker 1989]). 
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We conclude this quick review by examining a second type of data 

source. We are now interested in evaluating the system's ability to work 
with continuous predictors and to represent high-level models as ego linear 
regression models. To this end, consider a simple regression model y=X+E, 
where O<x<1 and Efollows a N(0,o2) distribution. To transform x into a 
boolean vector, gray coding has better properties than binary coding, cf. 
[Caruana and Schaffer 1988]. Samples of 200 observations generated by 
this model -- with x uniformly distributed over the unit interval, six bits of 
precision in gray code and ° not greater than .1 -- were made available to 
PAS S. After 2,000 iterations, a version of the system was able to 
reconstruct the model and reach a 90% performance level using only 25 
classifiers. The only apparent requirement is that the auction be 
conservative (a=2, ~=O). Table 3 shows a typical set of solution classifiers 
and iHustrates the kind of output provided by PASS; the columns are, 
respectively, s, d, S, age, estimated probability of match, type (and history) 
of classifier and f (only nonzero probabilities rounded to two digits are 
written). 

Table 3 First 15 classifiers for simple regression 

0 1001 ?? 0000000000000111 2508.7 160 9 S 6 71 24 
1 1100?? 0000000111000000 2499.0 1225 13 E 41 46 13 
2 OOO??? 1110000000000000 2390.1 108 14 E 44 44 11 
3 00?11 ? 1111100000000000 2199.8 519 15 S 3 51 19 24 3 
4 10?0?? 0000000000000111 2081.7 894 14 E 25 20 55 
5 010??? 0000001110000000 1909.7 1227 12 E 37 45 18 
6 011 ??? 0111110000000000 1895.8 407 24 XN 15 13 20 22 29 
7 OO???O 1111100000000000 1836.9 175 13 Al 7 44 20 25 5 
8 010??? 0000011100000000 1826.4 1222 12 E 8 42 50 
9 111??? 0000000000111110 1717.1 1985 26 E 26 29 19 15 10 

10 0111 ?? 0000111100000000 1647.8 906 12 S 1 30 46 22 
11 11???? 0000000111110000 1588.7 727 26 EF 13 16 16 32 23 
12 O??O?? 0111110000000000 1561.1 1887 24 RN 19 12 20 23 27 
13 0001 ?? 1111000000000000 1471.2 1308 6 S 28 56 15 1 
14 111 ??? 0000000000111110 1283.3 1227 27 IF 25 31 19 16 9 
15 0?011 ? 1111100000000000 1232.7 175 10 Al 4 62 13 21 0 

Schemata exhibit a reasonable level of generality and predictions cover 
the entire unit interval homogeneously. Similar results were obtained using 
other kinds of linear models as, for example, 2k factorial models. 

7 Concluding remarks 

This article has presented a new approach to automated data analysis 
based on the classifier system (CS) framework. A system implementing the 
new approach, called PASS (Predictive Adaptive Sequential System), has 
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been described and shown to solve satisfactorily a variety of instances of a 
particular regression problem. PASS also fares reasonably well against a 
batch-processing system and is capable of expressing high-level models as 
certain types of linear regression models. Overall, the approach herein 
discussed provides a flexible and robust new tool for data analysis. In 
addition, the new approach seems versatile enough to easily accommodate 
various enhancements from other areas in machine learning or statistics. 

On the other hand, PASS inherits some of the pending problems in CSs 
and also introduces some new ones. The role of certain system parameters 
needs to be further examined, and some insights should be provided on 
scale-up factors, particularly those concerning rule-generation mechanisms. 
Extensions to deal with categorical, multivariate or time-dependent data 
should be addressed as well. Finally, a careful evaluation of PASS with 
respect to the bayesian approach seems of foremost interest. Indeed, one 
may want to investigate also the possibility of cooperation between both 
approaches. The conjecture is that bayesian ideas may have an important 
role to play in general CSs. The data-analytic problem introduced by PASS 
constitutes a natural context to begin to ascertain the nature of this role. 

.--------------------------------_._--­
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