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ABSTRACT

This thesis presents contributions to the theory and practice of team activity recognition. A partic-

ular focus of our work was to improve our ability to collect and label representative samples, thus

making the team activity recognition more efficient. A second focus of our work is improving the

robustness of the recognition process in the presence of noisy and distorted data.

The main contributions of this thesis are as follows: We developed a software tool, the Team-

work Scenario Editor (TSE), for the acquisition, segmentation and labeling of teamwork data.

Using the TSE we acquired a corpus of labeled team actions both from synthetic and real world

sources. We developed an approach through which representations of idealized team actions can

be acquired in form of Hidden Markov Models which are trained using a small set of represen-

tative examples segmented and labeled with the TSE. We developed set of team-oriented feature

functions, which extract discrete features from the high-dimensional continuous data. The features

were chosen such that they mimic the features used by humans when recognizing teamwork ac-

tions. We developed a technique to recognize the likely roles played by agents in teams even before

the team action was recognized. Through experimental studies we show that the feature functions

and role recognition module significantly increase the recognition accuracy, while allowing arbi-

trary shuffled inputs and noisy data.
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CHAPTER 1: INTRODUCTION

Humans have the ability to observe, recognize, analyze and occasionally adopt or adapt collab-

orative behavior. Successful team models, such as the Macedonian phalanx, Cromwell’s new

model army or the 4-2-4 formation of the 1958 world champion Brazilian soccer team represented

a formidable advantage against unprepared opponents. Adversaries countered by studying these

models, and either imitated or devised countermeasures against them. In our days, the organi-

zational structures of terrorists groups pose significant challenges to homeland security; we are

fighting an enemy which is organized along different patterns than we expected. Our ability to rec-

ognize teamwork is not restricted to humans: we can identify collaboration in wolf packs, flocks

of birds or airplane formations.

Recognizing teamwork in embodied agents has important applications in areas such as surveil-

lance, training, automated annotation and commentary, as well as improving the ability of robotic

agents to participate in human teams. Most of the time, the teamwork of embodied agents have a

natural expression in coordinated movement. Naturally, teamwork can have many other aspects,

in addition to or replacing coordinated movement; examples are voice commands and wireless

communication. However, the focus of this dissertation, is on recognizing team actions which are

expressed in a coordinated movement pattern of agents with agents playing specific roles in the

team. Examples of teams displaying such patterns are sport teams such as football, basketball or
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soccer, dance groups, pickpockets in action, groups of animals such as wolf-packs, bodyguards de-

fending a celebrity, military units in the battlefield or a MOUT environment, tank units, air squads,

terrorists in a busy marketplace and many others.

In recent years, significant research effort has been directed towards recognizing team actions,

and a general consensus has emerged. It was found that although some team actions can be recog-

nized based on static configuration, for more complex team actions we need to consider the tem-

poral evolution of the agents. Hidden Markov Models (HMMs) are one of the proven approaches

to model temporal evolution of phenomena; indeed, a majority of team action efforts used HMMs

or closely related models. The HMM is a representation of the idealized team action (ITA), which

can be either knowledge engineered (hand crafted) or acquired through learning. These efforts

had shown good recognition accuracy for datasets ranging from simulations to real world data

recorded in controlled settings (such as military exercises). However, the existing systems are too

brittle for most real-world deployments; frequently occurring perturbations can make the system

unable to recognize the team actions it trained for. One additional challenge of the teamwork ac-

tivity recognition is that for most applications, the recognized action needs to be matched with the

human perception of the same action. As embodied team action is a domain where acquiring large

corpuses of annotated data is extraordinarily difficult, the representation of the human perception

cannot be introduced by learning for large number of human classifications; rather it needs to be

engineered in the way in which the features of the classification are extracted.
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This dissertation describes our ongoing efforts to improve the performance of teamwork activ-

ity recognizer systems.

1.1 Problem Statement

The problem addressed in this research is how to accurately and robustly recognize teamwork

activities from spatio-temporal sequences of observations. We limit our recognition system to

embodied agents that exists in the physical world or in a simulation of it. Note that, acts of message

passing, radio communication and speech can be used to recognize and monitor teamwork [GK04].

In this work, however, the focus is on recognizing teamwork in sequences consisting of features

derived from spatio-temporal position traces such as velocity, acceleration, trajectory curvature

and so on that depict the physical motion of the embodied agents in the team.

Most of the literature in this domain focus on representing teamwork in models that are gener-

ated manually using a-priori domain knowledge. In this dissertation, however, focus is on reducing

the knowledge engineering effort by automatically learning teamwork and role models from rep-

resentative observations.

The activity recognition system presented in this dissertation is closely related to the general

problem of key-hole plan recognition. In plan recognition, high-level plans or recipes are recog-

nized using sequences of actions in the symbolic domain. Activity recognition on the other hand

recognize activities/behaviors using low-level observations. Furthermore, activity recognition is
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generally applied to shorter sequences of observations and is therefore less concerned about the

high-level plan that the agents are following.

1.2 Challenges

Let us now see some of the challenges faced by a teamwork activity recognition system, which is

assumed to have a representation of the idealized team action (ITA):

(a) Observation noise.

(b) Alignment problems: translation and rotation of the team actions compared to the ITA.

(c) Scaling problems: the movement of the team members happen at a different physical scale

compared to the ITA.

(d) Temporal scaling: the movement happens slower or faster than in the ITA.

(e) Terrain distortion: the movement patterns are distorted as an adaptation to the particularities

of the terrain, such as obstacles or roads.

(f) Movement variants: the team action has several alternative ways of execution, which map to

the same human label.

(g) Role count variants: teams with different number of agents perform the action with the same

label (for instance n bodyguards surround a person).
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(h) Uncertainty regarding the role of the agents in the team action. An important sub-case is

the agents which appear in the scene but do not participate in the team action (agents in the

bystander role).

(i) Agents changing their roles during the team action.

Different recognizer systems have already addressed at least a subset of these problems. The

problem of observation noise (a) can be addressed by using Kalman or particle filters on the data

stream. The alignment problems (b) can be handled by the normalization of the observations. This

is usually done by transforming the agents into a coordinate system aligned with the centroid of the

team. This, however, can be problematic if the team is not known in advance, as bystander agents

might shift the position of the centroid. Furthermore, for many team actions, the physical centroid

might not be the logical center of alignment of the team. For a team of bodyguards guarding a

celebrity, the location and the movement of the celebrity is the logical center and direction of the

team. Scaling problems (c) can be handled either through normalization or by training several

HMMs for various sizes. To some level, the problem of temporal scaling (d) is already addressed

by the HMM. However, certain movement patterns such as “alternative advance of the two sub-

teams for arbitrary, but equal time” can not be encoded in the HMM, because it would require

historical information, and the Markov property assumes that the evolution of the system does not

depend on its history.

One example of movement variant (f) is the case when a group of agents perform a U-turn

by turning to the left or to the right while maintaining formation. While this maneuver maps to
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the same label, it requires very different movement patterns and role assignments. A simple way

to handle such variants is considering them different actions internally and only labeling them

identically at the user interface level. In other cases, however, the differences are more subtle. One

problem, naturally, is that these variants are labeled identically in training set. Learning techniques

based on unimodal distributions might not be able to accommodate these variants.

1.3 Contributions

The contributions presented in this dissertation are enumerated below.

• We developed a software tool, the Teamwork Scenario Editor (TSE), for the acquisition,

segmentation and labeling of teamwork data.

• Using the TSE we acquired a corpus of labeled team actions both from synthetic and real

world sources.

• We developed a set of team-oriented feature functions, which extract discrete features from

the high-dimensional continuous data. The features were chosen such that they mimic the

features used by humans when recognizing teamwork actions. The specific set of features

address challenges (a), (c), (e) and, to some level (g).

• We developed an approach through which representations of idealized team actions can be

acquired in form of Hidden Markov Models (HMMs) which are trained using a small set of

representative examples segmented and labeled with the TSE.
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• We developed a technique to recognize the likely roles played by agents in teams even before

the team action was recognized. We prefix the actual team action recognition with a role

recognition module, which allows us to present the recognizer with arbitrarily shuffled input,

and still obtain high recognition rates. This component directly addresses challenge (h), and

represent a necessary precondition to address challenges (g) and (i), which, however, are

outside the scope of this thesis.

• We have tuned the performance of the teamwork recognizer through the choice of probability

density functions.

1.4 Applications

Applications that might benefit from our teamwork activity recognition system are listed below.

• Training: A team can be trained by closely mimicking the actions taken by an expert team.

In such a training scenario, the teamwork recognition system can be employed to identify

when and where the learner behavior is deviating from the expert team’s behavior. The

discrepancies can be used to evaluate the performance of the learning team and to provide

important feedback to the team so that weaknesses can be addressed.

• Surveillance: Recognizing enemy activity in battlefields, airport security, border control,

casino surveillance, and traffic monitoring are some of the application domains where team-

work recognition can play an important role in automated surveillance. The overwhelming
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amount of continuous information flow in larger surveillance systems is time consuming

and costly to process. The advantage of teamwork activity recognition, besides automat-

ing the recognition process, is that complicated activities where, for instance, the correlated

movement of people in an airport can be used to recognize possible terrorist activity.

• Smarter Agents: Recognizing teamwork has several applications in the intelligent agent

domain. Opponent modeling is important in, for instance, coaching agents that need to

recognize the actions performed in adversary teams in order to select good countermeasure

strategies. Another interesting application is when smart agents or robots are collaborating

with humans. Here, the robots have to identify the joint actions performed by the human

team so that they can automatically adapt and allocate tasks accordingly.

• Automated Annotation: Teamwork activity recognition can be used in many applications

where large databases need to be annotated or tagged. Annotating databases collected from

military exercises can significantly reduce the amount of time spent in After Action Re-

views. In entertainment, automated annotation can be used as a service in Digital Video

Recorders which would allow the viewer to “catch up” with live broadcasts without missing

highlighted events, such as touchdown plays in football or overtaking in Formula-1 racing,

in the recorded video sequence.
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1.5 Outline

The remainder of this thesis is organized as follows.

In Chapter 2 we conduct a comprehensive literature review of related research.

Chapter 3 focus on the knowledge engineering and data acquisition aspects of training and eval-

uating teamwork activity recognition systems. The chapter present several datasets that are used

to evaluate the methods and algorithms described in this dissertation. Furthermore, we introduce

a knowledge engineering tool designed for visualization, identification, editing and extraction of

teamwork activities.

In Chapter 4 a teamwork activity recognition system is developed and evaluated on a real-world

dataset. During development of this system several shortcomings and challenges emerged that are

systematically addressed in the remaining chapters.

Chapter 5 describes an approach for discrete feature extraction from the original data. The

discrete features were carefully selected to provide a good match with the ways in which a human

observer would understand and analyze the scene; furthermore, we are introducing and emphasiz-

ing features which refer to teams as a whole, rather than individual agents.

Chapter 6 describes a role recognition system, which allows the workflow to recognize the

likely role of the agent which it would play in a certain team action.
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Chapter 7 describes a study where the goal is to tune the performance of the teamwork recog-

nizer by the choice of probability density functions.

Finally, we conclude and present future works in Chapter 8.
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CHAPTER 2: BACKGROUND

This chapter discusses related work on teamwork activity recognition, multi-agent plan recognition

and role recognition.

2.1 Teamwork and Multi-Agent Activity Recognition

Many teamwork activity recognition systems were developed for domain specific applications such

as play recognition in football [IB01, LMZ05, LS01], automated commentary in soccer [HV99,

VAH99, NTM04, VAC06], opponent modeling [KKS06, RVK02] and military [SS06a, SS06b].

These systems were characterized by their ability to recognize teamwork activity in short observa-

tion sequences, where the input observations consisted of low-level features such as agent position

traces, velocity, acceleration and so on. In the following we review work where Bayesian networks

and Hidden Markov Models were used to model teamwork action. We also present several related

teamwork/multi-agent recognition systems which were used in domain specific applications.

2.1.1 Recognizing Team Actions with Bayesian Networks

Intille et. al. [Int99, IB01] developed and evaluated a system for recognizing multi-agent activities

(plays) in American Football. Temporal logic and high-level descriptors were used to encode
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football plays in Bayesian networks and promising recognition results were shown on a real-world

dataset acquired from 10 different football plays. The extensive knowledge engineering effort that

was required to represent the plays limited the practical use of this recognition system.

Sukthankar et. al. [SS06a] employed Hidden Markov Models to recognize spatio-temporal

teamwork activities from simulated teams in the Military Operations in Urban Terrain (MOUT)

domain. The recognizer, which consisted of one separate HMM for each teamwork activity, was

manually configured through knowledge engineering techniques. The observation vector, which

was fed as input to the recognizer, consisted of the normalized position and velocity measurements

of each agent in the team. The experimental results showed that the HMM paradigm was able

to accurately discriminate between three behavioral patterns executed by teams of two agents. In

follow-up work Sukthankar et. al. [SS06b] developed the STABR algorithm for simultaneous team

assignment and behavior recognition. The STABR algorithm used template matching to identify a

set of candidate team assignments from the spatial relationships of independent agents. Candidates

that did not follow any of the pre-defined, parametric, behavior models over a period of time were

filtered out. The STABR algorithm was evaluated, with good performance, for teamwork behavior

recognition in a simulated military domain.

Liu et. al. developed the Observation Decomposed Hidden Markov Model (ODHMM) for

multi-agent activity recognition [LC03]. In ODHMM the observations were separated into sub-

observations which represented the individual features associated with each agent. Hence, instead

of a single high-dimensional observation vector, a set of low-dimensional observation vectors (one
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for each agent in the team) were used as input to the recognition system. Experimental results

showed that the ODHMM outperformed the standard HMM on an artificially generated dataset.

In a recent study by Vail et. al. [VVL07] Conditional Random Fields (CRF), which are related

to HMMs, were employed for activity recognition. Results showed that CRFs can outperform

HMMs for activity recognition in a simple test scenario. One drawback of the CRF approach was

that it required significantly more training time as compared to the HMM approach.

2.1.2 Automated Commentary

Many automated annotation systems were developed in the context of the RoboCup competition.

Han and Veloso [HV99] employed a probabilistic method to recognize behavior using recordings

from RoboCup games. The recognizer was used as a soccer commentary system and it improved

the behavior of the robotic soccer players (by making them able to adapt and make decisions based

the behavior of the opponents).

In [VAH99] a commentary system, named Rocco, was developed for the RoboCup soccer

competition. Rocco used an elementary set of predicates to describe the game state at a single

point in time. An ensemble of 15 event templates were generated by combining the predicates

to broadly cover the events that can occur in a soccer game. Automatic commentary (in text and

speech form) were generated using template matching methods which identified the events as they

were played in the soccer game.
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In similar work, Nair et. al. [NTM04] developed ISAAC, an automated team analysis tool

for RoboCup competitions. ISAAC was also evaluated using a simulated emergency evacuation

scenario.

In [VAC06] a team of humanoid game commentators were developed to annotate the events

in a robotic soccer game. The team consisted of two robots that coordinated their announcements

based on input observations from vision processing and from wireless communication.

2.1.3 Computer Vision and Content-Based Retrieval

Computer vision research have for some time observed a gap between low-level video processing,

such as segmentation, geometry detection and object tracking, and high-level detection of events

in video sequences. In an attempt to bridge the gap Hakeem et. al. [HSS04] developed an event

grammar that was able to express multi-agent temporal events with hierarchical dependencies.

Predefined event templates, based on spatial coordinates, were used with a similarity measure

(the Jaccard coefficient) to detect matching events in video sequences. A follow-up work [HS05]

employed a combination of probabilistic and graph based methods to detect events in video.

Content based retrieval systems faced many of the challenges discussed in teamwork activity

recognition. In fact, teamwork activity recognition can be directly applied in many content based

retrieval systems. For instance, Liu et. al. [LMZ05] developed a content based retrieval system

for American football. The system detected football plays in recorded sequences of video which

allowed the viewers to efficiently watch only the highlights of the game. The implementation em-
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ployed computer vision techniques for motion tracking and scene geometry extraction. A cascade

of Ada-Boost classifiers were trained to ultimately recognize the plays.

In earlier content based retrieval systems the Hidden Markov Model was applied to extract

highlights from video recordings of baseball and sumo wrestling sporting events [LS01].

Petkovic et. al. [PMJ02] described a system performing highlight extraction and content based

retrieval using TV broadcasts of Formula-1 races. Their implementation employed a Dynamic

Bayesian Network classifier. A multimedia database was created from three different information

sources: speech, video and superimposed text. Queries for video sequences, such as “Retrieve all

sequences where Räikkönen is in first position and Alonso is in second position”, were executed

by applying the classifier to the database. Results showed that 80% of the interesting race events

(highlights) were detected using the speech and video cues.

2.1.4 Coaching and Opponent Modeling

Riley et. al. [RVK02] developed a coaching agent for robotic soccer. The coaching agent provided

advice to the team by analyzing the opponent from recorded log-files of previously played games.

While playing against an opponent team, the coach was able to recognize formations and roles

(defender, midfielder, attacker) which were used by the coach to either advice its team to imitate the

opponent or to direct its defenders to mark specific attackers. The coaching agent also learned a set

of rules which defined the passing game of the opponent. These rules were used to predict where
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the ball holder was most likely to pass the ball. Experimental results showed that the coaching

agent improved team performance.

In [KKS06] Kuhlmann et. al. developed another soccer coach which modeled the opponent

from previously recorded games in order to identify and exploit weaknesses in the adversary team.

Their implementation also identified the formations of opponents teams. In addition play-by-play

statistics such as shots on goal, passes and directed kicks were employed by the coach to advice its

team.

2.1.5 Teamwork Recognition by Overhearing

Unlike the previously described approaches, which use low-level observations of physical motion,

the overhearing approach recognizes teamwork by listening to the (social) conversation between

agents in the team. Overhearing is employed in teamwork monitoring applications where the goal

is to determine whether the team is progressing towards its joint goal or not [GK04]. Overhear-

ing systems were also developed to perform complex tasks such as teamwork plan recognition

[KPT02], building and maintaining group formations [LT03] and role recognition [RB04].

2.2 Multi-Agent Plan Recognition

In multi-agent plan recognition the task is to analyze sequences of activity to infer high-level plans

or recipes. The multi-agent plan recognition systems can be either intentional or key-hole [Kau90].
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In the intentional case the agents are deliberatively showing their intentions to the observer whereas

in the key-hole case the agents are unaware of the observer. Key-hole multi-agent plan recognition

is related to teamwork activity recognition. However, instead of using low-level input over short

periods of time, the plan recognizer generally infer plans using high-level symbolic input extracted

over longer periods of time. In this section we review work from the multi-agent (key-hole) plan

recognition domain.

In [KPT02] Kaminka et. al. developed a novel method to monitor teamwork by inferring

the team’s state using a probabilistic multi-agent plan recognition system. Plans were recognized

by observing to the social communication patterns exhibited by the agents. The plan recognition

module was sufficiently fast to allow for real-time execution.

In [Suk07] a method was developed to recognize teamwork plans in dynamic teams by main-

taining multiple hypotheses of team behaviors. The plan recognition system used node traces from

pre-defined plan-trees as input to recognize the high-level goals of the team. The system was

evaluated in a large scenario consisting of 100 agents and 40 simultaneously executing plans.

Tambe [Tam96] developed the RESCteam approach (an evolution of RESC [TR95] used for

single agent tracking) specifically designed for real-time teamwork tracking. In RESCteam higher-

level goals and joint intentions of teams were tracked using team models (which consisted of

team states and team operators). The system was evaluated in synthetic environments involving

helicopter simulation and fighter combat.
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2.3 Role Recognition

Role recognition can provide insightful cues about teamwork activities which in turn can be used

by the teamwork activity recognizer to improve robustness and recognition accuracy (See Chapter

6). In the following we review work where role recognition methods were employed to identify

team-organization.

In multi-agent systems such as STEAM [Tam97] and Machinetta [TZ98, SOM05] a signifi-

cant manual knowledge engineering effort was required to create team-plan hierarchies and team-

organization hierarchies to model team behavior. To reduce the knowledge engineering effort,

Prasad et. al. [PLL96] developed the L-TEAM framework which used a machine learning ap-

proach to infer team-organization hierarchies from observations. The team-organization knowl-

edge allowed agents in the framework to automatically negotiate which role to play given the task.

In [RB04], Rossi et. al. proposed an approach for recognizing social roles of agents in a team

using rule based systems. Social roles are assigned to agents by an overhearing agent that senses

the communication between all agents in the team. The overhearing system was successfully

validated against artificially generated organizations that followed well known protocols.

In [GBC02], Guessoum et. al. develop a fault tolerant multi-agent framework where the most

critical agents were recognized and replicated. The criticality was determined by recognizing

activities and roles of each agent in the multi-agent system. Similarly to overhearing, roles were
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assigned to agents by feeding a recognizer with sequences of communication and social interaction

between agents.
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CHAPTER 3: TEAMWORK DATA ANALYSIS AND ACQUISITION

In this chapter we describe the datasets which were used to train and validate the teamwork ac-

tivity recognizer presented in this thesis. In Section 3.1 we describe the general characteristics of

teamwork patterns. In Section 3.2 the domain specific movement patterns of military teams are

described. In Section 3.3 we introduce a knowledge engineering tool that was developed specifi-

cally to visualize, identify and extract training and validation datasets from the recorded datasets.

The general data format that was used to represent the actions of embodied agent is described in

Section 3.4. Finally, in Section 3.5 we present two datasets that were collected from two separate

real-world military exercises. The first dataset was recorded in a large-scale warfare exercise con-

sisting of hundreds of soldiers and tanks over a three-day period. The second dataset was generated

at the Ft. Polk and Ft. Benning training centers in a small-scale urban exercise. Furthermore, we

describe a simulation environment which can be used to generate artificial datasets from agents

competing in a foraging game.

3.1 Teamwork Patterns

The teamwork activity recognition system described in this thesis annotates observations by rec-

ognizing team actions based on a library of patterns. In many application domains these patterns

are prescribed. That is, external rules force the agents to act in predetermined ways. This is the
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case for many sports such as American football, soccer or basketball, for dance groups, for the

movement of firefighters in a building, and for the movement of rescue teams. Military tactics

in various environments (battlefield, urban environment, naval or air operations) also described

specific patterns. In this case, the knowledge engineering work of extracting teamwork patterns is

made comparatively easy by the fact that the patterns are documented by training manuals, military

doctrine or other similar documents.

In addition to prescribed patterns, many application domains show emergent patterns which

are the result of the physical or psychological interaction between the participants. Examples are

the lines which form when people move on narrow corridors, the specific formations emerging in

crowded places with multiple interest points such as markets or museums or the flying patterns of

cranes. In these cases, no prescriptive description of the movement patterns is available, so the

knowledge engineer needs to work from the observations.

One difficulty in acquiring the teamwork patterns is that even when descriptions of the team

patterns exist, their format is usually natural language and diagrams intended for human reading,

which are not suitable for immediate application by a recognition engine. One approach is to

translate the natural language description (and the associated diagrams) and encode them into the

format of our recognizer (which is the approach taken in [SS06b, SS06a]). Alternatively, we can

use the specifications to identify representative occurrences of the specific teamwork patterns in

our observations, and use these sequences to train our recognizer, which is the approach taken in

this thesis.
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3.2 Military Movement Tactics

In the following, we succinctly summarize the teamwork patterns in our application domain, mil-

itary movement tactics for battlefield and urban operations. Although the characteristics and fea-

tures of units such as tanks, infantry carrier vehicles (ICV), mobile gun system (MGS) vehicles and

infantry are under constant development, the fundamental movement tactics remain unchanged.

3.2.1 Movement Techniques

A military team uses different movement techniques based on the battlefield context. The team

leader selects the appropriate tactics by estimating the possibility of enemy contact, the expected

type of contact, the availability of an overwatch unit, the characteristics of the terrain, and the

required speed and security. The main movement tactics are: 1) Traveling, 2) Traveling overwatch,

and 3) Bounding overwatch (with either alternating or successive bounds).

Traveling

Traveling is used when contact or conflict with enemy is not expected and high movement speed

is desired. It is characterized by concurrent movement of all units in the team.
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Traveling Overwatch

Traveling overwatch is used when it is possible to engage in contact with enemy. It maintains

a balance of speed and security. It is characterized by continuous movement of a lead unit and

alternating advancements of trailing overwatch units. The trailing units may come to complete

stops to provide suppressive fire if enemy is detected.

Bounding Overwatch

Bounding overwatch is used when enemy contact is likely. It favors security over speed and is char-

acterized by an overwatch unit that is able to suppress enemy fire at all time. There are two types

of bounding overwatch. In the alternating bounds approach, the bounding unit moves forward and

is protected by an halted overwatch unit. When the bounding unit reaches the overwatch unit’s

protection range the overwatch unit becomes the bounding unit and the bounding unit becomes

the overwatch unit. This cycle continues until the destination is reached. In the successive bounds

model the overwatch unit and the bounding units retain their roles throughout the movement.

3.2.2 Movement Formations

Movement tactics are used in combination with movement formations to facilitate various tactical

needs such as increased flank protection or heavy fire support. The formations differ in security,
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control, speed and fire power direction. The formations are chosen based on type of mission,

enemy positions, terrain, weather conditions, speed and flexibility.

Column Formation

Column formation is based on a leader followed by the rear units, and is used when fire power is

needed in all directions (flanks, front and rear). The column formation is efficient for fast traveling

while still allowing ease of formation change. For instance a team in column formation can easily

form an echelon formation, hence reinforcing flank and front fire power if needed. The formation

is easy controlled by a commander since rear units are following a leader unit. Figure 3.1 illustrates

the column formation.

A1

A2

A3

A4

A5

A1A1

A2A2

A3A3

A4A4

A5A5

Figure 3.1: Column formation.
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Line Formation

Line formation is used when heavy fire power is needed in the front. The downside of this for-

mation is that fire power in the rear and flanks are weak. The formation is difficult to control

because the team leader needs to synchronize the speed of the team members to maintain the line.

In addition, transforming to other formations from the line formation is cumbersome. Figure 3.2

illustrates the line formation.

A1 A2 A3 A4 A5A1A1 A2A2 A3A3 A4A4 A5A5

Figure 3.2: Line formation.

Wedge Formation

Wedge formation is used when fire power is needed in front and on the flanks. The wedge formation

is relatively easy to control, and it can easily transform into a column or echelon formation. Figure

3.3 illustrates the wedge formation.

A1

A2 A3

A4 A5

A1A1

A2A2 A3A3

A4A4 A5A5

Figure 3.3: Wedge formation.
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Vee Formation

Vee formation has two groups of units in the front, one unit group in the center and one unit group

in the back. The vee formation provides good fire power in the front. The center and back units

either perform overwatch or trail the front units. This formation is difficult to control and slow

in speed. The main benefit of using this formation is that if attacked from any flank it is possible

to counter attack with two groups and maneuver at least one group. Figure 3.4 illustrates the vee

formation.

A1 A2

A3

A4

A1A1 A2A2

A3A3

A4A4

Figure 3.4: Vee formation.

Echelon Formation

Echelon formation is used if enemy contact is expected in the front or on one of the echeloned

flanks. This formation is used when one of the flanks is secured by obstacles or other friendly

units. The formation is difficult to control and therefore also slow. Figure 3.5 illustrates the echelon

formation.
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A1

A2
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A4

A5

A1A1
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A4A4

A5A5

Figure 3.5: Echelon formation.

3.3 Teamwork Scenario Editor

Recording the teamwork of embodied agents results in relatively large data collections. Identifying

and extracting representative examples from such large database can be a tedious and time consum-

ing knowledge engineering task. For instance, one has to identify which team members contribute

to the team behavior as well as where the representative example of interest starts and ends in

time. In addition, the same teamwork behaviors can be performed by different team constellations

further complicating the identification process. We have developed an interactive application for

the editing and manipulation of recorded observations which simplifies the identification and ex-

traction of representative examples used for training of the teamwork activity recognition system.

The workflow of the application is inspired from video editing applications, but instead of a single

stream of video information, it allows the editing of the observation streams coming from a large

number of agents. As the geographical area covered by the observations can be very large, the

applications allows us to zoom in to a specific area, select the agents of interest and replay specific
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actions at various speeds or step by step. The application allow the tracking of the trajectories of

the selected agents and export the movement traces. Using the application we can find and isolate

the representative examples, which can be exported to the teamwork activity recognition system

for direct input to the training algorithms that learn models of teamwork activity.

The teamwork scenario editor is used to simplify editing and visualization of data stored using

the Teamwork Data Format (see Section 3.4). Figure 3.6 is a screenshot of the teamwork scenario

editor visualizing tanks in a real-world warfare exercise dataset.

The application is able to perform bookmarking and sequence extraction to generate train and

test datasets for the teamwork activity recognition system. The extracted sequences can also be

warped or transformed by scaling, rotation and/or distortion operations. The transformed se-

quences can, for instance, be used to validate whether or not the teamwork activity recognition

system is invariant to its features.

3.4 Teamwork Data Format

During the course of this work we evaluated our methods using datasets from several external

data sources that were represented in different formats. To simplify the knowledge engineering

effort we have converted these data sources into the Teamwork Data Format which is used in the

Teamwork Scenario Editor for visualization and extraction of training and validation datasets.

The Teamwork Data Format was designed to encapsulate the following characteristics of ac-

tions performed by embodied agents from recorded teamwork activities:
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Figure 3.6: Screenshot of the teamwork scenario editor. The main area visualizes the selected
geographical area, with the location and motion traces of the agents. The labels indicate short
descriptions of the major parameters of the agents. The video editor-type controls are on the
toolbar. The left hand panel allows the selection of agents, teams and actions, and contains controls
for the marking and saving of selected observation subsets.
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• Location. Each agent has a location in X, Y and Z1.

• Orientation. The orientation of each agent is encoded by Yaw, Pitch and Roll.

• Velocity and acceleration.

• Team memberships.

• Roles.

In Figure 3.7 we present a relationship diagram that describes the tables and their relationships

in the Teamwork Data Format.

3.5 Teamwork Datasets

Many of the applications in the teamwork recognition domain are based on activities from the

real-world. Hence, it is important that the teamwork recognition system presented in this thesis is

evaluated using real-world datasets. From a machine learning perspective real-world datasets are

the most challenging datasets to learn, generalize and/or classify for the following reasons. First,

real-world datasets have limited amount of examples available for training and validation. Second,

the data is usually noisy due to precision errors in reporting devices, sensors and receivers.

1Datasets that use GPS coordinates can easily be converted to our format using UTM grid conversion software.
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Figure 3.7: Relationship diagram of teamwork data format.

3.5.1 Warfare Exercise

This dataset was acquired from a real-world recording of a large-scale warfare exercise [FGE06].

The data, which was collected over several days, stem from multiple tanks and soldiers acting in

a real-world environment. To extract the representative examples necessary to train the teamwork

recognition system, we had chosen data from eight tanks forming two competitive platoons. The

exercises are set up such that the platoons will make unanticipated contact. The tanks are equipped

with global positioning system (GPS) devices, laser range finders (LRF) and laser range detectors
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(LRD). The tanks simulate guided missile and large-caliber gun fire attacks using laser technology.

The inflicted damage of an attack is determined using prior knowledge about the type of rounds

fired as well as the impact point on the target tank. The LRFs are used to lock in on target tanks,

while the LRD unit detects the origin of an incoming LRF.

All events during the warfare exercise were recorded in a database. Five event types were used

to describe the actions that were performed by the actors in the exercise: The state event, which is

used to report position, orientation, velocity and status of the actor was issued on a timeout basis

for each actor in the exercise; The fire event was issued when one actor attacked another actor. The

type of firearm and ammunition is recorded in the event; The hit event described the impact the

attack on the target actor; The detonation event was used to describe the location and outcome of a

detonation; Finally, the LRF event was used to store information about LRF usage in the exercise.

Using the Teamwork Scenario Editor, we extracted representative examples for the following

teamwork behaviors: 1) Column formation traveling; 2) Line formation traveling; 3) Box (com-

bined line and column) traveling; 4) Team split; 5) Team merge; and 6) Bounding overwatch. The

details of these activities were described in Section 3.2. In this dataset, the bounding overwatch

movement was executed as follows. After all four tanks come to a stop, the team splits so that

two tanks advance while the other two tanks keep their position. When advancing tanks stop, the

previously halted tanks start their advance. Sample movement patterns extracted from the dataset

are shown as trace plots in Figure 3.8.

32



(a) Traveling line (b) Bounding overwatch

(c) Traveling box (d) Team merge

(e) Traveling column (f) Team split

Figure 3.8: Movement pattern traces. Arrows illustrate direction of the team.
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Figure 3.9 show a snap-shot, using a dataset visualizer, of the warfare exercise. The image show

four tank models operating in wedge formation in the environment. Tank models are superimposed

on top of aerial photographs.

Figure 3.9: Screenshot visualizing a platoon consisting of four tanks in the real-world warfare
exercise dataset. The billboards on the horizon mark the locations of the tanks of the enemy
platoon.

3.5.2 Military Operations in Urban Terrain Exercise

This dataset was collected from exercises in the Military Operations in Urban Terrain (MOUT)

domain. The recordings were generated at the Ft. Polk and Ft. Benning MOUT training centers.

In addition to the real-world soldiers a set of artificially generated soldiers were added to the

dataset using the OneSAF Testbed Baseline Semi-Automated Forces (OTBSAF) software which
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was designed for training, experimentation and analysis of military exercises with interacting real-

world and artificial soldiers.

The MOUT exercise in this recording consisted of a hostage scenario where a group of terrorists

have captured a group of civilians. The terrorists are hiding in an unknown location in the city.

The objective for the soldiers in this exercise is to locate the terrorists, approach, systematically

eliminate the threats and finally free the hostage. The exercise was repeated multiple times in clear

daylight conditions, when it is raining and at night-time.

Figure 3.10 shows the OTBSAF software loaded with maps of the Ft. Polk and the Ft. Benning

training centers.

3.5.3 The Feed-Fight-Multiply Game

Artificial datasets can be automatically generated using a simple gaming environment named Feed-

Fight-Multiply (FFM). FFM reflects many of the challenges encountered by agents in the real

world and provide multiple paths to success which are desirable features of an artificial environ-

ment. The FFM environment is implemented in the Java based YAES simulation environment

[BT05].

Twelve autonomous agents, implemented in twelve different paradigms of agency, have been

evaluated in [BLE07]. Seven out of the twelve paradigm implementations employed teamwork

strategies. In choosing the paradigms the authors strived to maintain a balance between high level,

logic based approaches and low level, physics oriented models; between imperative programming,
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(a) Ft. Polk.

(b) Ft. Benning.

Figure 3.10: Screenshot of OTBSAF showing the Ft. Polk and the Ft. Benning training sites.
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Table 3.1: Concise description of the twelve implemented agents

Name Paradigm Paradigm
cover-
age

Team-
work

Offline
learn-
ing

Realtime
adapt.

AffectiveAgent Affective model, anthropomorphic
lifecycle

Limited No No Yes

GenProgAgent Genetic programming Full Yes Yes No
Reinforcer Reinforcement learning Full Yes Yes No
CBRAgent Case based reasoning Full No Yes Yes
RuleBasedAgent Forward reasoning Full Yes No No
Naı̈veAgent Naı̈ve programming (scripting) Full Yes No No
GamerAgent Game theory Limited Yes No No
CrowdAgent Particle based crowd modeling Limited Yes No No
NeuralLearner Backpropagation neural networks Full No Yes No
SPFAgent Social potential fields Limited Yes No No
CxBRAgent Context based reasoning Full No No No
KillerAgent Minimal heuristic Full No No No

declarative approaches and “learning from basics”; between anthropomorphic or biologically in-

spired models on one hand and pragmatic, performance oriented approaches on the other. The

implemented agents are concisely described in Table 3.1.

The Feed-Fight-Multiply game borrows elements from turn-based multi-player strategy games

and artificial life. Agents are moving in a two-dimensional environment having accessible zones

and obstacles. The agents can sense the environment within the range of their sensors. Food

resources appear at random points in the environment; consuming food increases the energy level

of the agents. Agents can attack each other, by destroying an agent, the attacker gains access to its

resources. Finally, agents can multiply by (non-sexual) reproduction. Figure 3.11 summarizes the

possible actions of the agents in the FFM game.
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Instead of keeping a single score, FFM records multiple parameters of the agent behavior. This

means that not only there are multiple paths to success, but the final goals of the agents could be

different as well. Of course, all agents are required to work towards their survival, but besides that,

the criteria for success could be maximum amount of resources gathered, survival on minimum

amount of resources, largest number of agents killed, number of individual agents of the same type

at the end of the game, or others. Figure 3.12 shows a typical FFM game in progress.

A FA

A O

A

A'

A

A O

Move (N,S,E,W) Feed Multiply

Attack Flee

Energy
Energy Energy

EnergyEnergy
Energy

Figure 3.11: The possible actions of the agents in the Feed-Fight-Multiply game.

38



Figure 3.12: Screen-shot of the Feed-Fight-Multiply environment.
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CHAPTER 4: TEAMWORK ACTIVITY RECOGNITION

In this chapter we describe an approach to recognize team actions from the observations of the

movement of agents in the field. The basic model presented in this chapter will be extended in

Chapter 5 with team-oriented feature extraction and in Chapter 6 with a role recognition module.

Our starting point is a recording of the geometrical positions and orientations of the agents in a

scene containing obstacles and various types of terrain. Such recordings are regularly done in mil-

itary exercises where all the participants (soldiers, MGSs, ICVs) carry GPS units. For sport teams,

this information can be hand-extracted from videos [IB01]. For many other domains, computer

vision techniques can be deployed to extract such scene information.

Our approach is based on recognizing teamwork patterns based on the library of movements,

encoded as Hidden Markov Models. The HMM is a representation of the idealized team action

(ITA), which can be either knowledge engineered (hand crafted) or acquired through learning. Our

work builds upon previous work by Sukthankar and Sycara [SS06b, SS06a], and extends it with

the ability to dynamically acquire new teamwork patterns based on representative examples. We

use a dataset representing a real-world terrestrial warfare exercise (see Section 3.5.1), and consider

teamwork patterns commonly specified in military doctrines as described in Section 3.2. The

approach can be naturally extended to other domains where teamwork is expressed and can be

recognized from the coordinated movement patterns of the embodied agents.

40



4.1 Pre-processing Observations

An observation sequence of length T is denoted by VT and consists of observation vectors, or

feature vectors, indexed by time, t, as:

VT = {v1, . . . vt . . . , vT }

where vt represents the visible observation v at time step t. The features selected for the observation

vector vt are dependent on the application domain.

In our domain of embodied agents, the sources of the observation data are the GPS readings of

the individual agents (latitude, longitude), which we transform into x and y coordinates according

to the UTM (Universal Transverse Mercator) grid. Thus, given a team of four agents at time t we

observe 8 features: vt = {x1,t, y1,t, x2,t, y2,t, x3,t, y3,t, x4,t, y4,t}, where x1 and y1 depict the x and y coor-

dinate of the first team member. To improve the ability of our recognition system to generalize over

observations taken at different locations, scales and orientations, we start our recognition process

by normalizing the observations. The normalization process starts by translating the observation

sequence such that its centroid, C, coincides with the origin.

C =



cx

cy


=



∑T
t=1

∑N
n=1 xn,t

T ·N
∑T

t=1
∑N

n=1 yn,t

T ·N



where N is the number of agents in the team.
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In the second step we align the observation sequence to an axis by rotating with the value of

the observation sequence orientation θ. θ is the angle between the last (t = T ) observation vector

and the first (t = 1) observation vector, and it can be calculated with the following formula:

θ = arctan
(∑N

n=1 yn,T − yn,1∑N
n=1 xn,T − xn,1

)
(4.1)

The rotation of the observation sequence is performed according to the rotation matrix:

R =



cos(θ) sin(θ)

−sin(θ) cos(θ)



Finally, we need to consider the problem of recognizing a observation sequence even if the

observations are scaled (with a limited range of scaling factors). This is achieved by including

team behavior observations at different scales in the behavior modeling (training) process. The

scales are carefully chosen based on the application domain so that up-scaling and down-scaling

does not disturb team behavior semantics.

4.2 Modeling Idealized Team Actions with Hidden Markov Models

We have used Hidden Markov Models (HMM) to model the spatial and temporal relationships of a

specific teamwork pattern, such as traveling overwatch or bounding overwatch. A HMM consists

of n hidden states, where the hidden states are denoted by ω = {ω1, . . . , ωn}. Let us denote with
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P(ω j(t + 1) | ωi(t)) the transition probability, that is, the probability that the state of the HMM at

time t + 1 will be ω j if at time t it was ωi. The parameters determining the HMM are:

1. Transition probabilities,

A = {αi j}, where αi j = P(ω j(t + 1) | ωi(t))

2. Emission probabilities,

B = {β j(v)}, where β j(v) = P(v | ω j(t))

3. Initial probabilities,

π = {πi}, where πi = P(ωi(t))

Thus, we can model a team behavior as θ = {A,B,π}. One way of relating A and B to a team

behavior is to think of it as a model of the team’s mental and physical state respectively [HV99].

Figure 4.1 illustrates a HMM with three hidden states, each with a continuous probability density

function (PDF) representing emission probabilities (β j(v)). The indexes i and j denote the hidden

states and v denotes the observed visible state. We model the emission probabilities using the

general multi-variate normal density:

β j(v) =
1

(2π)d/2|Σ|1/2 exp
{
−1

2
(v − µ)tΣ−1(v − µ)

}
(4.2)

where µ is the mean vector, Σ is the covariance matrix and d is the dimensionality of v. µ and Σ

are estimated using maximum-likelihood methods on training data.
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Figure 4.1: A HMM model with three hidden states, αi j transition probabilities and β j(v) emission
probabilities.

The model of a team behavior θ = {A,B,π} can be created through knowledge engineering,

translation from other representations or learning.

Knowledge engineering is the manual creation of the model based on interviews with experts,

natural language descriptions or direct observation of recordings. This is the approach taken in

[SS06b, SS06a]. Unfortunately, the hidden nodes of the HMM do not necessarily correspond to

states for which we have a good intuition, making the manual assigning of probabilities a difficult

task. Therefore, the knowledge engineering of the models is a difficult, time consuming process,

requiring significant expertise and several trial and error iterations. At every iteration we need to

verify the models’ recognition ability against representative test samples.

An alternative approach is to generate the model from existing representations. For instance, if

the problem domain contains only autonomous robots with known programs, it is possible to derive

the HMM model from the control programs of the robots. Unfortunately, this method is not feasible

for human participants or embodied agents for which the control program is not readily available.
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In general, the available descriptions of team actions, such as military doctrine or the diagrams of

sport team coaches, typically require significant background and common sense knowledge, and

thus, their automatic translation to HMM is difficult.

Finally, the third approach, taken by the work presented here, is to learn models from a set

of representative examples of teamwork actions. This requires us to first manually annotate the

occurrence of specific team actions in our observations1. We’ve employed two separate learning

algorithms: Baum-Welch [BPS70]; and Segmental K-Means [JR90]. The two algorithms differ in

the choice of optimization criterion employed. Baum-Welch optimizes θ such that P(VT | θ), that

is the probability that a VT was generated by θ, is maximized. Segmental K-Means optimizes θ

such that P(VT , I | θ) is maximized, where VT is a sequence of observations and I is the optimum

hidden sequence as given by the Viterbi decoding algorithm [For73]. In Appendix A we describe

the learning algorithms in detail.

Figure 4.2 shows an overview of the full workflow of teamwork annotation (we will show an

extended version of this workflow in Chapter 6). An external database of observations is imported

into the teamwork scenario editor where visualization and identification of teamwork activities

result in a set of representative examples which will be used as training and validation data. The

training and validation data is exported to the teamwork annotation framework where teamwork

behavior models are generated through the automatic learning process described in the previous

section. The library of teamwork behavior models is then used by the classifier to annotate a real

time data stream of observations.
1This step is necessary even in the case of knowledge engineered models for verification purposes.
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Figure 4.2: An overview of the teamwork annotation workflow. The external observations are
edited in the teamwork editor application, resulting in a set of representative examples for training
and validation data. The learning process in the teamwork annotation framework uses these exam-
ples to generate a library of behavior models. This library is used by the classifier to annotate a
real time data stream of observations.

4.3 Behavior Classification

The library of the team behaviors is used to continuously check whether the currently observed

behavior of the agents matches one of the patterns. This process, called behavior classification,

annotates the observations with the recognized team action. Given a behavior model θ we calculate

P(VT | θ) recursively using the forward evaluation algorithm.

P(VT | θ) =

n∑

i=1

ρT (i) (4.3)
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ρt+1( j) =



π jβ j(vt+1) if t = 0

β j(vt+1)
∑n

i=1 ρt(i)αi j otherwise

Figure 4.3 illustrates a trellis unfolding [DHS00] of the HMM from Figure 4.1. In the trellis,

vertices represent ρt+1( j) and directed edges show how the summation should be performed if t , 0.

The probability values of the trellis vertices at t = T are accumulated to form the final evaluation

probability. The output of the classification is the behavior model with the maximum evaluation

probability.

ω2

t= 0 1 2 T…

ω3

ω1

v1 v2 v3 vT+1

ρt+1(j)

Figure 4.3: HMM trellis unfolding.

4.4 Dataset Acquisition

One of the problems faced by all efforts similar to ours is the scarcity of data which can be used to

train and test our observations. Our group was fortunate to have a large, real world dataset covering

military operations over three days and an area of over 100 km2 (see Section 3.5.1). Nevertheless,

even with a dataset of this size, there are a relatively small number of examples of each teamwork
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action2. For a better testing of our algorithms, we used as testing data not only unmodified real

world recordings, but we created additional, semi-artificial data generated from the real world data

through a series of distortion operations. The elementary operations performed on the real world

data VT were rotation, scaling and addition of noise. We generate 20 test sequences from every

real world recording by applying these operators with random parameters. Table 4.1 summarizes

the number of observation sequences and observation vectors for the train and validation data.

Table 4.1: Warfare dataset summary depicting number of observation sequences that were used
during training and testing. Also, the total number of observation vectors within the sequences are
shown for train and test data.

Behavior Train seq. Test seq. Train obs. Test obs.
Bounding overwatch 6 40 651 4340
Team split 15 100 453 3020
Traveling line 9 60 345 2300
Traveling box 9 60 273 1820
Team merge 9 60 282 1880
Traveling column 12 80 342 2280

4.5 Teamwork Activity Recognition Accuracy

The accuracy of the teamwork activity recognition is calculated using the cross-validation proce-

dure. The accuracy is represented by the fraction of successful classifications (in a range from 0 to

1).
2Note that in every military operation, long periods of relative inactivity (for instance, traveling without enemy

contact) are alternating with bursts of action.
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Table 4.2 shows the accuracy numbers in the function of the number of hidden states for the

two learning algorithms. The same number of hidden states were used for all the samples. The best

overall result was obtained by the segmental K-Means algorithm using 4 hidden states, yielding a

0.8244 rate of successful classifications. The Baum-Welch algorithm peaks when 3 hidden states

are used for each HMM, with a performance number of 0.7865. The average training time, using

a 1.8GHz processor, was 5.1158s for the Baum-Welch algorithm and 0.5596s for the Segmental

K-Means. Although we find the K-Means algorithm to be approximately 9 times faster than the

Baum-Welch algorithm, the time necessary to prepare the representative training examples is sig-

nificantly longer than these numbers. Thus, in a practical deployment, a good choice would be to

train patterns using both algorithms and choose the ones giving the higher recognition accuracy.

Another statistics of interest is the classification accuracy for every type of teamwork behavior

Table 4.3. The teamwork behavior library used was the one generated by the Segmental K-Means

learning algorithm with 4 hidden states. We notice that the recognition accuracy is not distributed

evenly across the behaviors. The behavior which was recognized most consistently was the trav-

eling column, with a 1.0 recognition rate. Interestingly, the relatively simple behavior of traveling

line fared the worst, being recognized only 31 times out of the 60 test sequences, yielding a match

rate of 0.52.

We are interested not only in the number of behaviors which were classified incorrectly, but

also which behaviors were the misclassified behaviors mistaken for. The confusion matrix in Table

4.4 contains this information, with an extra column added for cases where the annotation frame-
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work was unable to match an observation sequence with a behavior model. For instance, we find

that errors in the classification of the traveling line behavior model occurred by the behavior being

confused with the team split (79%) and traveling box (17%) behaviors. This is not a surprising re-

sult since the trace appearance of the traveling box behavior is similar to the traveling line behavior.

Also, team split can occur in many ways. One particularly interesting observation sequence, that

is included in our training dataset, is when the team splits into two team in the traveling line mode.

The similarity of this training example might have led to the high confusion rate in this case.

Table 4.2: The ratio of correctly classified samples for HMM patterns with the number of hidden
states ranging from 1 to 5, and trained in using the Baum-Welch and the Segmental K-Means
learning algorithms.

Hidden states Baum-Welch K-Means
1 0.6787 0.6787
2 0.7294 0.7419
3 0.7865 0.7817
4 0.7588 0.8244
5 0.7188 0.766

Table 4.3: Classification accuracy over all teamwork behaviors. The table shows correct classifi-
cation rate and misclassification rate.

Behavior Match rate Error rate
Bounding overwatch 0.75 0.25
Team split 0.98 0.02
Traveling line 0.52 0.48
Traveling box 0.85 0.15
Team merge 0.85 0.15
Traveling column 1.0 0.0
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Table 4.4: Error distribution matrix showing misclassification rates for all behaviors.

Misclassified as→ a b c d e f Unknown
Bounding overwatch (a) - 10% 0% 0% 0% 0% 90%
Team split (b) 0% - 0% 100% 0% 0% 0%
Traveling line (c) 0% 79% - 17% 0% 0% 4%
Traveling box (d) 0% 56% 33% - 11% 0% 0%
Team merge (e) 0% 100% 0% 0% - 0% 0%
Traveling column (f) 0% 0% 0% 0% 0% - 0%

Overall we find the performance results promising. Using very simple feature vectors consist-

ing of basic coordinate (x, y) pairs the framework was able to discriminate 6 types of movement

techniques with 82% accuracy.

4.6 Classification Speed

Let us now investigate the speed at which the annotation of the observations can happen. One

threshold, extremely important for many practical applications is whether the speed is high enough

to allow the processing of a real time data stream. Table 4.5 shows the mean CPU time elapsed

during the validation process, using a 1.8GHz processor. For instance, for a classifier using HMMs

with 4 hidden states the average CPU time required to make a decision was 9.39ms. The box plots

in Figure 4.4, depict the median, minimum, maximum, lower quartile and upper quartile of the

CPU time used by the behavior classification algorithm during validation. All graphs show CPU

time for models with hidden states ranging [1,5].
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The results show that there is a trade-off between classification accuracy and real-time con-

straints. As the complexity of HMMs increase, the classification algorithm use more CPU time.

Let us now discuss the problem of real time recognition. Naturally, in the case of our validation

data, the recognition happens on the order of tens of milliseconds, while the real life maneuvers

depicted happen on the scale of tens of seconds. Real time observation annotation is therefore

possible if the observations are strictly restricted on the team members, and the team in the ob-

servations is of the same structure as the one used in the training of the teamwork patterns. This

condition might hold in the observation of a military exercise, but it does not apply to the obser-

vation of a real battlefield. If the team action needs to be recognized from an observation stream

containing hundreds or thousands of agents, a large number of hypothesis needs to be tested con-

currently, which can erode the speed advantage of the classifier.

Table 4.5: Mean CPU time used by the behavior classification algorithm during validation.

Hidden states Mean time (ms)
1 2.543
2 4.743
3 7.02
4 9.394
5 12.06

4.7 Conclusions

In this chapter we described an approach for detecting and annotating teamwork behavior in ob-

servations of embodied agents. The approach relies on a library of behavior patterns encoded as
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Figure 4.4: Box plots representing the median, minimum, maximum, lower quartile and upper
quartile of CPU time used by the behavior classification algorithm.

Hidden Markov Models. The main contribution of this study compared to previous approaches

is that we use an approach through which the HMMs are learned from a small number of repre-

sentative examples extracted from observation data. We deployed two learning algorithms: the

Baum-Welch and the Segmental K-Means algorithms. On our dataset we found that both algo-

rithms yielded approximately equivalent recognition accuracy, but the K-Means algorithm used

significantly lower CPU time for learning. We tested our approach on a dataset representing a

real-world military exercise. Representative examples were selected for the creation of six HMMs

corresponding to specific team behaviors of tank platoons documented in the military doctrine. We
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find that the framework provides a recognition accuracy of approximately 82% on our dataset and

a recognition speed a magnitude faster than the time taken by the tanks to complete the maneuvers.

4.8 Lessons Learned

The accuracy and performance numbers obtained refer to the somewhat idealized world of a mil-

itary exercise, where embodied agents could be isolated from the other participating agents and

embedded GPS devices allowed the acquisition of high quality data. In many practical applica-

tions, the annotation of teamwork needs to be performed in the conditions of higher environmental

noise, less precise data and the presence of many additional agents. In the following chapters we

address and focus on improving the following shortcomings:

• In the recognition system presented above, sequences of team positions are normalized to be

rotation and translation invariant. The sequences are, however, not scale invariant. Hence,

poor recognition performance is expected when teamwork actions are executed in scales that

are different from the ones used in the training process. Hence, there is a need to identify

and develop team-oriented feature functions that are invariant to irrelevant transformations

of teamwork data. (Chapter 5)

• The environment plays an important role when teams are selecting strategies and activities.

For instance, a team of tanks in a warfare situation would naturally adapt its movement

patterns according to the terrain and/or nearby obstacles. Additionally, in team sports such
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as Soccer the environment consists of a field with object such as goals and offside lines

that clearly influence activity selection in a team. If environmental cues are available then

methods to incorporate them in the recognition system need to be identified. (Chapter 5)

• As more and more feature functions are used in teamwork activity recognition systems it is

important to reduce the degrading effects of the “curse of dimensionality”. One approach

is to reduce the hypothesis space of high dimensional feature vectors through a symbolic

discretization process. That is, instead of using real-valued features, which are infinite, this

approach move towards a finite and much smaller discrete hypothesis space. (Chapter 5)

• In all experiments up to this point we have evaluated teamwork activity recognition where all

activity models have equal number of hidden states. This approach works well in cases where

there are only small deviations in complexity between the teamwork activities. However, in

practical applications the recognition system have to adapt the complexity, i.e. number of

hidden states, of the HMM to the complexity of the activity. (Chapter 6)

• In practical applications of teamwork recognition it is important to recognize the roles that

are played by the agents in the team. For instance, in the warfare patterns presented in Sec-

tion 3.2 it is desirable to identify the leader and the follower. Additionally, from a HMM

learning and classification standpoint, the order in which agent features, e.g. x and y coor-

dinates, are presented to the feature vector are fixed. As a result, to facilitate recognition of

activities where the order is unknown a mapping between individual team members and po-
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sitions in the feature vector need to be identified as a pre-processing step in the recognition

system. (Chapter 6)

• In the recognition system presented above the multi-variate Gaussian PDF was employed to

model emission probabilities. However, emission probabilities of HMMs can be modeled

using alternative and possibly more accurate probability density functions. (Chapter 7)
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CHAPTER 5: TEAM-ORIENTED FEATURE EXTRACTION

It is common practice in pattern recognition to reduce the dimensionality and/or discretize the input

data before the recognition process. As there is naturally a loss of information in this process, it

needs to be performed keeping in mind the ultimate goals of the recognition process. In our case,

the teamwork activities are the data which needs to remain in the dataset, while the agent specific

information can be filtered out.

In the team action recognition workflow, the input of the recognition activity is the geometrical

location of the agents in two dimensional coordinates, with, potentially, the addition of values such

as orientation, or gaze. Basic preprocessing, such as alignment on the centroid does not change the

nature of this data. As all agents have the same set of coordinates, the dimensionality of the input

increases linearly with the number of agents in the scene. Although for small teams of 4-5 agents

the resulting input space is still marginally acceptable for direct input to the HMM, the training

process is facing difficulties in extracting relevant information. One problem is that important

structural information is lost in the form of the data presented to the HMM. For instance, if we

represent the input space with an 8 element vector {x1, y1, x2, y2, x3, y3, x4, y4} (used in Chapter 4)

the HMM will not know that x1 and y1 are referring to the same agent or that y1, y2, y3 and y4 are

referring to the same direction.

57



In this chapter we describe a process through which the raw physical measurements with con-

tinuous values are replaced with semantically rich features. The main goal of the feature extraction

is to focus the HMM on the features used by humans when identifying a team action. Many of

these features, such as velocity or curvature are extracted over a sliding window of time, thus con-

taining historical information which is very difficult to encode in a HMM. A discretization process

is developed which maps the real-valued features to representative discrete symbols.

5.1 Feature Functions

We classify the extracted features in agent-oriented, environment-oriented and team-oriented fea-

ture functions.

• The agent-oriented feature functions extract information from individual agents such as ac-

celeration, velocity and curvature.

• Environment oriented feature functions extract features from agent or team interactions with

objects in the environment, such as line of sight (LOS) and object collision.

• The team-oriented feature functions focus on extracting features being expressed relative to

the team such as cohesion, team orientation and relative position vectors.
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5.2 Agent-Oriented Feature Functions

Agent-oriented feature functions extract information from the movement of a single agent over a

sliding time-window. The features, together with the allowed discrete values, are summarized in

Table 5.1. As they refer to individual agents, agent oriented features can not efficiently describe the

correlations among the team members. They can, however, improve the recognition performance

when used in combination with team oriented feature functions. Agent oriented features also play

a significant role in recognizing team actions where specific agents play determining roles such as

the leader or captain.

Table 5.1: Overview of the agent-oriented feature functions.

Name Discretization Description
Velocity {Idle, Low, High} The rate of change of posi-

tion.
Acceleration {Accelerating, Decelerating,

Constant}
The rate of change of veloc-
ity.

Orientation {North, South, West, East,
NorthEast, NorthWest,
SouthEast, SouthWest}

Eight-way orientation with
respect to a global reference
system.

Orientation4 {North, South, West, East} Four-way orientation with re-
spect to global reference sys-
tem.

Turning {Steady, Left, Right} The change in orientation.
Curvature {Straight, Curved} The rate at which a curve

changes direction.
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5.2.1 Velocity

Velocity is a measure of the rate of change of position. The velocity can be used to discriminate

teamwork activities where the individual team members move at different velocities. Velocity is

discretized using a user defined threshold parameter that determine if an agent’s velocity is Low or

High. If the velocity is 0 then the discrete output is Idle.

5.2.2 Acceleration

Acceleration is the rate of change of velocity with respect to time. Acceleration is typically used in

conjunction with velocity in teamwork recognition for improved recognition accuracy. Discretiza-

tion is performed by determining whether the acceleration value is positive or negative. Hence, the

discrete output of this function is Accelerating or Decelerating.

5.2.3 Orientation

Orientation is the angle that depicts the direction in which agents are facing. The orientation

discretization process assigns the orientation of an agent to one of eight discrete orientation values

representing north, south, west, east, north-east, north-west, south-east and south-west.

The Orientation4 feature function is a simpler version of the Orientation feature function where

only four cardinal orientations (north, south, west and east) are used in the discretization process.
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5.2.4 Turning

The Turning feature function extract the rate of change of an agent’s orientation. The discrete

output of the feature function is determined by a user-defined threshold parameter. The discrete

outputs are Left or Right and if the gradient is below the threshold then the discrete output is Steady.

5.2.5 Curvature

Curvature is a measure of the rate at which the trajectory of the agent changes direction. The

purpose of the Curvature feature function is to determine if an agent’s movement trace is curved or

straight in the two-dimensional Euclidean space. A simple measure of the curvature can be defined

as:

κ(x) =
| f ′′(x)|

(1 + ( f ′(x))2)3/2 (5.1)

The value κ(x) is interpreted as follows: when κ(x) is small the movement trace is straight and

when κ(x) is large the movement trace is curved [Ste99].

The first and second derivative can be calculated directly from the movement trace of each

agent (or team centroid) over a sliding window in time using a finite difference approximation

(with central difference). In this study we employ Equation 5.2 and Equation 5.3 for this purpose,

where s depict the size of the sliding window.
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f ′(xi) =
f (xi+s) − f (xi−s)

xi+s − xi−s
(5.2)

f ′′(xi) =

f (xi+s)− f (xi)
xi+s−xi

− f (xi)− f (xi−s)
xi−xi−s

xi+s − xi−s
(5.3)

Figure 5.1 shows the trajectory, estimated curvature, first derivate and second derivative plot for

a sequence of agent positions. The curvature was calculated using a sliding window of size 1 (s =

1). Note that the agent trajectory is normalized prior to calculating curvature. The normalization

is performed similarly to the pre-processing procedure presented in Section 4.1. In addition to

translating and rotating the trajectory we also scale the trajectory so that all trajectories can be

represented in the same space. The normalization procedure ensures that the curvature feature is

invariant to translation, rotation and scale.

5.3 Environment-Oriented Feature Functions

Environment oriented feature functions extract features from interactions of the team members

with objects the environment. The objects of the environment can be physical or virtual; both

types can be static or dynamic. Terrain features such as buildings or roads are physical and static.

The offside line in a soccer game is a virtual and dynamic environmental object that can be inferred

from the position of the opponent player who is second nearest to the end of the playing field. The
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Figure 5.1: Agent trajectory with estimated curvature and derivatives.
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front-line in a war is a similar dynamic and virtual object. Table 5.2 provides a summary of the

environment-oriented feature functions1.

Table 5.2: Overview of the environment-oriented feature functions.

Name Discretization Description
Collision {?Object, None} Collision with nearest envi-

ronment object.
LineOfSight {?Object} Nearest environmental object

in the agent’s LOS.
LineOfSightDistance {Near, Far, None} Euclidean distance to object

in LOS.

5.3.1 Collision

The Collision feature function determine if an agent’s path collide with or intersect the boundaries

of an environmental object. For example, the feature can be used to determine if a football player

cross the line of scrimmage during a play.

5.3.2 LineOfSight

The LineOfSight feature function is used to determine if an agent’s line of sight (LOS) is intersect-

ing the boundaries of any environmental objects. The feature function is parameterized by an offset

angle, Angle, and a distance metric, LOS , that depicts the direction and the maximum length of the

1In many applications environmental information is not available to the recognition system. Acquiring this infor-
mation can be a time consuming and difficult task. For this purpose, we have developed a tool which is integrated in
the Teamwork Scenario Editor to interactively manage, add and remove physical objects in environments.
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LOS respectively. The agent orientation is used as a reference point for the offset angle parameter.

Hence, an offset of 0 degrees result in a line of sight that is aligned with the agents original orien-

tation. Figure 5.2 shows agent A1 in a typical configuration where the LOS is intersected with an

obstacle.
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ta
cl
e

Orientation

Path

t=0

t=1

t=2

Angle

LOS

Figure 5.2: Obstacle intersection with line of sight for agent A1.

5.3.3 LineOfSightDistance

The Euclidean distance to an object can be extracted using the LineOfSightDistance feature func-

tion. The function is parameterized with an offset angle, Angle, and the maximum line of sight,

LOS . The LineOfSightDistance feature function output a real-valued distance that need to be dis-

cretized using a user defined threshold value. The discrete symbols in this case are Near, Far and

None in the case no object are detected in the agent’s LOS.
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5.4 Team-Oriented Feature Functions

Team-oriented feature functions extract features which are expressed relative to the team. In con-

trast to the previously discussed features, the team-oriented features are designed for the purpose

of discriminating teamwork activities. Henceforth, it is expected that the these feature functions

will extract the most influential features for teamwork activity recognition systems.

We consider two types of team-oriented features. The first type of feature functions, summa-

rized in Table 5.3, are obtained by replacing the (potential) team with a virtual agent following the

team centroid. In addition to these features we designed a series of team-oriented features which

are not directly related to agent-oriented feature functions. These features are summarized in Table

5.4.

Table 5.3: Overview of the first type of team-oriented feature functions.

Name Discretization Description
TeamVelocity {Idle, Low, High} The mean rate of change of

team positions.
TeamAcceleration {Accelerating, Decelerating,

Constant}
The mean rate of change of
velocity with respect to time
of team members.

TeamOrientation {North, South, West, East,
NorthEast, NorthWest,
SouthEast, SouthWest}

The orientation of the cen-
troid of the team.

TeamOrientation4 {North, South, West, East} The orientation of the cen-
troid of the team.

TeamTurning {Steady, Left, Right} The mean rate of change of
orientation of the team.

TeamCurvature {Straight, Curved} The mean rate at which
team-member agent’s curves
changes direction.
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Table 5.4: Overview of the second type of team-oriented feature functions.

Name Discretization Description
Centroid-Relative Posi-
tion Vector

{A1, A2, . . . , An} The relative eight-way posi-
tion of each team member
with respect to team centroid
and direction.

Role-Relative Position
Vector

{A1, A2, . . . , An−1} The relative eight-way posi-
tion of agents with respect to
a privileged agent’s centroid
and direction.

Cohesion {Separated, Merged} The bonding together of team
members.

CohesionGradient {Separating, Merging, None} The rate at which the bonding
of team members are chang-
ing.

CohesionDirection {Vertical, Horizontal, Up-
ward, Downward}

The principal component di-
rection of the positions of
team members.

In the following we discuss the justification and implementation of the second type of feature

functions.

5.4.1 Centroid-Relative Position Vector

Centroid-Relative Position Vector (CRPV) is a vector of size n where for every agent we record

the semi-quadrant it occupies in a Cartesian coordinate system centered in the centroid, with the

North direction aligned with the movement of the team centroid over a sliding window in time.

Figure 5.3 shows the encoding in the CRPV of a team of three agents.
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There are several advantages of the CRPV compared to the absolute positions of the team

members. First, the dimensionality of the input data is reduced. Second, the CRPV is invariant to

translation, rotation and scale.

Determining the CRPV does not require full role recognition to be performed before its calcu-

lations, but it requires us to eliminate the bystander agents (which would shift the position of the

centroid). Thus, CRPV can serve as a feature used in role recognition.

North

South

West

East

NorthEast

NorthWest

SouthEast

SouthWest

A1

A2

A3

North

Figure 5.3: The centroid-relative position vector a team of three agents. The team centroid is
marked with a dark shaded circle. The position of agents A1, A2 and A3 are described by the
vector {NorthEast, NorthWest, South}.
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5.4.2 Role-Relative Position Vector

Role-Relative Position Vector (RRPV) is an evolution of the CRPV feature. The RRPV is a vector

of size n− 1, where each element encodes the semi-quadrant occupied by the agent in a coordinate

system centered on one agent which has a privileged role. The coordinate system is aligned with

the movement of the privileged agent. One of the advantages of such system is that we can, for

instance, express the movement of the bodyguards relative to a VIP, or the movement of a group

of pickpockets around a victim.

The disadvantage of this encoding is that at least the role of the privileged agent needs to be

determined before feature extraction. Finally, the privileged role needs to be clearly marked in the

idealized team action (ITA), which requires human intervention in the process.

5.4.3 Cohesion, CohesionGradient and CohesionDirection

Intuitively, the Cohesion feature measures how tightly grouped together are the team members, the

CohesionDirection shows the direction of the greatest cohesion, while CohesionGradient measures

the variation of the cohesion. For instance, a team which is splitting in two groups is loosing

cohesion. To extract a set of values which match well with this intuition, we use a method based

on principal component analysis [DHS00]. We first calculate a scatter matrix

S =
1

n − 1

n∑

k=1

(xk −m)(xk −m)t
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where xk is the position of agent k in a team consisting of n members and m is the location of the

centroid:

xk =



xk

yk


and m =

1
n

n∑

k=1

xk

Next, we analyze the scatter matrix by finding its eigenvalues, λ, and eigenvectors, e. In our

case, since the position of each agent is described in two dimensions, we will find two eigenvalues

and two eigenvectors. Geometrically e and λ represent the principal directions of the team member

positions and the magnitude of the directions respectively. The Cohesion feature is the value of the

largest eigenvalue, λmax.

The CohesionDirection feature function uses the eigenvector corresponding to λmax to output

the principal orientation of the team.

The CohesionGradient feature calculates the change of the cohesion value over a sliding time

window of the historical values of cohesion.

Figure 5.4 illustrates a scenario where a team of four agents change formation over time. For

each time step the figure shows the principal orientation vectors of the team. As discussed above,

the larger of these vectors is chosen as the cohesion vector (and it is represented in bold in the

figure). Initially, at Time = 0, the team members are in near vicinity of each other; λmax is small

and the output of the Cohesion feature is Merged. Next, at Time = 1, the team members separate

in the x-direction; λmax is increasing and the output of the CohesionGradient feature is Separating.
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Finally, at Time = 2, the separation of the team yields a large enough λmax value, such that the

output of the Cohesion feature is Separated.
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Figure 5.4: Plot of a scenario where a team of four agents change formation over time. The
cohesion vector depicts the cohesion and principal orientation of the team.
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5.5 Discussion

In this chapter we have developed several feature extraction functions that are specifically designed

for teamwork activity recognition. In addition to centroid based features that measures velocity,

acceleration, etc., we have developed feature functions to extract relative position of agents in

the team and multiple cohesion based features. For instance, the centroid-relative position vec-

tor (CRPV) can be used to discriminate different formations in the teams. We have used the

team-oriented features in the role-based teamwork recognizer presented in Chapter 6 and in the

performance tuning study in Chapter 7.

We have also developed a set of agent-oriented features. These feature functions can be used

as complements to the team-oriented features to improve recognition performance. In Chapter 6

the agent-oriented feature functions are used to recognize roles in the team.
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CHAPTER 6: ROLE-BASED TEAMWORK ACTIVITY RECOGNITION
IN OBSERVATIONS OF EMBODIED AGENT ACTIONS

In this chapter we extend the teamwork activity recognition workflow with a role recognition mod-

ule which allows us to represent the idealized teamwork activities by roles as opposed to by agents

(which was the approach taken in Chapter 4). The role recognition module allows us to present the

recognizer with arbitrarily shuffled input, and still obtain high recognition rates.

6.1 Role Recognition

In systems which recognize teamwork from coordinated movement of agents, the input of the

recognizer is a fixed arrangement of the recorded features of the agents. A four agent team might

be represented by a feature vector {x1, y1, x2, y2, x3, y3, x4, y4} which is either the direct input of

the HMM as in Chapter 4, or the input to the feature extraction process, as shown in Chapter

5. However, what does “agent 3” mean? If we are observing a team sport, such as basketball,

we can say that “agent 3” corresponds to the player wearing the number 3. However, in many

applications such as surveillance, such clear identification might not be possible. Even in the case

of team sports, players might switch roles during the game. An HMM which was trained with

an input order {1, 2, 3, 4} will not recognize the same action if it appears encoded in the order

{2, 3, 4, 1}. A related issue is concerned with the number of agents participating in the team action.
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Many essentially identical team actions can be executed with various team sizes. For instance, the

defining feature of bounding overwatch is the alternating advancement of two groups of agents.

This definition remains valid whether the action is performed in a configuration of 1+2, 2+1, 2+2

or 2+3 agents.

One brute force solution is to train a separate HMM for every possible team and role size

combination. Then, at recognition time, we repeat the matching algorithm for every possible

permutation of the input data, and pick the one which gives the best match. This is a significant

computational penalty, especially in cases where the analyzed observations contain agents which

are not part of any team.

In the following, we describe a role recognition module which allows us to recognize what

are the (likely) roles played by the agents in a team action before the team action was recognized.

Running such a role recognition module before the team recognition allows us to build the idealized

team action (ITA) based on roles, rather than agents.

Figure 6.1 illustrate the full workflow of the teamwork activity recognition framework extended

with the role recognition module.

6.1.1 Learning Role Models from Observations

A role model allows us to determine the likely roles the agents would play in a team action. To un-

derstand how this is possible without the need to recognize the team action as well, let us remember

that certain roles are strongly identified with certain feature values.
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Figure 6.1: The workflow of teamwork activity recognition system extended with role recognition.

For instance, in a “follow the leader” action, the leader is at the forefront of the team. Looking

at the formation, we can identify which agent that “can be” the leader, even before we are certain

that the team action is, indeed, “follow the leader”. The best feature to decide on this is the

centroid-relative position vector; the team leaders will need to be in the North semi-quadrant.

For identifying the two sub-teams of the bounding overwatch team action, however, the relative

positions are useless. The best features for this determination are the velocity vectors: the members

of one team are stationary, while the other ones are moving.

We can draw several conclusions from these examples. First, we need a different feature set

for role recognition than for team action recognition (although overlaps, of course, exists). As
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role recognition is targeted towards individual agents, the agent-oriented feature functions have a

significant role. Second, the discriminating feature changes from role to role. Thus, for our role

recognition model we chose a decision tree representation, which has the advantage that besides

representing the role model, it also allows us to extract and visualize the exact features which were

used in the classification.

The decision tree learning algorithm used in our study was the ID3 algorithm followed by a

tree pruning procedure to minimize the effects of over-fitting [Qui88].
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Figure 6.2: Role model represented by a decision tree.

Figure 6.2 illustrate an example of a role model represented by a decision tree. The tree was

trained using discretized agent observations for four different roles. The dashed rectangles repre-
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sent leaves in the tree, which in turn contains class frequencies, f = {fr1 , fr2 , fr3 , fr4}, for the roles.

The solid rectangles are internal nodes depicting the features required for classification.

6.1.2 Acquiring Role Assignment Probabilities

The decision trees, once trained, can be used to calculate the role assignment probabilities. The

first step is to extract observation sequences from the movement traces of each agent, which are

used as input to the decision tree classifier. The output of the classifier is a class frequency vector,

f t, for every observation t in the sequence. The probability Pr(ai, r j) that agent ai is playing role r j

is calculated with the following formula:

Pr(ai, r j) =

∑T
t=1 ft

r j∑K
k=1

∑T
t=1 ft

rk

where T is the length of the observation sequence and K is the number of available roles.

6.1.3 Role Assignment and Mapping

The goal of the role assignment process is to identify the best match of role to agent assignments

by searching the Pr(ai, r j) values so that the team-oriented feature vectors, which are used by

the teamwork recognizer, can be re-mapped accordingly. In this section we describe two distinct

strategies for this purpose.
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Multiple Role Assignment

The first strategy, described in Algorithm 1, allows agents to play multiple roles. For each role in

the Pr table the agent with the maximum probability is selected to represent the role.

Algorithm 1 Multiple role assignment algorithm.
Require: Role model, RoleModel, and agent observations, Oai .
Ensure: Mapping, Map, of agents, ai, to roles, r j.

1: Pr(ai, r j) = Apply(RoleModel to Oai)
2: for all Roles r j in Pr(ai, r j) do
3: imax = arg maxi Pr(ai, r j)
4: Assign(r j → aimax in Map)
5: end for
6: return Map

Unique Role Assignment

The second strategy, described in Algorithm 2, limits agents to play only one role. A set of can-

didate assignments is first identified for all available agents. The candidate set is generated by

traversing the roles of each agent and for each agent selecting the role with maximum probability.

Next, conflicts are resolved among the candidate assignments, by selecting the agent with maxi-

mum probability to represent the role. The agent is then marked as already assigned a role and not

available for future allocation. The procedure is repeated until all roles have been assigned to an

agent.

78



Algorithm 2 Unique role assignment algorithm.
Require: Role model, RoleModel, and agent observations, Oai .
Ensure: Unique mapping, Map, of agents, ai, to roles, r j.

1: Pr(ai, r j) = Apply(RoleModel to Oai)
2: while Unmapped roles remaining do
3: for all Agents ai in Pr(ai, r j) do
4: jmax = arg max j Pr(ai, r j), where j , k, ∀rk in Map
5: Assign(r jmax → ai in HypothesisMap)
6: end for
7: for all Roles r jmax in HypothesisMap do
8: imax = arg maxi Pr(ai, r jmax), where i ∈ k, ∀ak of r jmax in HypothesisMap
9: Assign(r jmax → aimax in Map)

10: end for
11: end while
12: return Map

6.2 Modeling Team Actions with Multiple Hidden Markov Models

In practical applications of teamwork recognition it is likely that the complexities of the activi-

ties varies significantly. Hence, identifying the optimal number of hidden states that can encode

each activity is important to maintain good recognition accuracy (complicated teamwork patterns

requires more hidden states than simple ones).

In this study, we represent a idealized team action with multiple, internal HMMs estimated

with different number of hidden states. At the cost of increased processing time for parameter

estimation and classification, compared to the approach taken in Chapter 4, this approach is more

robust towards variations in activity complexity.

The teamwork activity classification algorithm using multiple internal HMMs can be separated

into three phases:
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1. The probability P(VT | θ) of the input sequence is calculated for all internal HMMs in each

activity model using the forward evaluation algorithm [DHS00].

2. The internal HMM with maximum P(VT | θ) is selected to represent each activity model.

3. Finally, the activity model with maximum P(VT | θ) is chosen as the final classification.

6.3 Experimental Results

6.3.1 Experimental Setup

We performed a series of experiments using a dataset which was acquired from the real world

military exercise from Section 3.5.1. The dataset consists of observations of four tanks which per-

formed seven distinct teamwork activities. To achieve a larger corpus, the approximately 40 initial

team action observations were multiplied synthetically by applying various distortion operations.

The resulting semi-synthetic dataset is summarized in Table 6.1.

The original observations were made using high resolution GPS devices embedded in the tanks,

thus for practical purposes, they are free of observation noise. For practical applications, which

require observations of opponent agents, such accuracy is not achievable. To simulate observation

noise in our dataset, we have added Gaussian noise to the position of each agent by offsetting the

coordinates with a randomly generated number following the Gaussian distribution, N(µ = 0, σ2 =

1), multiplied with a noise magnitude ε.
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Table 6.1: Dataset summary of teamwork activities, number of sequences and observations that
were used during training and validation.

Activity Sequences Observations
Traveling column 29 319
Traveling line 30 330
Traveling box 33 363
Bounding overwatch 9 189
Wedge 17 187
Team split 15 192
Team merge 15 177

6.3.2 Creating the Idealized Team Actions

In our workflow the idealized team actions were encoded in the form of multiple internal HMMs

as described in Section 6.2, which were trained using representative examples of the team action.

These examples were extracted from the observation flow using the teamwork scenario editor and

labeled by hand. The positional observations were fed into the feature functions which extracted

the team-oriented features.

The HMM was trained using the Baum-Welch expectation maximization algorithm for a prede-

termined number of states. We assumed that the emission probabilities of the HMM are described

by a Gaussian Mixture Model (GMM) multi-modal probability density distribution. The number

of hidden states and the number of Gaussian components are parameters of the learning process.

Although one can try to analytically infer appropriate values for these parameters, this would

require an in-depth knowledge of the team actions, as well as the number of variants which are
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labeled the same by human observers. The automatic tuning of these parameters can therefore

save a lot of modeling effort.

We have optimized these parameters by repeating the learning process for every combination

of the number of hidden states and Gaussian mixture components in the 1 to 5 range with ε = 2.

For each case we have tested the recognition accuracy using a 10-fold cross-validation procedure.

The resulting accuracy values are shown in Figure 6.3. The optimal parameter configuration was

found to be 4 hidden states and 3 Gaussian mixture components. Hence, each teamwork activity

is represented by 4 internal HMMs with hidden states ranging from 1 to 4. Figure 6.4 show the

distribution of correctly classified sequences among the internal HMMs for each teamwork activity

in the optimal parameter configuration.
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Figure 6.3: Mean accuracy of teamwork activity recognition accuracy. Hidden states and number
of Gaussian mixture components range from 1 to 5.
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6.3.3 Performance Evaluation with Unknown Team-Organization

The experiments in this section measure the performance of teamwork activity recognition in ap-

plications where the role assignments are unknown. To simulate unknown role assignments in the

dataset, we have randomly shuffled the agent observations.

Figure 6.5 shows the teamwork activity recognition performance, using 10-fold cross-validation.

The observation sequences are distorted with Gaussian noise with the multiplier ε ranging from 0

to 10. We repeat the experiments with role assignment algorithms 1 and 2. For comparison, we per-

formed a series of experiments under the assumption that the agents are always correctly assigned
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to the roles, as well as a series of experiments where the randomly shuffled agent observations

were fed into the recognizer without role recognition.

From the experimental results in Figure 6.5 we can conclude that our system is able to recognize

and assign roles to agents while still maintaining good teamwork recognition accuracy using both

algorithms. Algorithm 2 slightly outperforms Algorithm 1 for this problem because the dataset

used in this experiment consisted of teamwork activities performed by four agents where each

agent always play a unique role in the team.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Gaussian Noise

A
cc

u
ra

cy
 (

%
)

Correct

Role Recognition (Alg. 1)

Role Recognition (Alg. 2)

Random

Figure 6.5: Mean recognition accuracy with error bars depicting standard deviation.

Table 6.2 illustrates the confusion matrix for teamwork recognition with Algorithm 2 when

ε = 2. In this case the mean accuracy is 92.62% with standard deviation 5.53%.
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As a point of reference, in Chapter 4 we achieved recognition rates of approximatively 82%

using noise-free data and the agent observations in the correct order. We conclude that with the role

recognition module we expect a system which achieves a better performance under less favorable

input assumptions: noisy data and input in which the order of the agents was randomly shuffled.

Table 6.2: Confusion matrix depicting teamwork activity recognition performance with unknown
team-organization.

True Precision
a b c d e f g (%)

Traveling column a 29 0 0 0 0 0 0 100.0
Traveling line b 0 26 0 0 0 0 0 100.0
Traveling box c 0 3 32 2 0 0 0 86.49
Bounding overwatch d 0 0 1 7 0 0 0 87.50
Wedge e 0 0 0 0 17 0 0 100.0
Team split f 0 0 0 0 0 13 2 86.67

Pr
ed

ic
te

d

Team merge g 0 1 0 0 0 2 13 81.25
Recall (%) 100.0 86.67 96.97 77.78 100.0 86.67 86.67

6.4 Conclusions

In this chapter we described a role recognition module, which allowed us to recognize the possible

roles played by the agents before the team action is recognized. This allowed us to represent the

idealized team action in terms of roles (rather than agents), and allowed the recognizer workflow

to recognize the action even if the input does not contain information about the roles played by the

agents (a situation frequently encountered in applications such as surveillance).
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By integrating the role recognition module into the teamwork recognition workflow and by

representing the teamwork activities with multiple internal HMMs we have found that, even in

the presence of higher levels of noise and where the input is shuffled, the recognition accuracy is

improved compared to the results from Chapter 4.
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CHAPTER 7: TUNING THE PERFORMANCE OF TEAMWORK
ACTIVITY RECOGNITION THROUGH THE CHOICE OF PDF

In the previous chapters we have outlined a complete workflow for team action recognition. Many

of the components of this workflow are customizable through a variety of parameters:

• The HMMs can be customized through the number of hidden states, through the probability

density function (PDF) choices and through the learning parameters.

• The discrete feature extractions are parameterized through the width of the sliding window,

and through the various discretization threshold values.

• The role recognition module is parameterized through the choice of features used in role-

recognition, as well as in the parameters of the ID3 learning algorithm (and indeed the choice

of the algorithm).

The appropriate choice for all these parameters can have a significant influence on the accuracy

and robustness of the recognizer. Many of these choices, however, have only incremental impact.

For instance, discretizing the orientation into 4, 8 or 16 directions is simply a matter of the accuracy

we want to reach.
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We find however, that the choice of the probability density model has a significant impact on

the recognition accuracy and it is strongly related to the way in which humans perceive the team

actions.

In this chapter we study the ways in which the choice of PDF affects the accuracy and robust-

ness of team activity recognition, and discuss their advantages and disadvantages.

There are several approaches to estimate emission probabilities in the form of discrete or con-

tinuous probability density functions:

• Simple HMM estimate emission probabilities using a discrete, or histogram-based, PDF.

• Estimate emission probabilities using the multi-variate Gaussian PDF (the approach taken in

Chapter 4).

• Employ a Gaussian Mixture Model (GMM) PDF to estimate emission probabilities (the

approach taken in Chapter 6).

In Table 7.1 we quickly summarize the implementation choices and their characteristics.

Table 7.1: A summary of the implementation choices.

Implementation Choice Multi-Modal Continuous Parameters
Simple HMM Yes No Hidden states, Clusters (k)
HMM with Gaussian No Yes Hidden states
HMM with Gaussian Mix-
ture Model

Yes Yes Hidden states, Components (C)
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7.1 Simple HMM

In the simple HMM the input observations are discrete values and the emission probabilities in

each hidden state are represented by a histogram-based probability distribution. However, in team-

work activity recognition and many other application domains the observations are real-valued and

multi-dimensional. The simple HMM can be employed in these applications as well. However, a

pre-processing step is required to map the real-valued observations into discrete observations.

Vector quantization is a one approach which can be employed to “compress” the real-valued

and multi-dimensional observations into discrete values that in turn can be fed as input to the HMM

[Gra84]. This method has been applied with success in early speech-recognition software and in

image based phrase spotting systems [CWB95].

The simple HMM approach for teamwork activity recognition employs a vector quantization

method to discretize the observations acquired from the team-oriented feature functions. This

process is visualized in Figure 7.1. The vector quantization approach can be divided into two

separate phases:

• Training: The first phase of vector quantization consists of the generation of a codebook

which can map feature vectors to discrete symbols. The codebook can be manually acquired

through knowledge engineering, however, in our approach we automatically generate the

codebook from training data using the k-means clustering algorithm [DHS00]. The k-means

clustering algorithm is parameterized by the number of cluster centroids, k, which the train-

89



ing data can belong to. In other words, this parameter determines the number of discrete

symbols which can be used in the HMMs.

• Cluster Assignment: The second phase in vector quantization consists of assigning discrete

symbols to the incoming feature vectors. First, the distances between the input feature vector

and each cluster centroid in the codebook are calculated. Then, the symbol (index) of the

cluster centroid with the minimum distance is selected to represent the feature vector.
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Figure 7.1: The workflow for transforming a sequence of feature vectors using the vector quantiza-
tion method. Each feature vector is assigned an index that represent the codebook cluster centroid
with minimum distance relative the input feature vector. The output is a sequence of codebook
indices which can be fed to the teamwork recognizer.

The main advantage of using the simple HMM, besides its simplicity, is that multi-modal emis-

sion probabilities can be represented by the histograms. The main drawback is that the histograms

can not provide estimates of noisy observations that were unseen in the training process (in these

cases the emission probabilities are always zero). To prevent this from happening, a rich set of
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training data is required to train the discrete HMM classifier. Furthermore, the number of discrete

symbols, or the k-parameter, in the codebook need to be carefully configured to fit the application

domain.

7.2 HMM with Multi-variate Gaussian

In this teamwork recognizer the emission probabilities are modeled using the continuous Gaussian

PDF. The advantage of using a continuous PDF is that unseen observations can be estimated nat-

urally. The drawback is that only unimodal emission probabilities can be represented using the

Gaussian PDF. As a result, teamwork activities that are identical by human perception, but physi-

cally different (such as U-turn to the right and left), need to be encoded in separate HMMs but with

the same label in the recognizer.

The Gaussian PDF is introduced in Chapter 4. However, for completeness, the Gaussian PDF

is presented again in Equation 7.1, where µ is the mean vector, Σ is the covariance matrix and d

is the dimensionality of the observation vector v. The parameters, µ and Σ, are estimated from

training data using the maximum likelihood method [DHS00].

β j(v) =
1

(2π)d/2|Σ|1/2 exp
{
−1

2
(v − µ)tΣ−1(v − µ)

}
(7.1)

Another limitation of the Gaussian PDF is that the covariance matrix, Σ, must be invertible to

calculate probabilities from Equation 7.1. This becomes a problem in applications where training
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data is limited and when the observations are high-dimensional. One way to solve this problem is

to reduce the expressiveness of the Gaussian PDFs, for instance by representing them with diagonal

covariance matrices only, which are guaranteed to be invertible.

7.3 HMM with Gaussian Mixture Model

The Gaussian Mixture Model (GMM) combines the advantages of the simple HMM and the Gaus-

sian PDF approach. The use of a mixture of Gaussian components facilitates modeling of multi-

modal emission probabilities. Like the Gaussian PDF model, emission probabilities from observa-

tions not seen during training can be estimated due to the continuous nature of the GMM.

The GMM, which is described in Equation 7.2, can be defined as the weighted sum over its

Gaussian components. The parameters of the GMM are Ω = {w1,Σ1,µ1, . . . ,wC,ΣC,µC}, where

C depict the number of mixture components the GMM consists of. Each component is associated

with a weight, such that 0 < wc ≤ 1 and
∑C

c=1 wc = 1. Estimating Ω from observations is per-

formed using the expectation maximization (EM) algorithm [DLR77], which iteratively applies

the maximum likelihood method to generate better estimates of the parameters.

β j(v) =

C∑

c=1

wc

(2π)d/2|Σc|1/2 exp
{
−1

2
(v − µc)tΣc

−1(v − µc)
}

(7.2)

A disadvantage of using the GMM is that the parameter estimation process, which is used to

determine Ω, is computationally expensive compared to the Gaussian PDF approach. Further-
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more, the number of mixture components, C, needs to be specified manually for each HMM in the

recognizer. In the special case when C = 1 the GMM is identical to the Gaussian PDF.

7.4 Experiments

7.4.1 Experimental Setup

The experiments are performed using the same a warfare dataset that was presented in Chapter 6.

The dataset, which consists of seven teamwork activities, is summarized in Table 6.1. The team-

oriented feature functions were used to extract semantically rich features from the dataset. We

have used the 10-fold cross-validation procedure with stratified sampling to generate performance

measurements in all of the experiments.

7.4.2 Results: Simple HMM

The simple HMM is parameterized with the number of hidden states and by the number of cluster-

s/symbols, k. To find the optimal parameter configuration we have repetitively applied the 10-fold

cross-validation procedure for each parameter configuration, where the number of hidden states

is ranging from 2 to 20 and where k ranges from 5 to 100. The mean classification accuracy and

standard deviation is shown in Figure 7.2.

The most influential parameter is the number of clusters, k, the vector quantization method is

using. When few clusters are used the HMMs do not have enough discrete states to discriminate
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Figure 7.2: Mean accuracy and standard deviation of teamwork activity recognition using discrete
HMMs acquired from vector quantization.
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the teamwork activities. On the other hand, when too many clusters are used, the performance is

degraded because the amount of training data is insufficient to accurately encode the teamwork

activities in the HMMs.

The overall best performance, 75.05% with standard deviation ±14.89%, was found using 60

clusters and 18 hidden states. The confusion matrix in Table 7.2 shows that the teamwork recog-

nizer with this parameter configuration struggles to classify the bounding overwatch, team split and

team merge behaviors. For these behaviors class precision is only 53.33%, 68.75% and 53.33%

respectively.

Table 7.2: Confusion matrix depicting teamwork activity recognition performance using discrete
HMMs and team-oriented feature functions with 60 clusters and 18 hidden states. The mean accu-
racy is 75.05% with a standard deviation of ±14.89%.

True Precision
a b c d e f g (%)

Traveling column a 18 0 1 0 1 0 0 90.00
Traveling line b 1 24 1 1 0 2 4 72.73
Traveling box c 3 1 28 0 0 0 0 87.50
Bounding overwatch d 4 1 0 8 0 0 2 53.33
Wedge e 0 2 1 0 14 0 0 82.35
Team split f 1 1 1 0 1 11 1 68.75

Pr
ed

ic
te

d

Team merge g 2 1 1 0 1 2 8 53.33
Recall (%) 62.07 80.00 84.85 88.89 82.35 73.33 53.33

Occasionally, the discretization process described above filters out potentially good and im-

portant information describing the teamwork activities. By carefully selecting the parameters

appropriately the negative effects of the discretization process can be minimized. However, the
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poor classification accuracy of the bounding overwatch, team split and team merge behaviors is an

indication that too much information is filtered out by the discretization process.

7.4.3 Results: HMM with Multi-variate Gaussian

The recognizer using Gaussian PDF is parameterized with the number of hidden states to use in

each HMM. In Figure 7.3 we have repetitively applied the 10-fold cross-validation procedure for

hidden states ranging from 1 to 5. The figure shows mean classification accuracy and standard

deviation for the case where the covariance matrix is general and for the case when the covariance

matrix is diagonal.

The best mean accuracy, 91.29% with a standard deviation of ±6.69%, was found with 3 hidden

states using the general Gaussian PDF. One problem that we encountered in this case was that the

amount of training data was insufficient for the bounding overwatch, team split and the team merge

activities for number of hidden states larger than 3. Hence, the sudden drop in recognition accuracy.

In the diagonal case, where the features are assumed to be statistically independent of each

other, the recognition accuracy increases with the number of hidden states. The best performance,

89.81% ±5.62%, was found using 5 hidden states.

Table 7.3 shows the confusion matrix for the number of hidden states that resulted in best mean

accuracy in the general case. The experiments show that, if the number of hidden states in the

HMMs are carefully chosen, classification accuracy is greatly improved compared to the simple

HMM approach.
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Figure 7.3: Mean accuracy and standard deviation of teamwork activity recognition using multi–
variate Gaussian PDF to model emission probabilities in the HMMs.

Table 7.3: Confusion matrix depicting teamwork activity recognition performance using mul-
ti-variate Gaussian to model emission probabilities in HMMs with 3 hidden states. The mean
accuracy is 91.29% with a standard deviation of ±6.69%.

True Precision
a b c d e f g (%)

Traveling column a 29 0 0 0 0 0 0 100.0
Traveling line b 0 27 2 0 0 0 0 93.10
Traveling box c 0 3 30 1 0 0 0 88.24
Bounding overwatch d 0 0 0 7 0 0 0 100.0
Wedge e 0 0 0 0 17 0 0 100.0
Team split f 0 0 0 0 0 14 4 77.78

Pr
ed

ic
te

d

Team merge g 0 0 1 1 0 1 11 78.57
Recall (%) 100.0 90.00 90.91 77.78 100.0 93.33 73.33
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7.4.4 Results: HMM with Gaussian Mixture Model

Teamwork activity recognition using HMMs with the Gaussian mixture model is parameterized

by the number of hidden states to use and by the number of components to use in each Gaussian

mixture. In the results presented in Figure 7.4 the mixture components and the hidden states range

from 1 to 5. The best overall accuracy, 93.90% with a standard deviation of ±4.68%, was found

using 2 mixture components and 3 hidden states.

Table 7.4 show the confusion matrix from the best parameter configuration. The overall recog-

nition accuracy using the GMM approach is better than any other recognizer. In Figure 7.5 the

HMMs that were generated by the learning process are illustrated for each teamwork activity,

Table 7.4: Confusion matrix depicting teamwork activity recognition performance using the Gaus-
sian mixture model to represent emission probabilities in HMMs with 2 mixture components and
3 hidden states. The mean accuracy is 93.90% with a standard deviation of ±4.68%.

True Precision
a b c d e f g (%)

Traveling column a 27 0 1 0 0 0 0 96.43
Traveling line b 0 29 0 0 0 0 0 100.00
Traveling box c 0 0 31 0 0 0 0 100.00
Bounding overwatch d 0 0 0 8 0 0 0 100.00
Wedge e 0 0 0 0 16 0 0 100.00
Team split f 2 0 1 1 1 14 1 70.00

Pr
ed

ic
te

d

Team merge g 0 1 0 0 0 1 14 87.50
Recall (%) 93.10 96.67 93.94 88.89 94.12 93.33 93.33
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Figure 7.4: Mean accuracy and standard deviation of teamwork activity recognition using mixture
of Gaussian PDF to model emission probabilities in the HMMs.
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Figure 7.5: The set of HMMs used in the GMM-based teamwork recognizer. Each HMM con-
sists of 3 hidden states and the GMMs were generated using 2 mixture components. The initial
probabilities, π, and the transition probabilities, α, are shown in the figures.
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7.5 Conclusions

In this chapter we evaluated three implementation choices in HMM-based teamwork activity rec-

ognizers where the emission probabilities are modeled using histograms, Gaussian PDFs and Gaus-

sian mixture models. Table 7.5 summarizes the performance of the implementation choices for all

parameter configurations. The teamwork recognizer employing HMMs with the Gaussian mixture

model produced the best accuracy. From the standard deviation column in the table it is clear that

this system is also the least sensitive to changes in parameter configurations.

Table 7.5: Statistical summary of the implementation choices that have been evaluated. The table
show mean, maximum and minimum and the standard deviation of accuracy over all parameter
configurations.

Implementation Choice Mean Max Min Std. Dev.
Simple HMM 62.91% 75.05% 44.52% 5.44%
HMM with Gaussian 83.27% 91.28% 77.76% 4.94%
HMM with Gaussian Mix-
ture Model

88.30% 93.90% 83.19% 2.17%

The simple HMM fared the worst in our evaluation. This implementation choice filtered out

too much information in the discretization process, which lead to poor recognition performance.

We found that the Gaussian PDF approach with a general covariance matrix could not be trained

for HMMs with more than three states for teamwork activities (bounding overwatch, team split and

team merge) with limited amount of training data. In this case the recognition performance dropped

significantly. To accommodate cases where more hidden states are required and when training data

is limited the expressiveness of the Gaussian PDF can be reduced.
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We conclude that the GMM approach, which is both continuous and can represent multi-modal

distributions, is better than any of the other implementation choices. However, the GMM also have

disadvantages:

• The complexity of estimating the GMM is higher compared to the Gaussian PDF.

• The number of Gaussian mixture components C must be carefully configured.
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CHAPTER 8: CONCLUSIONS

In this thesis we presented contributions to the theory and practice of teamwork action recognition

from the observation of embodied agents.

The first practical challenge of this work is the acquisition of a body of data. The Teamwork

Scenario Editor (TSE) was implemented for visualization, identification and extraction of repre-

sentative teamwork patterns. The tool significantly reduced the amount of knowledge engineering

required to extract training (and validation) datasets for the teamwork recognizer.

Next, we described a baseline approach for recognizing teamwork activity in spatio-temporal

position traces of embodied agents, based on a library of teamwork patterns encoded as Hidden

Markov Models. While previous approaches relied on the acquisition of teamwork patterns by

knowledge engineering, we developed an approach that acquires the patterns by learning from a

small set of representative examples (segmented and labeled with the TSE). The resulting recogni-

tion system was found to match the performance of previous knowledge engineered systems with

a recognition rate of around 82%, but it was found to be sensitive to noise and distortion caused by

terrain variations.

To improve the accuracy of our teamwork recognizer we developed a set of feature functions

to extract semantically rich features from the spatio-temporal position traces. The three classes of

feature functions considered were (a) agent-oriented feature functions which discretize the position
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and movement patterns of individual agents, (b) environment-oriented feature functions which

characterize the interaction between the agent and its environment and (c) team-oriented feature

functions which characterize the team as a whole. The feature functions were carefully selected to

match the ways in which a human observer would understand and analyze the scene.

We improved the robustness of the teamwork recognizer by integrating a novel role recogni-

tion module into the recognition workflow. The role-based recognition approach addressed the

challenge where the input to the recognizer is a fixed arrangement of the recorded features. For

instance, an HMM which was trained with an input order {1, 2, 3, 4} can not recognize the same

action if it appears encoded in the order {2, 3, 4, 1}. Experimental results showed that accuracy is

improved, even in the presence of higher levels of noise and where the input is shuffled, when our

role-based recognizer is used in combination with the team-oriented feature functions.

Many components of the teamwork recognizer are customizable though a variety of parame-

ters. We studied the ways in which the choice of emission probability representations affects the

accuracy and robustness of the teamwork recognizer. The results showed that, compared to the

histogram and Gaussian PDF approaches, the Gaussian Mixture Model (GMM) yielded the best

recognition accuracy.
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8.1 Future Work

Significant future work is required in this domain. For instance, recognizing actions of larger teams

of hundreds of agents is not feasible using the feature function set provided in this thesis as the

dimensionality of the feature vector will grow out of control.

One fundamental issue in teamwork activity recognition, that was left out for future work in

this thesis, is that of team-membership assignment. That is, prior to recognizing the teamwork

activity of a team, the team itself must be recognized. The complexity of this task varies greatly.

For instance, determining team-memberships in team-sports can be performed by distinguishing

visual appearance. In surveillance applications, however, the task is much more complex. In this

case, the physical actions or spatial relationships of the agents needs to be considered.

Below we present future work where preliminary studies have been performed. We have in-

cluded these studies as appendices in this thesis.

• It is well known that real-world datasets are noisy and uncertain due to inaccurate sensors,

occlusions and so on. In Appendix B the Kalman filter is proposed as a method to reduce

noise and to fuse information from multiple sources with varying uncertainty in the context

of the RoboCup Rescue simulation domain. In future work, we plan to improve teamwork

recognition performance by reducing the amount of noise in our real-world dataset by use of

the Kalman filter and/or particle filters.
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• We have in Appendix C, [LEW05], developed a layered approach to learn strategies for in-

dividual agents in the Feed-Fight-Multiply environment. In our approach the strategies were

automatically generated using genetic programming. Future work extends this implemen-

tation to learn teamwork strategies from observations. The teamwork activity recognition

presented in this thesis will play an important role in calculating the fitness of the generated

teamwork strategies.
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APPENDIX A: HIDDEN MARKOV MODELS

107



In this chapter we introduce the algorithms that were used in this thesis to encode and classify

teamwork activities using Hidden Markov Models. In Section A.1 the forward and backward

evaluation algorithms are introduced. In Section A.2 the Viterbi decoding algorithm is presented

and in Section A.3 we present the Baum-Welch and Segmental K-means learning algorithms.

A.1 Evaluation

The evaluation algorithm calculates the probability P(VT | θ) that an observation sequence VT was

generated given an HMM defined by θ = {A,B,π}. The probability value can be calculated as

follows:

P(VT | θ) =
∑

P(VT |ωT )P(ωT ) for all ωT (A.1)

where ωT represents a sequence of hidden states with length T . The summation includes all pos-

sible combinations of ωT . Note that, in the first order HMM, the first and second terms can be

rewritten:

P(VT |ωT ) =

T∏

t=1

P(vt|ωt) (A.2)

P(ωT ) =

T∏

t=1

P(ωt|ωt−1) (A.3)

Hence, Equation A.1 can be rewritten as:

P(VT | θ) =
∑

T∏

t=1

P(vt|ωt)P(ωt|ωt−1)

 for all ωT (A.4)
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Because Equation A.4 relies only on observations from t and t − 1, P(VT | θ) can be calculated

recursively using the forward evaluation algorithm which is presented as pseudo-code in Listing

A.1.

Listing A.1: The forward evaluation algorithm

/ / S e t i n i t i a l p r o b a b i l i t i e s a t t =0
k = V[ t =0] / / I n i t i a l o b s e r v a t i o n
f o r ( j =0; j <h ; j ++) / / Loop i n t e r n a l s t a t e s
{

p [ j ] = B[ j , k ] ∗ π [ j ]
}

f o r ( t =1; t <T ; t ++) / / Loop o b s e r v a t i o n s e q u e n c e
{

k = V[ t ] / / O b s e r v a t i o n
f o r ( j =0; j <h ; j ++) / / Loop i n t e r n a l s t a t e s
{

b = B[ j , k ]
f o r ( i =0; i <h ; i ++) / / Loop i n t e r n a l s t a t e s
{

sum = sum + p [ i ] ∗ A[ i , j ]
}
pNext [ j ] = b ∗ sum

}
p = pNext

}

/ / C a l c u l a t e r e t u r n p r o b a b i l i t y
f o r ( j =0; j <h ; j ++) / / Loop i n t e r n a l s t a t e s
{

P = P + p [ j ]
}

re turn P
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In the first for-loop a vector of forward probabilities p are initialized using the first observation

vector in the input sequence VT and the HMM’s π and B parameters. In the nested for-loop the

probabilities are updated at each time step using the HMM’s A and B parameters. The forward

algorithm outputs the summed probabilities in the p vector.

The backward algorithm calculates p in a similar manner, however, this algorithm initializes p

using the last observation in the input sequence VT and recursively updates the p in reverse. Listing

A.2 shows a pseudo-code implementation of the backward evaluation algorithm.

Listing A.2: The backward evaluation algorithm

/ / S e t i n i t i a l backward p r o b a b i l i t i e s
f o r ( j =0; j <h ; j ++) / / Loop i n t e r n a l s t a t e s
{

p [ j ] = 1
}

f o r ( t =T−2; t >=0; t −−) / / Loop o b s e r v a t i o n s e q u e n c e
{

k = V[ t + 1] / / O b s e r v a t i o n
f o r ( i =0; i <h ; i ++) / / Loop i n t e r n a l s t a t e s
{

f o r ( j =0; j <h ; j ++) / / Loop i n t e r n a l s t a t e s
{

sum = sum + p [ j ] ∗ A[ i , j ] ∗ B[ j , k ]
}
pNext [ j ] = sum

}
p = pNext

}

/ / C a l c u l a t e r e t u r n p r o b a b i l i t y
k = V[ t =0] / / I n i t i a l o b s e r v a t i o n
f o r ( j =0; j <h ; j ++) / / Loop i n t e r n a l s t a t e s
{
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P = P + p [ j ] ∗ B[ j , k ] ∗ π [ j ]
}

re turn P

A.2 Decoding

Decoding is performed to find the optimum hidden state sequence given an input sequence. The

Viterbi algorithm (VA) [For73, Rab90], which is presented as pseudo-code in Listing A.3, can be

used for this task. The algorithm can be separated into three steps:

• Initialize ψ and δ at t=0 (the first visible observation).

• Calculate ψ and δ for the remaining observations by finding the argmax and max values

respectively.

• Backtrack to find the optimum hidden sequence.

Listing A.3: The Viterbi decoding algorithm

/ / I n i t i a l i z a t i o n
k = V[ t =0]
f o r ( i =0; i <h ; i ++)
{

δ [ t =0 , i ] = π [ i ] ∗ B[ i , k ]
ψ [ t =0 , i ] = 0

}

/ / C a l c u l a t e ψ and δ
f o r ( t =1; t <T ; t ++) / / Loop o b s e r v a t i o n s e q u e n c e

111



{
f o r ( j =0; j <h ; j ++)
{

δmax = −∞
f o r ( i =0; i <h ; i ++)
{

δTmp = δ [ t −1 , i ] ∗ A[ i , j ]
i f ( δTmp > δmax )
{

δmax = δTmp
ψmax = i

}
}
δ [ t , j ] = δmax ∗ B[ j , k ]
ψ [ t , j ] = ψmax

}
}

/ / Find e nd i ng s e q u e n c e s t a t e
pmax = −∞
f o r ( i =0; i <h ; i ++)
{

pTmp = δ [ T−1] [ i ]
i f ( pTmp > pmax )
{

pmax = pTmp
s e q u e n c e [ T−1] = i

}
}

/ / B a c k t r a c k t o f i n d v a l i d h id de n s e q u e n c e
f o r ( t =T−2; t >=0; t −−) / / Loop o b s e r v a t i o n s e q u e n c e
{

s e q u e n c e [ t ] = ψ [ t +1 , s e q u e n c e [ t +1] ]
}

re turn s e q u e n c e
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A.3 Learning

The learning problem consists of estimating the HMM parameters A, B and π. In this section we

discuss two well known learning algorithms:

• Baum-Welch (Forward-Backward) algorithm [Rab90, Bil97, DHS00].

• Segmental K-means algorithm [JR90].

A.3.1 Baum-Welch

The Baum-Welch learning algorithm adjusts the parameters in θ such that P(VT |θ), which can

be calculated using the forward and backward evaluation algorithms, is maximized. To formally

describe the Baum-Welch algorithm let us define ξt(i, j):

ξt(i, j) = P(it = i, it+1 = j|VT , θ) (A.5)

which is the probability of being in state i at time t and making a transition to state j at time

t + 1 given the model θ and observation sequence VT . ξt(i, j) can be described using forward and

backward evaluation algorithms:

ξt(i, j) =
αt(i)ai jb j(vt+1)βt+1( j)

P(VT |θ)
=

αt(i)ai jb j(vt+1)βt+1( j)
∑N

i=1
∑N

j=1 αt(i)ai jb j(vt+1)βt+1( j)
(A.6)

where αt(i) is the forward probability that the HMM is in hidden state i at time t. βt+1( j) is the

backward probability that the HMM is in hidden state j at time t + 1. ai jb j(vt+1) is the probability

113



of transitioning from state i to state j and observing vt+1 at state j. Let us now define γt(i):

γt(i) = P(it = i|VT , θ) (A.7)

which is the probability of being in state i at time t given the observation sequence VT and model

θ. γt(i) relates to ξt(i, j) as follows:

γt(i) =

N∑

j=1

ξt(i, j) = expected number of times that state i has been visited (A.8)

which can be interpreted as the expected number of times that state i has been visited. Similarly,

by summing γt(i) and ξt(i, j) over time the expected number of transitions from state i and the

expected number of transitions from state i to state j can be calculated:

T−1∑

t=1

γt(i) = expected number of transitions from state i (A.9)

T−1∑

t=1

ξt(i, j) = expected number of transitions from state i to state j (A.10)

Using these formulas an improved model of θ can be calculated iteratively as follows:

π = expected number of times that state i has been visited at time (t = 1) = γt(i) (A.11)

A =
expected number of transitions from state i to state j

expected number of transitions from state i
=

∑T−1
t=1 ξt(i, j)∑T−1

t=1 γt(i)
(A.12)
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B =
expected number of times in state j and observing visible state v

expected number of times in state j
=

∑T
t=1 γt( j), vt = v∑T

t=1 γt( j)

(A.13)

A.3.2 Segmental K-means

The Segmental K-means learning algorithm maximizes the joint probability, P(VT , I|θ), of the input

sequence VT and its optimum hidden state sequence I given the HMM model θ. The optimum

hidden state sequence I can be calculated using the Viterbi decoding algorithm presented in Section

A.2. The Segmental K-means algorithm can be separated into the following steps:

1. Apply the K-means clustering algorithm to the observations in the input sequences to gener-

ate k cluster centers which depicts the initial representatives of the hidden states ω. Assign

a cluster label to all observations in the input sequences.

2. Learn π by calculating the number of occurrences that the first observation in each input

sequence belong to each cluster.

3. Learn A by calculating the number of occurrences where a transition is performed from

hidden state i to j over all observation sequences.

4. Learn B by fitting a probability density function to each state (cluster).

115



5. Optimize the clusters by calculating the optimum hidden sequence I for all input sequences

given the model parameters θ generated from steps 2-4. Reassign the observation cluster

assignments following I.

6. Perform step 2-5 until converged. That is, there are no reassignments made in step 5.

Listing A.4 shows the pseudo-code of the algorithm. Note that clusters(VT[0]) represents a

mapping from a visible state, in this case the first visible state in an observational sequence, to a

hidden state. Also, clusters[ j] represents all visible observations in cluster (hidden state) j.

Listing A.4: The Segmental K-means learning algorithm

/ / Find i n t e r n a l s t a t e r e p r e s e n t a t i o n s u s i n g K−Means a l g o r i t h m
c l u s t e r s = KMeans ( o b s e r v a t i o n s , h )

/ / Learn π
f o r ( i =0; i <h ; i ++) / / I n i t i a l i z e π [ i ]
{

π [ i ] = 0
}

f o r each Vˆ T i n s e q u e n c e s / / C a l c u l a t e π [ i ]
{

ωF i r s t = c l u s t e r s (Vˆ T [ 0 ] )
π [ωF i r s t ] = π [ωF i r s t ] + 1

}

f o r ( i =0; i <h ; i ++) / / Normal i z e π [ i ]
{

π [ i ] = π [ i ] / ( Number o f v i s i b l e s e q u e n c e s )
}

/ / Learn A
f o r ( i =0; i <h ; i ++) / / I n i t i a l i z e A[ i , j ]
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{
f o r ( j =0; j <h ; j ++)
{

A[ i , j ] = 0
}

}

f o r each Vˆ T i n s e q u e n c e s / / C a l c u l a t e A[ i , j ]
{

f o r ( t =1; t <T ; t ++) / / Loop o b s e r v a t i o n s e q u e n c e
{

ωFrom = c l u s t e r s (Vˆ T [ t −1] )
ωTo = c l u s t e r s (Vˆ T [ t ] )
A[ωFrom , ωTo ] = A[ωFrom , ωTo ] + 1

}
}

f o r ( i =0; i <h ; i ++) / / Normal i z e A[ i , j ]
{

f o r ( j =0; j <h ; j ++)
{

sum = sum + A[ i , j ]
}

f o r ( j =0; j <h ; j ++)
{

A[ i , j ] = A[ i , j ] / sum
}

}

/ / Learn B
f o r ( j =0; j <h ; j ++) / / Normal i z e A[ i , j ]
{

B[ j ] = F i t ( c l u s t e r s [ j ] )
}

/ / Update c l u s t e r s
f o r each Vˆ T i n s e q u e n c e s
{

ω = V i t e r b i (Vˆ T , π , A, B)
f o r ( t =0; t <T ; t ++)
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{
ωS t a t e = c l u s t e r s (Vˆ T [ t ] )
i f (ωS t a t e != ω[ t ] )
{

Remove Vˆ T [ t ] from c l u s t e r [ωS t a t e ]
Add Vˆ T [ t ] t o c l u s t e r [ω[ t ] ]

}
}

}
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APPENDIX B: A ROBUST METHOD FOR ESTIMATING NOISY
MEASUREMENTS APPLIED TO DISASTER RESPONSE OPERATIONS
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To efficiently coordinate rescue operations, decision makers need accurate, unbiased and up-

to-date information. However, the incoming reports in a disaster scenario are of varying quality.

The difficulty of making accurate observations, the stress and affective distress of the reporting

agents can introduce inaccuracies and bias in the observations. Breakdowns in the communication

system can delay the reporting of the observations.

We propose a method to integrate the noisy reports into a robust estimation of measures, such

as the health level of a wounded civilian or the level of damage in a building on fire. Our method

uses a Kalman filter to adaptively filter out noise and biased observations. We test our method in

the context of a disaster scenario simulated in the RoboCup Rescue simulator. We show that the

estimation process is robust and results in more accurate information which ultimately leads to

improved rescue response.

B.1 Introduction

Natural disasters such as the enormous tsunami that devastated large parts of Malaysia and Thai-

land or hurricane Katrina that broke the levees protecting the city of New Orleans cause a lot of

suffering, material damage and loss of human lives. Fortunately, disaster response operations can

greatly reduce the impact of natural disasters. Efficient disaster response requires the coordination

of several organizations: police, firefighters, ambulances, civil and religious organizations and in-

dividual volunteers [BKT06]. In the near future, disaster response will be partially performed with
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teams of rescue robots and robots will autonomously conduct important disaster response tasks

such as search-and-rescue.

Efficient coordination (whether centralized or distributed) requires accurate, unbiased and timely

information about the state of objectives such as the number and status of victims, the amount of

damage and prognosis of the objectives such as buildings and bridges, and the state of roads and

communication networks. This global picture needs to be assembled from a series of observations

reported by individual agents (such as police, firefighters or medics) or by civilians.

Even with a multitude of observations, forming an accurate, unbiased and up-to-date estimate

is a challenge. Disasters are high stress situations, which affect the objectivity of the observers.

Different members of the rescue teams have different levels of training and experience, or they

may possess measurement and diagnostic tools of varying levels of sophistication. This affects the

accuracy of the reports. The emotional state of the reporting subjects might introduce a bias in the

observation. Occasionally downright errors of identification, pranks or malicious agents can intro-

duce outlier observations. Finally, reports may be delayed at various levels due to communication

failures, delays in processing due to the queuing of incoming reports, the active rescue tasks taking

precedence from the communication tasks and so on.

How can we extract the most possible information from this avalanche of observations of var-

ious quality? Obviously, simple methods such as retaining the latest reported observation would

not work, because that observation might be of low quality. An approach which would keep a
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running average of the last several reported observations would ignore the temporal trends; also,

outlier observations such as a mislabeled observation can significantly affect the running average.

In this study we propose an approach which allows us to extract the best possible estimate from

a series of noisy observations. We use a Kalman filter to perform robust estimation and prediction

of values. We test our system in the context of a modified RoboCup Rescue simulator, and show

that significant improvements in the estimation can be obtained.

B.2 Related Work

Noisy and incomplete communication has deteriorating effects on the overall performance of teams

in Multi-Agent System (MAS) applications. Farinelli and Scerri [FS05] developed a novel method

to improve the efficiency in MAS tasks, such as RoboCup Rescue, by reducing the total number of

unnecessary actions taken by robot teams. The method is distributed and allows rescue robots to

balance the benefits and costs of acting based on potentially noisy and erroneous sensor readings.

A Bayesian filter is employed to calculate confidence values of contradictory sensor readings so

that decision whether halt or continue to act can be performed.

In earlier work by Farinelli et. al. [FGI03] components for information fusion, coordination

and planning are incorporated into a Cognitive Agent Development framework. Evaluation criteria

in the context of RoboCup Rescue for performance measures such as efficiency, reliability and

robustness are developed.
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Several systems to collaboratively track objects have been developed in the context of the

RoboCup Soccer competition. Promising work by Dietl et. al. [DGN01] employed Kalman fil-

ters to track player positions and soccer ball position by fusing sensor information from multiple

robotic players. Similar work was performed by Stroupe et. al. in [SMB01].

The Kalman filter [Kal60] is a general data processing algorithm and it has been employed in

numerous other applications. For instance, these filters have been applied in weather forecasting

where multiple models are assimilated to a single and more accurate model [Mac03]. Kalman

filters are used to remove drift from inaccurate sensors in autopilot implementations of airplanes

and boats [KM90]. Similarly, the Kalman filter is used to solve the simultaneous localization and

mapping (SLAM) problem [DNC01] as well as in tracking algorithms [Fox96].

Interesting work by Bacastow et. al. [BCJ03] show that genetic algorithms can be employed to

generate agents that learn to tolerate noisy communication. Results show that, in a predator-prey

environment, collaborating predators trained without communication noise are outperformed by

predators trained with noise.

B.3 Mathematical Foundations of Robust Estimation with Kalman Filters

Our estimation technique is based on the Kalman filter. The Kalman filter is a general data pro-

cessing algorithm frequently used to remove noise in processes described by linear systems or

differential equations [Mac03, Fox96, KM90, DNC01]. The Kalman filter is an optimal recursive
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data processing algorithm which statistically minimizes the error of all available sensor data given

prior knowledge about the sensor devices [Kal60, May79].

Using a Kalman filter, our estimation process is capable of:

• Fusing measurements from multiple distinct sources.

• Managing measurement uncertainties which are the result of sensor characteristics.

• Controlling the degree in which the estimation process adapts to incoming measurements.

• Recursively calculate new estimates to facilitate real-time application.

B.3.1 The Kalman Filter

The Kalman filter is used to estimate the state in processes that are described by the state equation

xt = Axt−1 + But + wt−1 (B.1)

and measurement equation

yt = Cxt + zt (B.2)

In Equation B.1, the state is represented by the vector xt. The matrices A, B, C and the input

control vector, ut, describe the dynamics of the process. Noise is added to the state and measure-

ment equations in the form of process noise, wt−1, and measurement noise, zt. In our estimation
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process the noise vectors wt−1 and zt are the only parameters that need to be carefully tuned to

achieve good estimation performance.

The Kalman filter algorithm, which is used to continuously update the state estimate, is di-

vided into the prediction phase and the correction phase. The prediction phase is responsible for

predicting the state estimate, x̂−t , (Equation B.3) and its associated error covariance, P−t , (Equation

B.4).

x̂−t = Ax̂t−1 + But (B.3)

P−t = APt−1AT + W (B.4)

The second phase is responsible for producing new state estimates using results from the previ-

ous phase as inputs. Equation B.5 calculates the weights or Kalman gain, Kt, that are to be applied

to the new state estimate, x̂t, and its error covariance, Pt. State estimate and error covariance are

updated according to Equation B.6 and Equation B.7. Here, W and Z represent the covariance of

the process noise and measurement noise respectively.

Kt = P−t CT(CP−t CT + Z)−1 (B.5)

x̂t = x̂−t + Kt(yt − Cx̂−t ) (B.6)
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Pt = (I −KtC)P−t (B.7)

Note that the Kalman filter equations are recursive and therefore does not require us to store

the history of measurements. Also, if required by the estimation application the Kalman filter

equations can be used as a multiple input and multiple output state estimator.

B.3.2 Modeling Uncertainty

A closer investigation of the measurement noise covariance, Z, in the Kalman filter equations

above reveals that it directly models the uncertainty of a sensor measurement. For instance, when

Z is large, the Kalman gain is small. This means that the measurement will have less influence on

the updated estimate. On the contrary if Z is small, the gain will be large and the measurement

will influence the updated estimation significantly.

Calculating the noise in sensors or other systems that produce noisy information in real-world

applications is usually performed through an experimental process. For instance, it is possible to

calculate the noise of sensor by acquiring multiple measurements from experiments.
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B.3.3 The Adaptiveness of the Estimation

From Equation B.4 we can see that process noise, W, is added to the predicted error noise. The

process noise is a very important parameter as it determines how adaptive, or responsive, the

estimation process will be to new measurements.

One can also think about the process noise as a parameter that determines the amount of es-

timation history to include in the new estimate. If the process noise is too small the estimation

process will be unable to adapt to new sensor measurements. In this case, too much history is in-

cluded in the estimation process. If on the other hand the process noise is too large the estimation

process will quickly adapt to new measurements resulting in estimates that are no better than the

noisy measurements. Both cases should be avoided as they result in poor estimates.

B.4 Implementation

B.4.1 The RoboCup Rescue Simulation Environment

The RoboCup Rescue simulation environment [KTN99] simulates urban disaster response sce-

narios. The environment contains three types of agents: police-force, ambulance teams and fire-

brigade. The simulated rescue robots work together in a city devastated by an earthquake where

the ultimate objective is to rescue as many injured civilians as possible. The rescue robots need

to perform search-and-rescue missions, put out fires in buildings and remove blockages from the

streets in the city.
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The rescue robots are specialized: only the fire-brigade can put out fires, only the ambulance

team can rescue civilians and only the police-force can remove blockages from the streets. All

rescue robots can, however, sense the environment to detect fires and injured civilians in need of

rescue. The robots are equipped with sensors that can determine health, damage rate and buriedness

of an injured civilian. The damage rate is a measure of how much health a civilian is loosing every

simulation cycle and thus allows us to make a prognosis about the state of the civilian in the future.

Buriedness measures the effort required to rescue the civilian from a burning or collapsed building.

The rescue robots can directly send reports about the status of civilians, fires and blockages to

each other if they are of the same type. Reports which need to be communicated with rescue robots

of different type can by processed and forwarded by communication centers.

B.4.2 Estimating the Life-Expectancy of Civilians

Measuring the life-expectancy of an injured civilian includes determining the severity of one or

more injuries. In the case of a rescue robot the life-expectancy measurement need to be conducted

through sensors or some kind of reasoning system. If the injured civilian is conscious, then for

instance, a rule-based or expert system can be used to measure the life-expectancy by interviewing

the civilian. There is always a measure of uncertainty and potentially bias in the estimate of the

severity of the injuries. In general, we can expect that a medic of the ambulance team provides a

better estimate than a policeman or a firefighter.
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In this section we apply the estimation process to estimate the life-expectancy of injured civil-

ians in the RoboCup Rescue simulation. Such life-expectancy estimations can be used to prioritize

the tasks of ambulance teams in the RoboCup Rescue simulation.

Life-expectancy is derived from reports, generated by the rescue robots, which consist of

health, damage rate and buriedness measurements of injured civilians. We apply the estimation

process to each measurement individually, therefore, the state vector consists of one variable only.

Our health estimation process is designed based on the simple fact that civilian health, H, is

related to the damage rate, d
dt H, through the following equation:

Ht = Ht−1 + ∆T · d
dt

Ht (B.8)

From Equation B.1, matrices A and C are constants that we set to 1. Matrix B is the elapsed

time, ∆T , between two measurement occurrences. The input control vector, ut is assigned to the

current damage rate estimate, d
dt Ht.

Similarly, the estimate process is applied to the damage rate and buriedness measurements.

Here, however, since we do not have any control input it is set to 0.
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B.5 Experimental Results

B.5.1 Experimental Setup

We evaluate the estimation methodology by applying it to civilian injury reports acquired from

multiple ambulance, fire-brigade and police-force teams in a typical RoboCup Rescue simulation

run. The ambulance communication center receives reports and continuously executes the life-

expectancy estimation process as illustrated in Figure B.1.

Ambulance 

Communication Center

Police    

Communication Center

Fire-brigade 

Communication Center

Ambulance 

Team

Ambulance 

Team

Police 

Force

Police 

Force

Fire-

brigade

Fire-

brigade

Estimation 

Process

Injury 

Reports      

Figure B.1: The communication flow of injury reports for ambulance, fire-brigade and police force.
The estimation process is maintained by the ambulance communication center and it continuously
estimates civilian life-expectancy based on incoming injury reports.

We employed our GoldenKnight rescue team to gather data from the RoboCup Rescue simula-

tion. In our experiments the GoldenKnight team consisted of 6 ambulance agents, 10 fire-brigade

agents and 8 police-force agents. The simulator was configured to use the standard Kobe map

populated with 72 civilians. Simulation time was set to 300 cycles.

130



The RoboCup Rescue simulator in its default mode assumes that the reports are always correct

(although rounded to the nearest 10%). To make the scenario more realistic, we modified the setup

such that we add a controlled amount of Gaussian noise to the reports. Our setup also allows us to

tailor the noise characteristics depending on the source of the observations.

B.5.2 Estimating the Life-Expectancy of a Single Civilian

We have conducted three separate experiments using reports concerning a single injured civilian.

Experiment 1 uses reports which are using the same amount of noise independently of the ob-

server. Experiment 2, assumes that the medics and firefighters can assess the health of the civilian

better than the police-force, and thus applies a differentiated amount of noise. The measurement

noise parameter of the estimation process is adjusted accordingly. Finally, in Experiment 3 we

apply the estimation process to reports that are free of noise. In all experiments, the ambulance

communication center received a total of 44 reports for this civilian.

Experiment 1

In this experiment all the injury reports have a Gaussian noise with a standard deviation of 750

for the health value, 10 for the damage and 10 for buriedness. One way to measure how good our

estimation process is to compare it against a naive, history-less estimation strategy, which assumes

that the latest reported observation is the current best estimate.
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The results of the experiment are shown in Figure B.2. The top three graphs show real value,

the naive and the robust estimate for civilian health, damage and buriedness respectively. The bot-

tom three graphs show the absolute error of the naive and robust estimation values. Reports from

firefighter, ambulance and police are indicated by diamond, square and triangle markers respec-

tively.

The statistical properties of the estimation error are shown in Table B.1 for the naive estimation

and in Table B.2 for the robust estimation. We find a very significant reduction in all the statistical

measures of the estimation error.

Experiment 2

One of the benefits of using our estimation process is that reports with different noise or uncer-

tainties can easily be incorporated into the estimation process by adjusting the measurement noise

parameter. As a result, the estimation process can be configured to assign less importance to reports

we know are uncertain.

In this experiment we assume that the police-force is less qualified than medics and firefighters

to evaluate the severity of an injury. We model this by adding a Gaussian noise with a standard de-

viation of 1500 for the health, 20 for damage and 20 for buriedness for the reports originating from

the police, while maintaining the values of 750, 10 and 10 respectively for the reports originating

from medics and firefighters. Also, we incorporate this knowledge into the estimation process by

adjusting the measurement noise parameter accordingly.
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From Figure B.3 we can visually determine that the robust estimation process successfully

applies less weight to reports from police force. As an example, the robust estimation error of

health is not significantly increased by the first two spikes that originate from the police at time

0-25. On the other hand, the robust estimation error is increased for spikes that are generated by

firefighters as observed around time 150-200.

As expected, the statistical summary in Table B.3 and Table B.4 reveals that the absolute error

is significantly smaller for the robust estimation.
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Figure B.2: Measurements on Experiment 1. The top graphs show real values and the naive and
robust estimations for the health (left), damage (center) and buriedness (right) of the civilian. The
bottom three graphs show the absolute error of naive and robust estimation.
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Table B.1: Statistical properties of the absolute error for the naive estimation in Experiment 1.

Measurement Mean Std. dev. Max Min Conf. int. 95%
Health 686.8 534.3 1820.9 0.4 ±157.9
Damage 7.0 5.3 20.0 0.04 ±1.6
Buriedness 6.0 3.7 14.0 0.4 ±1.1

Table B.2: Statistical properties of the absolute error for the robust estimation in Experiment 1.

Measurement Mean Std. dev. Max Min Conf. Int. 95%
Health 103.4 75.0 298.3 4.7 ±22.2
Damage 3.2 2.4 10.3 0.1 ±0.7
Buriedness 5.3 1.4 7.8 1.4 ±0.4
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Figure B.3: Measurements on Experiment 2. The top graphs show real values and the naive and
robust estimations for the health (left), damage (center) and buriedness (right) of the civilian. The
bottom three graphs show the absolute error of naive and robust estimation.
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Table B.3: Statistical properties of the absolute error for the naive estimation in Experiment 2.

Measurement Mean Std. dev. Max Min Conf. Int. 95%
Health 639.2 657.2 2354.2 6.3 ±194.2
Damage 8.5 8.1 41.6 1.3 ±2.4
Buriedness 9.8 7.6 35.2 0.2 ±2.2

Table B.4: Statistical properties of the absolute error for the robust estimation in Experiment 2.

Measurement Mean Std. dev. Max Min Conf. Int. 95%
Health 112.8 87.0 339.0 0.3 ±25.7
Damage 3.1 2.4 9.3 0.02 ±0.7
Buriedness 7.7 2.7 12.7 0.8 ±0.8

Experiment 3

Finally, we apply our estimation process to reports generated without Gaussian noise. This is the

original configuration in which RoboCup Rescue competitions have been conducted in the past.

Note that, in this simulation, the health and damage can only be sensed by the rescue robots in

increments of 1000 and 10 respectively. As a result, there is a round-off error in the reports.

In Figure B.4 we can see that the absolute error using the robust method is smaller than the

naive error. Hence, even in the absence of noise the robust estimation process is outperforming the

naive approach. Statistical results are presented in Table B.5 and Table B.6.
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Figure B.4: Measurements on Experiment 3. The top graphs show real values and the naive and
robust estimations for the health (left), damage (center) and buriedness (right) of the civilian. The
bottom three graphs show the absolute error of naive and robust estimation.

Table B.5: Statistical properties of the absolute error for the naive estimation in Experiment 3.

Measurement Mean Std. dev. Max Min Conf. Int. 95%
Health 228.2 100.5 431.0 54.0 ±29.7
Damage 4.1 3.6 14.0 0.0 ±1.1
Buriedness 0.0 0.0 0.0 0.0 ±0.0

Table B.6: Statistical properties of the absolute error for the robust estimation in Experiment 3.

Measurement Mean Std. dev. Max Min Conf. Int. 95%
Health 150.1 80.0 310.0 4.1 ±23.6
Damage 3.7 2.9 10.2 0.0 ±0.9
Buriedness 0.0 0.0 0.0 0.0 ±0.0
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B.5.3 Estimation Process Applied to All Civilians

In this section we present the absolute error of robust and naive estimation applied to all civilians

throughout one simulation. Figure B.5(a) and Figure B.5(b) show box plots of the absolute error

where Gaussian noise was added equally, as in Experiment 1, and where more Gaussian noise was

added to the police-force, as in Experiment 2.

It is noticeable that the standard deviation, from the single civilian experiments, as well as

the inner quartile range using robust estimation of health, damage and buriedness in Figure B.5 is

consistently smaller compared in the to the naive approach. This is an indication that measurements

from our estimation process not only are on average closer to the real values but also more robust

and reliable.

B.6 Conclusions

In this study we presented an approach to acquire robust estimations of critical information in dis-

aster rescue scenarios by applying a Kalman filter to noisy reports coming from agents in the field.

We implemented our approach in the context of a modified RoboCup Rescue simulation environ-

ment. A series of experiments validate our approach. We found that our estimate methodology

gives significantly better results than a naive, history-less, approach. Future work will involve

more fine grain characterization of the information sources, cross-validation using correlated mea-

surements as well as investigations into non-linear filters.
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Figure B.5: Absolute error of robust and naive estimation applied to all civilians. Figure B.5(a)
show box plots where noise is added equally to all reports. Figure B.5(b) show box plots where
more noise is added to police reports. The box plots show lower quartile, median, upper quartile
and outliers.
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APPENDIX C: A TWO-STAGE GENETIC PROGRAMMING
APPROACH FOR NON-PLAYER CHARACTERS
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Developing intelligence for non-player characters is a complex task. Non-player characters

need to be situationally aware of their environment, and make intelligent decisions based on their

perceptions. Scripting techniques are limited and unflexible. In this study, we present a two-stage

approach for developing non-player characters. In the first stage, tactical behaviors are learned in

the context of situational models consisting of pre-determined environment situations and scoring

measures. In the second stage, the tactical behaviors from the first stage are combined to form game

strategies. The process is semi-automatic as it requires the game developer to provide relevant

situational models as well as general outlines of the desired strategy. We test our approach in a

turn-based artificial life game.

C.1 Introduction

Non-Player Characters (NPC) are used in many of today’s games. One important factor deciding

a game’s economical success resides within its computer controlled NPCs. For a game to be

considered fun, NPCs need to be intelligent but not too intelligent: they should exhibit human-like

weaknesses and preferences. This equilibrium is very difficult to maintain as it depends on the

human player’s personal definition of what is exciting. Ideally game NPCs would always adapt to

the player’s idea of fun. Although the idea of “fun” is difficult to quantify, it is obvious that NPC’s

with scripted behavior are considered fun only at the first encounter, which limits the replayability

of the game, and ultimately, its commercial success. The only reliable way to make NPC appear
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intelligent is to provide it with genuine intelligence: the ability to make appropriate, non-scripted

tactical decisions based on the environment and to assemble those in long term strategies.

In this study we present a two-stage genetic programming based approach to the development

process of NPCs. The environment we consider is a simple game called Feed-Fight-Multiply

(FFM) (see Section 3.5.3). In the first stage, tactical behaviors are learned using genetic pro-

gramming and situational models consisting of pre-determined environment situations and scoring

measures. In the second stage, the resulting behaviors are combined to form NPC game strategies.

The process is semi-automatic as it requires the game developer to provide situational models as

well as strategy configurations whereas the learning process is performed automatically.

C.2 Related Work

Schultz and Grefenstette [SG92] presented an approach to evolve reactive behavior for autonomous

agents. Schultz and Grefenstette introduced a learning system called SAMUEL which utilized

genetic algorithms to generate production rules describing behaviors for autonomous vehicles.

Koza [Koz90] showed that a tree-based representation containing LISP S-Expressions can be

used in order to evolve executable code to mimic the behavior of an artificial ant trying to solve

the Santa Fe Trail problem. The main problem with Koza’s approach is that constraints must be

introduced in the tree structure for evolutionary operators such as crossover and mutation to work

properly.
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In [Lar04] an approach that utilizes gramatical evolution [RCO98] was introduced. This ap-

proach differentiates from Koza’s tree based genetic programming approach in the sense that in-

dividuals are represented as integers instead of trees. The integers are mapped to an arbitrary

programming language that descibes the behavior of an individual. The main benefit of such ap-

proach reside in its flexibility as no contraints need to be included for the mutation and crossover

operators.

C.3 The Genetic Programming Paradigm

Genetic Programming (GP) [Koz90] is an evolutionary algorithm in which the units of evolution

are programs. Each program is represented by a tree, where the leaves are terminals while the

nodes are functions. For example, the expression 7+(3*2) can be represented by a tree structure

shown in Figure C.1. Tree structures can easily be parsed, compiled and executed as program code.

The standard operations of genetic algorithms (crossover and mutation) can be easily defined on

a tree structure. Initially, genetic programming relied only on crossover operations, and relied on

a large initial population in order to keep diversity within the population [Mit96], [Fre94]. Other

researchers, however, argued that mutation can be useful and have suggested several versions of

genetic mutation operators. A simple version of a genetic mutation operator is to pick a random

point in the tree and replace the structure below that point with a new randomly generated structure.

The genetic programming algorithm is similar to the standard genetic algorithm presented by

Holland [Hol75]. The main difference lies in the elements used by the algorithm: the function set
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and the terminals. The function set is a series of functions (arithmetical, boolean, etc) and state-

ments (conditional, control, etc) that are available to the genetic programming algorithm [BNK98].

The terminals are a series of constants and variables that which serve as leaves of the tree. In the

context of the example given in Figure C.1, the operators + and * would be defined as functions

in the function set while the constants (7, 3, 2) would be defined as terminals. Furthermore, a

fitness function must be defined in order to determine how well a specific individual can solve the

problem trying to be resolved.

+

x

23

7

Figure C.1: Example tree structure that returns 7+(3*2).

The algorithm is controlled by a set of control parameters: the population size, crossover prob-

ability, mutation probability (if used), selection method and the number of generations for which

the algorithm will run. As a result of crossover and mutation operators, the individual trees will

grow in size and so it is necessary to determine a maximum size of the individual.

The genetic programming algorithm can be implemented as either generational genetic pro-

gramming [Koz90], or as steady state genetic programming [Rey92] based on the genetic algorithm

equivalent [Sys91].
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The generational genetic programming algorithm can briefly be described as the following.

After defining the function set and terminals, we construct the initial population. This is for most

cases a random process, but for some applications we might start from a set of pre-determined

individuals. Each individual is evaluated by the fitness function.

Depending on the selection algorithm a set of individuals is exposed to the genetic operators

(crossover and in some cases mutation). The control parameter for crossover and mutation proba-

bility is used to determine which of the selected individuals to be exposed to the genetic operator,

basically creating a set of new individuals. The algorithm is iterative and each of the individuals

within the population is yet again evaluated by the fitness function. The algorithm continues until

it has reached predetermined number of generations.

C.4 Learning Tactical and Strategic Behaviors

Our approach for creating NPCs is divided in two stages. In the first stage, we evolve tactical

behaviors for specific situations. In the second stage, we combine the tactical behaviors into game

strategies. The same approach can be generalized to almost any game, by adapting the nodes of

the GP learning algorithm to the properties of the game.

The first stage aims to create the basic set of tactical behaviors needed to play the game in

different situations. Such behaviors could be to locate food resources, to eat them, to avoid or

engage in hostile conflicts with opponent characters in the game. A fitness function that determines

if a tactical behavior is good or bad must be provided by the designer in order for GP to converge
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to a solution. Note that these tactical behaviors alone can not be used to successfully play the

game. Typical outputs gathered from the GP in this training stage consist of speed and direction of

movement.

In the second stage the tactical behaviors determined in stage one are used in the training

process to form game strategies. The strategies are evolved using GP and its user-defined fitness

function. The choice of the fitness function determines the nature of the evolved strategy. For

instance, if the fitness function favors strategies engaging in conflicts or attacking other characters

in the game then the GP will prefer individuals with high attack measures and eventually it will

converge to form this game strategy. Once the GP has converged and the best individual has been

found it can be used to determine which tactical behavior to run based on the NPCs contextual

perception. Hence, the individual evolved acts much like a Finite State Machine (FSM) where the

states are represented by tactical behaviors and the transition rules are built into the individual in

the form of control structures. The remainder of this section discusses the GP configuration used

when training tactical behaviors and strategies for the FFM game.

C.4.1 Stage 1 - Evolving Tactical Behaviors

To evolve tactical behaviors we need to define a set of situational models and their desired char-

acteristics. A situational model is defined by an environment, in our case a FFM game map, and

a specialized fitness function. The situational models are tailored for each tactical behavior that is

being learned. In our experiments, we created models for four types of tactical behaviors:
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• Eat-food: Attract to food

• Attack: Attract to any other character

• Flee: Repel from any other character

• Wander: Attract to unexplored parts of map

All behaviors incorporate obstacle avoidance. The experiments were run using a generational

genetic programming algorithm evolving for 50 generations with a population size of 100. Tourna-

ment selection with a size of 7 was used as selection algorithm. Crossover and mutation probability

was set to 90% and 10% respectively. As for mutation, a single point mutation operator was cho-

sen. The single point mutation selects a random node in the tree and replaces the sub-tree of that

node with a new randomly generated sub-tree. The only constraint on the newly generated subtree

is to be compatible with the selected node. The crossover operator was set to one-point, which is

equivalent to the one-point operator used in many standard genetic algorithms.

The function set and terminals are described in Table C.1 for all four experiments. The terminal

nodes marked with (*) depict terminal nodes that incorporate significant external processing. For

instance, the food direction terminal is externally calculated based on the closest food resource

available to the NPC and the unexplored direction terminal is calculated based on an external data

structure which maintains visited waypoints in the world. The external processing is performed in

helper functions. The obstacle functions, one for each direction, return a boolean value showing if
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an the NPC can move in the given direction or not. The remaining functions are used as control

structures. They are used to incorporate decisions in the tree.

Table C.1: T = Terminal, F = Function. Terminal nodes marked with (*) depict nodes that require
significant external processing in the form of helper functions.

Name Type Description
*FoodDirection T Direction to the closest food.
*AgentDirection T Direction to the closest opponent NPC.
*UnexploredDirection T Direction to the closest unexplored region.
RandomDirection T Random direction
CurrentDirection T Current moving direction
ObstacleNorth F Check if obstacle is north
ObstacleSouth F Check if obstacle is south
ObstacleEast F Check if obstacle is east
ObstacleWest F Check if obstacle is west
Not F Operand used to invert boolean expressions
If F Conditional statement
Equals F Operand used in conditional statements
NotEquals F Operand used in conditional statements

C.4.2 Stage 2 - Evolving Game Strategies

Game strategies can be created by combining tactical behaviors in finite state machines. With the

tactical behaviors already created, the challenge is to find the appropriate transition rules. We used

GP to evolve the transitions rules for FSM-like structures. The main benefit of the approach is that

many types of strategies can be created simply by adjusting the fitness function of the GP. The GP

configuration used to demonstrate this feature is shown in Table C.2.
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Table C.2: T = Terminal, F = Function.

Name Type Description
StateWander T Constant depicting the wander behavior
StateAttack T Constant depicting the attack behavior
StateEat T Constant depicting the eat behavior
StateFlee T Constant depicting the flee behavior
StateRandom T Constant depicting any behavior
Add F Addition operator
Mul F Multiplication operator
Sub F Subtraction operator
If F Conditional statement
Equal F Operand used in conditional statements
LesserEqual F Operand used in conditional statements
GreaterEqual F Operand used in conditional statements
Random F A random value
NumberOfAgents F Number of NPCs in sensor
NumberOfFood F Number of food resources in sensor
EnergyLevel F Energy level of the NPC

The terminal nodes consist of StateWander, StateAttack, StateEat, StateFlee and StateRandom.

The StateRandom terminal is a randomly selected state and its primary function in the GP is to

maintain population diversity. The terminal nodes depict tactical behaviors as described in stage

1. Addition, subtraction and multiplication functions enable the GP to find individuals operating

on NPC sensor data. The NPC sensor data used in this GP is incorporated in the NumberOfFood,

NumberOfAgents and EnergyLevel functions. These functions return data based on the NPCs

situation in the game. Many interesting behaviors can be formed using this simple set of terminal

nodes and functions. We created two types of strategies based on work performed in stage 1:

• Balanced: Avoid specialization
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• Aggressive: Specialize on attacking

The balanced strategy seeks to create an NPC that doesn’t specialize on any type of behaviors.

Other than the terminals and functions seen in Table C.2 the GP configuration is exactly the same

as described in stage 1.

C.5 Experimental Results - Stage 1

C.5.1 Eat-Food Behavior

The situational model for this experiment consisted of a 200x200 pixel game map. The map

contains static obstacles covering approximately 20% of the map and 50 randomly distributed

food units. The fitness function calculates a score between 0-100, where 0 is best or optimum

score and 100 is worst score. An ideal individual is defined as an NPC that does not collide with

obstacles and that eats all the food resources that are available. The score is derived based on the

number of failed move sequences, the length of the failed move sequences and the amount of food

eaten. Failed move sequences are first squared, to penalize agents that collides with obstacles over

longer sequences, and then summed together to form a final sum of squares value. The sum of

squares value is then divided by a pre-determined maximum value, in our case empirically set to

250000. As a result, a value between 0 and 1 is found for the failed moves scoring mechanism.

Similarly, the actual amount of food eaten is divided by maximum amount of food, in our case 50,

to generate a final score value between 0 and 1. To summarize, the final fitness value is calculated
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using the following formula:

Fitness =
(1 − S Food)

2
+

S FailedMoves

2
(C.1)

Note that the food score is inverted as it is desirable to eat a lot of food. The two scoring

components have equal influence or weight on the total fitness. Each agent is allowed to execute

for 1000 simulation cycles to determine its fitness value. In order to avoid situations where an

individual generates good fitness values purely based on its random initial location we calculated

an average fitness from four runs using the same individual. Figure C.2 shows a fitness graph over

50 generations. The best individual over the experiment was found in generation 41 and it had a

fitness value of 0.01 (very close to the optimum). Average fitness at the last generation was 0.3759

and best individual of the last generation had a fitness of 0.05. The randomly generated individuals

in the initial population, in generation 0, perform very poorly, with an average fitness of 0.923.

This is an expected result as the initial population is completely randomly generated.

As the results of the experiment, an operational eat behavior of the NPC was evolved. Although

the optimal solution was not found, the best individual was able to, in most cases, effectively avoid

obstacles and feast on the available food. Approximately 8 hours of computation time was required

for the GP to complete 50 generations on a 1.8GHz Pentium-4 processor.
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Figure C.2: Fitness graph for average fitness, best individual fitness of generation and best individ-
ual fitness of run for the Eat-Food behavior experiment.

C.5.2 Other Tactical Behaviors

The attack and wander behavior is very similar to the eat-food behavior. Therefore, we decided

to reuse the best eat-food individual and merely replace FoodDirection terminals with AgentDi-

rection terminals. Using this approach our NPC will follow opponent characters and attack them

whenever it is possible. Similarly, if FoodDirection terminals are substituted with UnexploredDi-

rection terminals the behavior will specialize to explore unexplored terrain. The flee behavior can
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also be derived from the individual generated by the eat-food behavior experiment. For simplicity

we simply replace all FoodDirection terminals with the inverted AgentDirection terminal. This

generates the desired behavior where our NPC repels from other characters in the game.

C.6 Experimental Results - Stage 2

As we did not manage to evolve tactical behaviors which reliably avoid being stuck on obstacles,

we decided to augment the evolved behaviors with helper functions. The helper functions used in

stage 1 were extended to make use of a classic A* path-finding algorithm in order to avoid getting

stuck on obstacles when traversing the environment. The game strategies, balanced and aggressive,

were generated in a 400x400 pixel game map containing obstacles and 100 food resources. In

addition, three types of opponent NPCs, two of each type, were added to the game during training.

The first NPC type simply wanders around in the environment. The second type of NPC can

attack and it is also able to eat food resources. The third NPC type can only flee if it is attacked.

The purpose of the opponent NPCs is to generate hostile and conflicting situations from which

strategies resolving these situations can be evolved. Strategies are formed based on weights that

depict the importance of each specialized behavior. The fitness function is calculated using the

following formula:
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Fitness = S Food · wFood + S Attack · wAttack

+ S Flee · wFlee + S Wander · wWander (C.2)

Food score is a measure of how much food compared to the total amount available was actu-

ally consumed. Attack score is a measure of how many attacks were successful. Flee score is a

measure of how many flee commands were successfull. Finally, the wander score determines how

much of the map that was covered. Each of these scores have values between 0-1. The maximum

amount of successful attack and flee attempts are empirically chosen based on the game configura-

tion. More opponent NPCs increase the chances of hostile situations to occur, therefore empirical

measures must explicitly be defined. This is never an issue for the food score and map coverage

measurements as the maximum values can be calculated in advance. Each individual in the popu-

lation represent a valid game strategy and they are evaluated by executing them in the FFM game

for 1000 simulation cycles each. Four NPCs using the same game strategy are allowed to execute

concurrently to eliminate individuals that were successful purely based on their random initial lo-

cation. The scores are averaged between the four NPCs. The four game strategy NPCs were not

allowed to attack each other. The balanced game strategy was evolved using equal weights, 0.25

for each weight type. The aggressive strategy on the other hand was configured with higher weight

values for attack and flee, 0.40, and remaining weights set to 0.1. Figure C.3 show a fitness graph

for the average population for both game strategies.
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As we can see from this figure, the attack strategy converged around generation 15, while the

balanced strategy around generation 25. Approximately 24 hours of computation time was required

for the GP to complete 50 generations on a 1.8GHz Pentium-4 processor.
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Figure C.3: Fitness graph for average fitness over 50 generations for the general strategy and
the attack strategy. The attack strategy converges around generation 15 and the general strategy
converges around generation 25.
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C.6.1 Validation of Game Strategies

In order to validate the game strategies that were evolved, we allowed them to execute in the

FFM map from Figure 3.12 for 20 individual runs each for 4000 simulation cycles. Each run

was set up with 5 balanced strategy NPCs, 5 aggressive strategy NPCs, and 6 hand coded NPCs

out of which 3 exhibited aggressive while 3 defensive behavior. The desired results are that the

aggressive strategy will have high numbers of successful attacks and that the balanced strategy will

not specialize on any type of behavior. Table C.3 and Table C.4 show the results of the validation

runs. The aggressive strategy was able to perform on average 23.45 successful attacks. This is

more then twice as much as the balanced strategy was able to do. The aggressive strategy involves

no eating food and few attempts to flee when in conflict. The map coverage average of 4% for the

aggressive strategy is very low. Thus, this specialized strategy is waiting for opponents to arrive in

the sensor range and then it attacks.

Table C.3: Validation data for the attacker strategy.

Average Min Max Conf. Int. 95%
Attack 23.45 0.00 71.00 3.21
Eat 0.00 0.00 0.00 N/A
Flee 2.96 0.00 16.00 0.81
Coverage 0.04 0.01 0.15 0.0041

The balanced strategy that was evolved has on average 154.04 successful eat attempts, map

coverage of 23% and 10.57 successful attack attempts. Note that it takes 4 successful eats to empty
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Table C.4: Validation data for the general strategy.

Average Min Max Conf. Int. 95%
Attack 10.57 0.00 58.00 2.19
Eat 154.04 4.00 409.00 22.95
Flee 0.00 0.00 0.00 N/A
Coverage 0.23 0.02 0.49 0.03

a food resource with the game configuration used here. The balanced strategy, as expected, is more

general then the attacker strategy as it involves eating, attacking and more extensive wandering.

C.7 Conclusions

Our experiments show that the genetic programming paradigm was successful in generating tacti-

cal behaviors, if provided with helper functions to guide the NPC in the FFM game. As with all

evolutionary approaches better results may have been achieved by tweaking the GP configuration,

for instance by using larger population sizes. These behaviors are able to eat food, attack oppo-

nents, flee and avoid obstacles. The tactical behaviors we evolved are non-optimal, for instance

sometimes they get stuck on obstacles. We have described an approach which makes it easy to cre-

ate various game strategies for NPC using tactical behaviors. Simply by adjusting a set of weights

many types of NPC game strategies can be created. In this study, two types of game strategies, ag-

gressive and balanced, were successfully created and validated. The balanced strategy was able to

eat food, attack and wander around in the game. The aggressive strategy specialized on attacking

opponent characters in the game.
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In the experiments presented in this study, the NPCs have been evolved in a non-competitive

environment. We believe that the evolved agents would evolve a different behavior in a different

environment such as one containing competitive opponents. In our experiments we did not take

into account the lack of food, or the risk of getting attacked and terminated. The nature of the FFM

game might be too simplistic in such that complex game strategies are not easily evolved due to the

small number of tactical behaviors. By adding more actions to the FFM game, such as spell casting

or any similar game-like action, more options will become available. One option would be to have

a number of tactical behaviors merged into one more complex behavior. These combined tactical

behaviors are symptomatic with an agent being in a certain role or having certain characteristics.

The developer would then be able to assign the agent a role or characteristics which would form a

platform of behaviors of the agent.
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APPENDIX D: MATHEMATICAL FOUNDATIONS
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D.1 Linear Algebra

• Scalar: x

• Vector (column): x =

[
x1 x2 ... xn

]

• Matrix (M × N): A =



x11 x12 ... x1n

x21 x22 ... x2n

... ... ... ...

xm1 xm2 ... xmn



• Transpose: AT

• Symmetric Matrix: A = AT

• Conjugate Transpose: A+

• Determinant: |A|

• Matrix Inverse: A−1

• Identity Matrix: I =



1 0 ... 0

0 1 ... 0

... ... ... ...

0 0 ... 1



• |A| = 0⇒ A not invertible. If a matrix is not invertible it is also called ”Singular”.

• Eigenvectors and eigenvalues of a matrix |A| satisfies the following equation: Aφi = λiφi
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• We can find the eigenvalues by solving: |(A − λI)| = 0 for n roots.

• Determinant of A = |A| = ∏N
i=1 λi.

• |A| = 0⇒ at least one λi = 0.

• trace(A) =
∑N

i=1 xii =
∑N

i=1 λi

• rank(A) = number of non zero λi’s.

• If A is symmetric (A = AT ), λi’s are real.

• If A is symmetric (A = AT ) and λi , λ j the φiφ j = 0.

• Eigenvalues of a symmetric matrix form an orthonormal set.

• Condition number: λmax/λmin

• Positive definite matrix: xT Ax ≥ 0 for all x. This implies λi > 0.

• Positive semi-definite matrix: λi ≥ 0

• Negative definite matrix: λi < 0

• Negative semi-definite matrix: λi ≤ 0

D.2 Vector Calculus

• Scalar function: f (x1, x2, ..., xn) = f (x)
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• Derivative of scalar function: ∇x f =
∂ f (x)
∂x =



∂ f
∂x1

∂ f
∂x2

...

∂ f
∂xn



• Vector function: f(x1, x2, ..., xn) = f(x), where f is an m × 1 vector and x is n × 1 vector.

• Derivative of vector function: ∇xf =
∂f(x)
∂x =



∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

... ∂f2
∂xn

... ... ... ...

∂fm
∂x1

∂fm
∂x2

... ∂fm
∂xn



• d
dx (Ax) = A

• d
dx (yT Ax) = AT y

• d
dx (xT y) = y

• d
dx (xT Ax) = (A + AT )x, if A = AT ⇒ 2Ax

D.3 Least Squares Method

Let Ax = b depict a linear equation system where A is m × n matrix, x is a n × 1 vector and b is a

m × 1 vector. There are three different configurations of such equation system:

• If m = n, the system only has one unique solution. In this case the equation system is solved

using matrix inversion.
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• If n > m, then the system has infinite solutions. This case can be handled, but not by the

least squares method.

• If m > n, then there exists more equations than variables. To solve this equation system the

Minimum Mean Square Error (MMSE) method can be used:

– Define an error vector: e = (Ax − b)

– Minimize the L2-norm of the error vector: L2-norm of e⇒ J = |e|2 = eT e

– J = eT e = (Ax − b)T (Ax − b) = xT AT Ax − 2bT Ax + bT b

– Minimize by calculating the derivative and setting it to 0: ∇xJ = 2ATAx − 2ATb + 0 = 0.

– Solving this equation yields: x = (ATA)−1ATb, where (ATA)−1AT is called the pseu-

doinverse.

– In the special case where m = n and A is invertible: (ATA)−1AT = A−1(AT)−1AT = A−1,

which is the solution from the first configuration mentioned above.

D.4 Gradient Descent

Let f (x) be a scalar function of a vector x. The gradient decent procedure identifies the x that

minimizes f (x):

• Start with initial selection x′

• Compute gradient of x′, d f (x′)
dx
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• Update, x′ = x′ − k
[

d f (x′)
dx

]
, where k is a scaling factor.

Furthermore, the gradient descent method can be used as an iterative solution to the least squares

problem:

• Ax = b

• e = (Ax − b)

• J = eT e = (Ax − b)T (Ax − b) = xT AT Ax − 2bT Ax + bT b

• ∇xJ = 2ATAx − 2ATb

• xn+1 = xn − k(n)
[
2ATAx − 2ATb

]
= xn − k(n)AT [Ax − b] = xn − k(n)ATe

D.5 Probability Theory

• Let χ be a continuous random variable that takes on values over some interval (a, b).

• Cumulative distribution function (CDF): F(a) = Probability{χ ≤ a}

– F(∞) = 1.0

– F(−∞) = 0.0

• Probability density function (PDF): p(x) =
dF(χ)

dχ

• For discrete random variables we have probability mass functions.
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• Expected value of a function of a random variable: g(χ) = E(g(χ)) =
∫ ∞
−∞ g(χ) ∗ p(χ)dχ

– Mean: E(χ) =
∫ ∞
−∞ χ ∗ p(χ)dχ

– Variance: σ2
χ = E(χ2) − E2(χ)

• The joint CDF of two random variables (r.v.) x and y is given by: Fx,y(a, b) = Pr(x ≤ a, y ≤

b)

• The joint PDF is given by: px,y =
∂2Fx,y(x,y)
∂x∂y

• Marginal PDFs are given by:

– px(x) =
∫ ∞
−∞ px,y(x, y)dy

– py(y) =
∫ ∞
−∞ px,y(x, y)dx

• Two random variables are statistically independent if: px,y(x, y) = px(x) ∗ py(y)

• Two random variables are uncorrelated if: E(x ∗ y) = E(x) ∗ E(y)

• Independence guarantees uncorrelatedness. The converse is not true except for Gaussian

random variables.

• Covariance: cov(x, y) = E((x − E(x)) ∗ (y − E(y))) = E(x ∗ y) − E(x) ∗ E(y)

• Correlation coefficient: ρ =
cov(x,y)
σxσy

– ρ approaching 1 or -1 means strong correlation. ρ approaching 0 means no correlation.
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• Joint probability for N independent random variables x1, x2, ..., xN: p(x =
∏N

j=1 px j(x j)

– x is a column vector.

– px(x) is a N-variate distribution.

• Covariance matrix: Σ = E((x − µ)(x − µ)T) = E(xxT) − µµT

– The covariance matrix is always symmetric and positive definite.

– Σ is diagonal when random variables are statistically independent.

D.5.1 Bayes Theorem

• Let A and B be two events with individual probabilities P(A) and P(B).

• Let P(AB) denote the intersection of A and B.

• Conditional probability:

– P(A|B) =
P(AB)
P(B)

– P(B|A) =
P(AB)
P(A)

• If events A and B are independent then, P(A|B) = P(A) and P(B|A) = P(B).

• Let x and y denote two continuous random variables, then the conditional PDF is given by

Bayes theorem: px|y(x|y) =
px,y(x,y)

py(y)

• Hence, p(x|y) =
p(x,y)
p(y) and p(y|x) =

p(x,y)
p(x) .
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• p(x|y) =
p(y|x)p(x)

p(y)

D.5.2 Distribution Functions

• Poisson distribution:

– Discrete random variables n = 1, 2, ...,∞

– Pr(n = k) = λke−λ
k! , k > 0

– E(n) = λ, var(n) = λ

• Binomial distribution:

– Discrete random variable n = 1, 2, ...,N

– Pr(n = k) = N!
k!(n−k)!θ

k(1 − θ)N−K , k = 0, 1, ...,N

– E(n) = Nθ

– var(n) = Nθ(1 − θ)

• Uniform distribution:

– p(x) =



1
b−a a ≤ x ≤ b

0 otherwise

– E(x) =
(

a+b
2

)

– var(x) =
(

(b−a)2

12

)

• Univariate Gaussian distribution:
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– p(x) = 1√
2xσ2 e−

1
2

(x−µ)2

σ2

– E(x) = µ

– Var(x) = σ2
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