12,087 research outputs found

    Learning multi-modal densities on discriminative temporal interaction manifold for group activity recognition

    Get PDF
    While video-based activity analysis and recognition has received much attention, existing body of work mostly deals with single object/person case. Coordinated multi-object activities, or group activities, present in a variety of applications such as surveillance, sports, and biological monitoring records, etc., are the main focus of this paper. Unlike earlier attempts which model the complex spatial temporal constraints among multiple objects with a parametric Bayesian network, we propose a Discriminative Temporal Interaction Manifold (DTIM) framework as a data-driven strategy to characterize the group motion pattern without employing specific domain knowledge. In particular, we establish probability densities on the DTIM, whose element, the discriminative temporal interaction matrix, compactly describes the coordination and interaction among multiple objects in a group activity. For each class of group activity we learn a multi-modal density function on the DTIM. A Maximum a Posteriori (MAP) classifier on the manifold is then designed for recognizing new activities. Experiments on football play recognition demonstrate the effectiveness of the approach

    SEGMENTATION, RECOGNITION, AND ALIGNMENT OF COLLABORATIVE GROUP MOTION

    Get PDF
    Modeling and recognition of human motion in videos has broad applications in behavioral biometrics, content-based visual data analysis, security and surveillance, as well as designing interactive environments. Significant progress has been made in the past two decades by way of new models, methods, and implementations. In this dissertation, we focus our attention on a relatively less investigated sub-area called collaborative group motion analysis. Collaborative group motions are those that typically involve multiple objects, wherein the motion patterns of individual objects may vary significantly in both space and time, but the collective motion pattern of the ensemble allows characterization in terms of geometry and statistics. Therefore, the motions or activities of an individual object constitute local information. A framework to synthesize all local information into a holistic view, and to explicitly characterize interactions among objects, involves large scale global reasoning, and is of significant complexity. In this dissertation, we first review relevant previous contributions on human motion/activity modeling and recognition, and then propose several approaches to answer a sequence of traditional vision questions including 1) which of the motion elements among all are the ones relevant to a group motion pattern of interest (Segmentation); 2) what is the underlying motion pattern (Recognition); and 3) how two motion ensembles are similar and how we can 'optimally' transform one to match the other (Alignment). Our primary practical scenario is American football play, where the corresponding problems are 1) who are offensive players; 2) what are the offensive strategy they are using; and 3) whether two plays are using the same strategy and how we can remove the spatio-temporal misalignment between them due to internal or external factors. The proposed approaches discard traditional modeling paradigm but explore either concise descriptors, hierarchies, stochastic mechanism, or compact generative model to achieve both effectiveness and efficiency. In particular, the intrinsic geometry of the spaces of the involved features/descriptors/quantities is exploited and statistical tools are established on these nonlinear manifolds. These initial attempts have identified new challenging problems in complex motion analysis, as well as in more general tasks in video dynamics. The insights gained from nonlinear geometric modeling and analysis in this dissertation may hopefully be useful toward a broader class of computer vision applications

    Recognizing Teamwork Activity In Observations Of Embodied Agents

    Get PDF
    This thesis presents contributions to the theory and practice of team activity recognition. A particular focus of our work was to improve our ability to collect and label representative samples, thus making the team activity recognition more efficient. A second focus of our work is improving the robustness of the recognition process in the presence of noisy and distorted data. The main contributions of this thesis are as follows: We developed a software tool, the Teamwork Scenario Editor (TSE), for the acquisition, segmentation and labeling of teamwork data. Using the TSE we acquired a corpus of labeled team actions both from synthetic and real world sources. We developed an approach through which representations of idealized team actions can be acquired in form of Hidden Markov Models which are trained using a small set of representative examples segmented and labeled with the TSE. We developed set of team-oriented feature functions, which extract discrete features from the high-dimensional continuous data. The features were chosen such that they mimic the features used by humans when recognizing teamwork actions. We developed a technique to recognize the likely roles played by agents in teams even before the team action was recognized. Through experimental studies we show that the feature functions and role recognition module significantly increase the recognition accuracy, while allowing arbitrary shuffled inputs and noisy data

    Exploiting Opponent Modeling For Learning In Multi-agent Adversarial Games

    Get PDF
    An issue with learning effective policies in multi-agent adversarial games is that the size of the search space can be prohibitively large when the actions of both teammates and opponents are considered simultaneously. Opponent modeling, predicting an opponent’s actions in advance of execution, is one approach for selecting actions in adversarial settings, but it is often performed in an ad hoc way. In this dissertation, we introduce several methods for using opponent modeling, in the form of predictions about the players’ physical movements, to learn team policies. To explore the problem of decision-making in multi-agent adversarial scenarios, we use our approach for both offline play generation and real-time team response in the Rush 2008 American football simulator. Simultaneously predicting the movement trajectories, future reward, and play strategies of multiple players in real-time is a daunting task but we illustrate how it is possible to divide and conquer this problem with an assortment of data-driven models. By leveraging spatio-temporal traces of player movements, we learn discriminative models of defensive play for opponent modeling. With the reward information from previous play matchups, we use a modified version of UCT (Upper Conference Bounds applied to Trees) to create new offensive plays and to learn play repairs to counter predicted opponent actions. iii In team games, players must coordinate effectively to accomplish tasks while foiling their opponents either in a preplanned or emergent manner. An effective team policy must generate the necessary coordination, yet considering all possibilities for creating coordinating subgroups is computationally infeasible. Automatically identifying and preserving the coordination between key subgroups of teammates can make search more productive by pruning policies that disrupt these relationships. We demonstrate that combining opponent modeling with automatic subgroup identification can be used to create team policies with a higher average yardage than either the baseline game or domain-specific heuristics

    Play type recognition in real-world football video

    Full text link
    This paper presents a vision system for recognizing the sequence of plays in amateur videos of American football games (e.g. offense, defense, kickoff, punt, etc). The sys-tem is aimed at reducing user effort in annotating foot-ball videos, which are posted on a web service used by over 13,000 high school, college, and professional football teams. Recognizing football plays is particularly challeng-ing in the context of such a web service, due to the huge variations across videos, in terms of camera viewpoint, mo-tion, distance from the field, as well as amateur camerawork quality, and lighting conditions, among other factors. Given a sequence of videos, where each shows a particular play of a football game, we first run noisy play-level detectors on every video. Then, we integrate responses of the play-level detectors with global game-level reasoning which accounts for statistical knowledge about football games. Our empir-ical results on more than 1450 videos from 10 diverse foot-ball games show that our approach is quite effective, and close to being usable in a real-world setting. 1

    Visual recognition of multi-agent action

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 1999.Includes bibliographical references (p. 167-184).Developing computer vision sensing systems that work robustly in everyday environments will require that the systems can recognize structured interaction between people and objects in the world. This document presents a new theory for the representation and recognition of coordinated multi-agent action from noisy perceptual data. The thesis of this work is as follows: highly structured, multi-agent action can be recognized from noisy perceptual data using visually grounded goal-based primitives and low-order temporal relationships that are integrated in a probabilistic framework. The theory is developed and evaluated by examining general characteristics of multi-agent action, analyzing tradeoffs involved when selecting a representation for multi-agent action recognition, and constructing a system to recognize multi-agent action for a real task from noisy data. The representation, which is motivated by work in model-based object recognition and probabilistic plan recognition, makes four principal assumptions: (1) the goals of individual agents are natural atomic representational units for specifying the temporal relationships between agents engaged in group activities, (2) a high-level description of temporal structure of the action using a small set of low-order temporal and logical constraints is adequate for representing the relationships between the agent goals for highly structured, multi-agent action recognition, (3) Bayesian networks provide a suitable mechanism for integrating multiple sources of uncertain visual perceptual feature evidence, and (4) an automatically generated Bayesian network can be used to combine uncertain temporal information and compute the likelihood that a set of object trajectory data is a particular multi-agent action. The recognition algorithm is tested using a database of American football play descriptions. A system is described that can recognize single-agent and multi-agent actions in this domain given noisy trajectories of object movements. The strengths and limitations of the recognition system are discussed and compared with other multi-agent recognition algorithms.by Stephen Sean Intille.Ph.D
    corecore