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Abstract

Developing computer vision sensing systems that work robustly in everyday environments
will require that the systems can recognize structured interaction between people and objects
in the world. This document presents a new theory for the representation and recognition
of coordinated multi-agent action from noisy perceptual data.

The thesis of this work is as follows: highly structured, multi-agent action can be
recognized from noisy perceptual data using visually grounded goal-based primitives and
low-order temporal relationships that are integrated in a probabilistic framework. The
theory is developed and evaluated by examining general characteristics of multi-agent
action, analyzing tradeoffs involved when selecting a representation for multi-agent action
recognition, and constructing a system to recognize multi-agent action for a real task from
noisy data.

The representation, which is motivated by work in model-based object recognition and
probabilistic plan recognition, makes four principal assumptions: (1) the goals of individual
agents are natural atomic representational units for specifying the temporal relationships
between agents engaged in group activities, (2) a high-level description of temporal structure
of the action using a small set of low-order temporal and logical constraints is adequate for
representing the relationships between the agent goals for highly structured, multi-agent
action recognition, (3) Bayesian networks provide a suitable mechanism for integrating
multiple sources of uncertain visual perceptual feature evidence, and (4) an automatically
generated Bayesian network can be used to combine uncertain temporal information and
compute the likelihood that a set of object trajectory data is a particular multi-agent action.

The recognition algorithm is tested using a database of American football play descrip-
tions. A system is described that can recognize single-agent and multi-agent actions in
this domain given noisy trajectories of object movements. The strengths and limitations
of the recognition system are discussed and compared with other multi-agent recognition
algorithms.
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CHAPTER 1. INTRODUCTION

Computer systems that can reliably observe, recognize, and respond to action using visual
sensors will ultimately enable new computational applications ranging from automatic video
annotation and retrieval to life-enriching interactive environments. Visual recognition of
action, however, is a difficult problem, and most computer vision research has focused on
recognizing the action performed by a single person in isolation from other objects (e.g.
a person waving, pointing, or exercising in an empty room). Unfortunately, while these
single-person scenarios are easy to construct in the laboratory, they are rarely found in the
real world because we live in a world crowded with other people and objects.

This work refers to any person or thing that moves as an agent. Our world is filled with
agents. People are continuously interacting with other agents in their environments - often
with more than one simultaneously - and changing their behavior in response. Therefore, it
is not surprising that people recounting scenes commonly describe the static and temporal
relationships between people and nearby objects. Consider this description of an everyday
scene of a parking lot, as annotated by an observer:

A red car just pulled into the parking lot entrance and drove next to the big
sign. The driver got out of the car, walked around the car, and then headed
toward the store. A green car waited for the person to get out of the parking
lot before proceeding to drive by the front of the store. About 20 seconds later,
two people exit the store and walk together to their car. The driver gets in the
car and unlocks the passenger door, and then the second person opens the door
and gets into the car.

The behaviors of the people and vehicles in this scene are clearly coordinated. Cars stop
to wait for people. People walk together towards vehicles and interact with one another as
they get into the vehicles and drive. The structure of the parking lot significantly affects
the patterns of motion of people and vehicles as they move to avoid hitting each other and
other obstacles in the environment. Therefore, when people describe the scene, they use
descriptions based on the relative position and motions of the multiple objects.

New application domains where everyday scenes with multiple people are being moni-
tored (e.g video annotation and automatic surveillance) will benefit from - and one might
argue require - systems that recognize not only simple motion but actions involving the
interaction between multiple agents [Nag88, Bob97]. This dissertation explores issues
related to designing a representation of multi-agent action that can be used for the visual
recognition of structured multi-agent activity in real domains with noisy perceptual data.

One goal of the work presented here is to motivate further study of multi-agent action
recognition by developing, implementing, and testing a recognition algorithm for identifying
a particular type of team-based, collaborative, multi-agent action. The approach that
is developed applies only to a subset of multi-agent action recognition problems, but
exploring this particular application domain has helped identify some general issues that any
multi-agent recognition system must address. This document describes the performance,
strengths, limitations, and scope of the proposed representation.



1.1. MOTIVATION

1.1 Motivation

This project resulted from a desire to design a real, multi-agent action recognition system
for domains with noisy, perceptual sensors. Applications that might benefit from the
development of a system that can robustly recognize multi-agent action are listed below.

Interactive environments. Sensing technology is currently being used to create interactive
home and office environments that respond to the activity of occupants (see [BID+99]
for a review). A house has been constructed, for instance, that uses motion detectors to
reduce energy consumption by learning user activity patterns and then automatically
controlling lights, temperature, and appliances [Moz98]. As people live and work in
their environments, however, they are continually interacting with other objects and
other people (e.g. a family cooking and eating dinner together). Versatile responsive
environments need to be capable of recognizing multi-agent interactions between
people. Existing interactive environments model only single agent activity (typical
examples are [MPB+94, Moz98]; for an exception see [BID+96]).

Surveillance. The security surveillance industry employs thousands of workers in tedious
jobs watching video that, for the most part, is uneventful. These error-prone security
tasks might be improved using systems that can monitor video and automatically
recognize typical and atypical action. For example, such a system might detect
that a car is being vandalized in a store parking lot. A military surveillance system
might automatically analyze satellite data and recognize complex actions like the
interaction of ground military units [DR98] and the activity in commercial and military
ports. Existing surveillance systems generally recognize single agent activity (e.g.
[RE91]) or simple interactions between two agents using some scene context (e.g.
recognizing actions like greeting, passing by, or picking up [F096, RTB98, ORP99,
ISBG99]). Some systems compute statistical correlations in data to detect unusual
activity [MH98, GSRL98] and could potentially detect unusual activity involving
more than two agents; however, more explicit models of the multi-agent action will
be required to recognize specific multi-agent actions.

Traffic monitoring. Systems exist that can automatically track vehicle movements on
short segments of road from video input (e.g. [KDTN92, TSB94]) and annotate
action in traffic scenarios with English verbs [HSA+89, KHN91, KN094, BG95,
HTSN97, HN98] and text descriptions [GN96]. These systems, however, do not
recognize actions performed collaboratively by more than one agent simultaneously.
Recognition of multi-agent actions, such as vehicle caravanning or interactions of
people and vehicles in parking lots, should be useful for future traffic management
applications.

Robotic collaboration. Creating autonomous robots that can effectively navigate their
environment and interact with other people and robots will require systems that
observe the multiple agents in the immediate vicinity and recognize collaborative
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behavior [DM90, HD93].' Industrial robots, for example, may need to recognize
group assembly tasks.

Sports entertainment and training. Broadcasters of sporting events already use computer
vision video manipulation techniques to increase the informational or advertising
content of their programming. Current applications include automatic insertion
or removal of advertising in video from sporting arenas as well as semi-automatic
tracking of players and manipulation of video for special video effects [Tra99, Ora99].
Systems that automatically analyze the activity in a game and extract action labels
like "tackling," "touchdown," "interception," and "R34 run play" could be used to
provide additional content to the viewer, make new interactive sporting applications
possible, and provide coaches and fans with powerful tools for detailed post-game
analysis of game action. Professional teams spend millions of dollars annually on
video staff and equipment to manually annotate video of team practices and games.
Automatic annotation requires that a computer system recognize actions of multiple
people interacting in collaborative ways based on trajectory data of their movements
over time. Nearly all agent movement in a sporting event is affected in some way by
the movement of other agents.2 Computer vision systems have been designed that
recognize simple actions by analyzing video of sporting events [GSC+95, SLJ98],
but these systems do not recognize team-based, multi-agent actions.

All of these domains have interactions involving groups of agents where the agents are
responding to their environments based upon individual and collaborative goals; interaction
with other agents is sometimes friendly and sometimes adversarial.

1.2 The task: recognizing team action

In this work, the task of recognizing American football plays has been selected in order to
investigate the general problem of multi-agent action recognition. The input for the test
system consists of trajectory data for each object (i.e. players and the ball) moving in the
scene. Companies are actively developing and marketing systems that will acquire this data
with high spatial and temporal accuracy using semi-automatic visual trackers and helmet
tagging hardware [Tra99, Ora99]. The trajectory data can be partially recovered directly
from video data using context-sensitive visual tracking [1B95].

Robots that interact with other robots in environments without humans may not require systems that
recognize collaborative activity of other robots if the robots can explicitly communicate their plans to one
another. However, if the robots do not use the same communication protocols or are unable to communicate
with one another, the devices will need the ability to recognize the collaborative multi-agent action of their
robotic peers.

2Even agent movement that is predetermined before the play will be modified slightly to accommodate the
action of players who are nearby in space. For example, an agent running "straight down the field" may
swerve somewhat to avoid a defensive player.
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Figure 1-1: Three examples of a p51curl play. The lighter trajectories are the offensive players.
The data provided to the system consists of trajectories for all the objects including the ball, the
approximate orientation of each object at each point along its trajectory, and a position label for
each trajectory.

The task in this work is to construct a system that can identify a given set of trajectories
as a particular play from a pre-existing database of play models. A football coach provides
the play models. Figure 1-1 shows 3 different observations of a play called the "p51curl,"
shown as "chalkboard" trajectory images. These images display the trajectories of all 22
players overlaid on the field. A play, which results from the collaborative interaction of
the 11 offensive players, is a temporally coordinated multi-agent plan, where each agent is
reacting to both the team goal and the movements of other agents at each time. Using a
database of plans, knowledge about football, computation of perceptual features from the
trajectories, and propagation of uncertain reasoning, the recognition system developed here
can correctly determine that each of the examples shown in Figure 1-1 is in fact an example
of a p5 1curl play.

1.3 Contributions

The thesis of this work can be stated as follows: multi-agent collaborative actions comprised
of action components can be represented and recognized from noisy perceptual data using
visually grounded goal-based primitives probabilistically integrated by low-order temporal
and logical relationships. Each collaborative multi-agent action is "compiled down" to a
description of collaborative activity based on observation of coordinated action detectors
that can recognize "what" but not "why." These issues are briefly described below.

e Although football play recognition is just one multi-agent recognition task, in this
work, the football domain is used to uncover general multi-agent recognition issues.
The proposed recognition technique is introduced within the context of existing object



CHAPTER 1. INTRODUCTION

recognition and action recognition approaches, and this document explores when it
might be adequate for recognition in other domains.

* One issue raised by this work is whether recognition of collaborative action requires
representing and reasoning about the intentionality of the agents in the scene. Here
the following idea is proposed. Although representing collaborative action may
require explicit intentional reasoning, highly structured multi-agent collaborative
action can be "compiled down" into soft (i.e. probabilistically-weighted) collections
of visual features detecting spatially and temporally coordinated activity. The new
representation is capable of recognizing typical collaborative activity for a real task
using real data. The representation, however, does not support reasoning about
atypical instances of action. Essentially, the representation proposed here can be used
to recognize "what coordinated actions look like" not "what collaborative actions are."
The strengths and weaknesses of the representation (and other possible representations
for multi-agent action) are discussed by exploring this distinction.

* The method used to achieve a practical system that can recognize visual cues of
agent coordination is motivated by prior work in static object recognition. The object
recognition work suggests that, given a complex object, unary and binary matching
constraints can be used to search for an object match in feature data and that higher-
order feature comparisons generally escalate computational cost without resulting
in significant performance gains [Gri90]. This work extends that observation to
the temporal domain and demonstrates a recognition system based on the idea that
low order temporal consistency typically implies correctness for a highly structured
multi-agent action.

e The multi-agent actions investigated in this work can be described using temporally
and logically linked "action components." These components are assumed to be
agent-based goals. Each goal is detected by a small Bayesian network that softly
weights uncertain perceptual evidence. These networks map from low-level, tra-
jectory features to high-level, semantic concepts used by experts to describe action.
They are the building blocks for group action recognition. The goal detectors integrate
cues computed within a local space-time region centered on each player and keep the
number of features computed manageable by using deictic feature references.

* Detecting multi-agent action in real domains requires representing three types of
uncertainty: uncertainty in the data and sensing, uncertainty in the action component
detectors and their semantics, and uncertainty in the multi-agent action descriptions
themselves resulting from variability in action execution. The proposed system mod-
els all three types of uncertainty using multiple Bayesian belief networks with struc-
tures designed to maintain efficiency but also capture important temporal variations
in multi-agent action.
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* The representation for multi-agent action recognition, developed in Chapter 6, has

four main components: a temporal structure description (an intuitive description

of high-level, collaborative action), visual networks (Bayesian networks for single

agent goal detection), temporal analysis functions (that temporally compare agent

goals), and an automatically generated multi-agent belief network (probabilistically
integrating evidence supporting the observation of particular multi-agent actions).

* Multi-agent actions are recognized using belief networks that are constructed auto-

matically from the temporal structure descriptions. These networks have a particular

structure that is efficient for exact evidence propagation and that represents the tem-

poral dependencies of the multi-agent action. The networks are "compiled down"

descriptions of visually observable coordinated activity.

The goal of this project is to evaluate the thesis via construction and evaluation of a

perceptual, multi-agent recognition system. A computationally tractable system has been

implemented that recognizes collaborative, multi-agent action. The system is tested on a

real dataset of football play trajectories. A primary contribution of this work is a description

of the issues and tradeoffs considered when selecting the presented representation for multi-

agent collaborative action recognition.

1.4 Outline

The remaining chapters of this proposal are structured as follows. Chapter 2 discusses

properties of multi-agent action that impact the development of a representation for recog-

nition from perceptual data. The role of intentional reasoning is considered but explicitly

excluded from the approach developed here. Chapter 3 describes the football play database

used in this work and the data acquisition process used to obtain trajectory data from video

of football plays. Chapter 4 describes a test system that was developed for labeling the posi-

tion of each offensive player in static scenes of football formations. The labeling algorithm,
which uses context-rule sets and a process that searches for a consistent description of a

scene, proved difficult to extend to the temporal domain of play recognition; it did, however,
influence the development of a new representation. Chapter 5 discusses previous work in

object recognition, plan recognition, and the representation of uncertainty that motivates

the principles used to develop the recognition algorithm presented in Chapter 6. Chapter 7

evaluates recognition results for the algorithm and critiques the proposed representation.

Chapter 8 concludes with a summary of contributions and discussion of possible extensions.
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CHAPTER 2. MULTI-AGENT ACTION

Multi-agent action is ubiquitous in the world. Computational systems that would benefit
from the ability to recognize interactions involving more than one person and/or object
include systems that perform analysis of sporting events, identification of military situa-
tions, recognition of traffic behaviors for traffic monitoring, surveillance of scenes, and
collaborative robotic activity.

This chapter examines the general properties of collaborative multi-agent action that
differ from single-agent action. Three specific example recognition domains are introduced
that will be used for illustration in chapters throughout this document. These examples
are analysis of traffic intersections, analysis of action in everyday interactive environments,
and analysis of action in football games. The recognition system developed in this work
provides insight into how to represent some, but not all, of the multi-agent actions that are
typically present in these domains. All three domains, however, will be used to identify
the strengths and weaknesses of the technique. The examples are followed by a discussion
of general characteristics of multi-agent action and then issues specific to the football task.
This chapter concludes with a discussion of the role of "intention" in multi-agent action
and how intention impacts the development of a model for the recognition of collaborative,
multi-agent action from noisy, visual input.

2.1 Examples

2.1.1 A traffic intersection

Computers that can recognize activity at a traffic intersection could be used for automatic
traffic control and accident detection. Currently, traffic scene analysis and annotation
is an active area of research [MNN81, MN90, TB92, HKM+94, Nag94, PW95, HN98].
Typically, a single camera is placed overlooking a street or intersection. One goal is to
develop computer systems that can accurately track as many objects as possible. Some
systems recover not only a trajectory in the (static) image frame but also the trajectory
on the ground plane, object pose, and object model parameter information for each object
in view using contextual knowledge about the scene (e.g. [KDN93, TSB94]). Ultimately,
the goal is to use the recovered trajectory and object identification data to annotate the
video with useful descriptors of activity. Important actions include waiting (for some other
vehicle), moving (with respect to the road or some other vehicle), turning (with respect to
the road), passing by (another vehicle), giving way (to some other vehicle), stopping, and
following (another vehicle). Chapter 1 contains a casual observer's description of a parking
lot scene. That scene contains actions where cars "give way" to each other and to other
people. Cars "wait" for people to cross the car's path, and people collaboratively enter
parked cars.
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2.1.2 An interactive environment

Computers that can observe everyday environments, detect what people are doing, and
control devices in the environment could be used to simplify people's everyday lives by
providing additional convenience, safety, and entertainment. So called interactive envi-
ronments are people-oriented spaces instrumented with cameras and other sensors that are
designed to unobtrusively sense and respond to human action (early examples are described
in [Tor95, Pen96, Pro98]). The home kitchen is one common environment that may some-
day be augmented with video cameras and networked with sensor-enabled appliances. For
example, assume a kitchen environment in a typical home is continuously monitored with
visual sensing that detects the position of occupants and objects. Further, assume that many
of the appliances in the kitchen have sensors that detect situations like "door open," "toaster
heating element on," etc. and that all the sensor information is sent to a central processor.
The system might observe the following typical action:

A person (person-1) moves to the cupboard and removes a bowl. A second
person (person-2) enters the kitchen. Person-I moves to a shelf and picks up a
box of oatmeal. Person-I then pours some oatmeal in the bowl, takes the bowl
to the sink, turns on the sink, and adds some water to the bowl. Meanwhile,
person-2 has opened the refrigerator and pulled out some milk, placing the
object on the counter. Person-I opens the microwave and puts the bowl inside,
setting the microwave to cook and closing the door. Person-2 finds another
bowl. Person-2 then waits as person-1 removes the bowl from the microwave
and pours oatmeal into the other bowl. Person-2 then adds milk to each bowl.

Making oatmeal is one example of an action the environment might attempt to recog-
nize. A system that can recognize such events and that has output devices in the kitchen
(e.g. controllable appliances, displays, and audio) could potentially create a safer and more
interesting kitchen environment by providing cooking information and guidance.

2.1.3 The p5lcurl football play

Currently, all professional and many collegiate American football teams each spend hun-
dreds of thousands of dollars annually to record and then manually annotate video of each
play they run in every game and practice. The annotated video is used for analysis and for
automatic video retrieval. These capabilities are unavailable to sports teams with more mod-
est financial resources because manual annotation of video is a tedious, time-consuming,
and therefore, expensive task.

A computer system could be used for automatic video analysis of the action in the game
to provide information to a team for analysis, football viewers for review, or computer
controllers for automatic camera shot selection. The football video used by the teams
consists of a single camera view filmed from a centrally located press box near the top of a
large stadium. The camera operator pans and zooms the camera to keep all of the players
in the field of view for the majority of each play. Figure 2-1 shows four frames from video
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Figure 2-1: Four image frames from a video sequence of a football play.

5 yards

Figure 2-2: Coach's chalkboard diagram for a p5lcurl play.

of a particular play. Readers unfamiliar with American football and football terminology
should refer to Appendix A before continuing.

In this video there are multiple people interacting with one another and with the ball.
Action labels of interest in this play include blocking, cutting, running, and the offensive
team's attempted play. In this work, recognition of collaborative team action in the football
domain is used as the primary motivating example for the development of a representation
for multi-agent action.

A football play is a plan that coordinates the movement of 11 offensive players. Typi-
cally, plays are represented using "chalkboard" diagrams, like the one shown in Figure 2-2
diagramming a play called a p51curl. Blocking motion is noted by a short perpendicular
line. The man-in-motion (MIM) movement is indicated in gray. The primary pass option
is noted by the dotted line.

The diagram indicates that most of the offensive players block for the QB player, as
the QB receives the ball, drops back, and tries to throw the ball to one of the receivers.
The receivers run pre-determined motion patterns. Although not explicitly shown in the
diagram, the receiver patterns are temporally coordinated so that, for example, P1 and P3
turn at the same time.
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Figure 2-3: Football play pass patterns.

The diagram describes the most typical desired actionfrom a particular startingforma-

tion. The offense, however, wants to prevent the defense from recognizing its plan based

on starting positions. Therefore, most plays can be run from multiple starting formations.

Figure 2-3 shows the different types of pass patterns that receivers can run. The set is

limited by constraints imposed by the game. Runners, for example, do not typically have

time to make more than one cut during a play. Rules of the game also prohibit (or in practice

make not useful) some patterns from certain starting positions. Pass patterns are usually

coordinated by a coach in order to maximize the potential success of a play by confusing

the defense and giving the offense several possible play options to pursue.

2.1.4 The simplified p5lcurl football play

Although offensive football plays consist of 11 offensive players, for clarity a simplified

play example will be used in this document when describing the proposed representation.

This example is limited to just 5 players and the ball. Further, the number of actions

performed by each agent has been reduced.
The example play will be called the simple-p51curl (or s51 for short) because it is

a simplified example of the real p5lcurl play. The s51 is represented in the diagram

in Figure 2-4. The example comprises four offensive players - obj 1, obj2, obj3, and obj4 -

as well as one defensive player - D. The horizontal lines indicate the yardlines of a playing

field, which are 5 yards apart. The s51 starts with obj 1 holding the BALL and obj2 next

to obj 1. All four offensive players get set in special positions relative to one another and

do not move. The obj3 and obj4 both are in positions that are a yard back from the line of

scrimmage, or LOS, which is the line parallel to the yardlines centered at the starting BALL

position. Obj 1 hands the BALL to obj2. At that time, obj3 and obj4 each begin running

pass patterns that are coordinated in space and time. Obj4 tries to run straight down the

field for 5 yards, then cuts, turning quickly towards the inside of the field, and runs parallel



CHAPTER 2. MULTI-AGENT ACTION

5 yardsl
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Figure 2-4: A football play diagramming the simple-p5i curl example play used in this paper. The
play consists of 4 offensive agents (objl through obj4), 1 defensive agent (D), and a ball. Also
indicated is the line-of-scrimmage (LOS) and some 5-yard marker yardlines.

to the yardlines. Obj3 tries to run straight down field for 5 yards, then cuts towards the
outside and runs parallel to the yardlines. Obj4 and obj3 cut at the same time, and when
they do, obj4 tries to run just behind obj3 with respect to the LOS. As obj3 and obj4 run,
obj2, who has the BALL, performs a dropback action, moving backwards a few steps. Obj 1
blocks by trying to stay between obj2 and the D. Obj3 and obj4 cut just before obj2 passes
the BALL. Obj2 is most likely to throw the BALL to obj3 (the heavy dotted line indicates
the BALL trajectory), but in some cases obj2 may throw the BALL to the obj4.

Although many players are eligible to throw a pass, in reality it is nearly always obj2.
In this example, only obj3 and obj4 are both eligible receivers of a pass. The D is trying
to prevent obj2 from throwing the BALL. The play ends if the BALL is not caught by a
player or if a player with the BALL is tackled by a defensive player. If a receiver catches
the BALL, the player will try to continue running with the BALL downfield until tackled.

2.2 Characteristics of multi-agent action

The three example domains all contain multiple people and objects. In this work, any object
that moves or can be moved (sentient or not) is considered to be an agent. Fundamentally,
multi-agent action recognition differs from single-agent action recognition because the
interaction between the multiple agents requires modeling the interaction between the
agents in the environment. Understanding the distinction between single-agent and multi-
agent action is a theme of this work. Some general characteristics of all multi-agent action
are described below.

State space size. When a single object is in a scene, an action representation that models the
change in state of the object over time may be sufficient to recognize the action from
noisy data. Probabilistic state transition diagrams have worked well in practice for
modeling a single-agent undergoing changes in state [SHJ96]. In multi-agent action,
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however, the states of multiple agents must be represented. The state changes for
each agent are not independent of the states of other agents. Therefore, if each object
has N different states and there are M agents in the scene, at any given time there are
NM possible states. Consequently, a representation of the action using probabilistic
state transition diagrams must use some additional information to reduce the number
of possible transitions the system must consider at any given time.

Feature space size. Single-agent action representations for computer vision have generally
used features like an agent's velocity, acceleration, and shape characteristics over time.
For example, hand gesture recognition algorithms typically use the shape or position
of the hand or arm over time for developing motion models of hand gestures (e.g. see
[WB95, RK94, SP95]). These features are usually computed without considering
other objects in an environment (and usually not even considering self-occlusion).
The set of all possible perceptual features used for recognition is generally quite small
(e.g. less than about 20 parameters). A system observing a multi-agent environment,
however, can compute the relative states of agents over time. For example, the
distance between two agents over time is an important feature, often giving clues as
to whether two agents are physically interacting with one another. The problem is

that in an environment with N agents, there are 2 binary distance features that can

potentially be computed and used by the representation. It is also possible, however,
to compute n-ary distance features, such as the distance between a single agent and
groups of agents. Using this agent-to-group comparison substantially increases the
number of distance features that can be computed. The number of features increases
further when a distance feature is computed between two groups of agents. Distance
is only one useful n-ary comparison feature. Some (of the many other) n-ary features
of interest are relative orientation, whether some agent will intersect some particular
subgroup of people, and whether someone is moving in some particular way with
respect to some region. Recognition algorithms need an explicit or implicit focus of
attention mechanism to avoid computing evidence that provides little discriminatory
power. For instance, although it is possible to compute the distance between any
player and any group of players in the football domain, only a small subset of all
possible groups (e.g. the front line, the receivers) will provide information that may
indicate or counter-indicate play actions.1

Feature complexity. Single-agent features like acceleration are straightforward to compute
from trajectory data, primarily because only one free variable needs to be considered
- the length of the temporal window - and this variable can be easily set by the
system designer. 2 Many useful multi-agent comparison features of interest, however,

'This problem is compounded by the lack of large, labeled datasets in many domains. An algorithm that
tries to learn which features are relevant is likely to make spurious data-to-label associations because the
data will not contain examples that span the feature space.

2This window can also be made time and space invariant by using hierarchical processing.
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have several free parameters because they combine input from more primitive feature
detectors. For example, computing a relative feature like behind(A,B) that returns
results consistent with the typical person's definition of "behind" can require that the
function integrate information from other feature detectors such as size(A), size(B),
xDistance(A,B), yDistance(A,B), orientation(A), and orientation(B).3 Functions that
compute features comparing objects to groups such as behind(A,(B,D,G)) (i.e. is A
behind the group (B,D,G)) are even more complex.

Representing time. When a scene consists of a single object, temporal rescaling tech-
niques like dynamic time warping can be used to match input signals to models even
when the input signal does not precisely temporally correspond to a particular model
on the temporal axis [RJ93a]. Two people interacting in two parallel event streams,
however, can result in a more complex temporal structure when there are temporal
dependencies linking the two event streams. A representation that simply rescaled
other measurements along the temporal axis may not be appropriate for model match-
ing when one of the distinguishing characteristics between two multi-agent actions
is the temporal relationships between each action's individual agent actions. Several
issues arise: what type of temporal relationships can be detected, what are the prim-
itives being temporally compared, how much propagation of temporal constraints is
performed, and how (if at all) is temporal consistency between agent action used for
constraining action recognition [Pin99]?

Explicit search and object assignment. In single object domains, there is never any doubt
which object in an action model matches to which object in the scene - there is only
one object. In multi-agent domains, however, an action model may have M agents
and the dataset may have N agents, where N > M. Consequently, there are N !

(N-Ni)!
possible matchings between objects in the model and objects in the data. In the
football domain, where M = 11 and (in this case for offensive players only) N = 11,
there are 11! possible model-object to data pairings. Before a model can be compared
with the data, a pre-processing step that searches for a "good" data-object to model-
object matching is required. Heuristic search and match evaluation criteria need to
be specified.

Learning. The search space and the exponential feature space create at least two problems
for most learning algorithms used for computer vision single-agent action representa-
tions, such as HMMs. First, most learning algorithms assume a complete4 dataset of
examples can be observed during training; therefore, models with even a small set of
input features require hundreds of training examples [RJ93b, You93]. In contrast, for
many real-world, multi-agent actions, it will be difficult, if not impossible, to obtain
a database that contains a complete set of annotated examples. Examples include the

3Even typeOf(A) and typeOf(B) could affect a person's evaluation of behind(A,B).
4Roughly spanning the feature space.
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football domain and the task of recognizing team plays. Learning algorithms that
are not provided with a pre-existing structural model of the domain would require
a database of plays where nearly every possible play outcome has been observed.

Obtaining this database, however, is problematic because a play, which can start

with players in a large number of field configurations, consists of 11 players react-

ing quickly and physically during an approximately nine second interval. When the

feature set consists of the velocity and acceleration of a single agent (or two agents

treated as one entity) with a few shape parameters at each time, learning is sometimes

manageable (e.g. [WB95, SP95]). However, one of the few HMM recognizers that
recognizes simple multi-agent actions, such as "two people greeting," required so

much training data that a simulation program was designed to generate data used to
train the HMM system [ORP99]. If simulation programs are required for training

that require a user-specified model of action, the user-specified models themselves
might provide sufficient constraint for a recognition system.

The complexity of agent interaction. As more agents are added to a scene, the complexity

of multi-agent and single-agent action will change. In general, the more agents that

are in the environment, the more constraint there may be on the way that a given
multi-agent, collaborative action can be performed. For example, in football, the

more receiver players that are on one side of the field, the more carefully a coach
will coordinate their movements; the coach plans the movement so that players do

not run too close together but so that their movements confuse the defensive players.
When a receiver is alone on one side of the field, however, the coach can select from

a much larger set of movements for the player because a direct conflict with another

teammate is less likely to occur. Conversely, as more agents are added to the scene,

the desired behaviors of any given agent will need to be adjusted locally in space and

time more frequently to avoid the larger number of obstacles created by other agents.

For example, if an 11-person offense runs a play against a 1-person defense, every

player except one will probably execute the "ideal" motion scripted by the coach.
Against an 11-person defense, however, most offensive players will need to adjust
their motion as they interact with the defensive players. A "straight-line" motion will
become significantly more variable as more agents are added to a scene.

Relative geometric spatial and temporal knowledge. Some single-agent gestures can be

recognized using geometric matching techniques (e.g. see [DB97] for one example).

Even recognizing an action as simple as "pointing," however, requires geometric

reasoning about spatial relationships.5 Actions in the football domain are defined

by relative temporal relationships as well as spatial relationships. For example, one

5Pointing is defined as follows: "To indicate the position or direction of something" [Woo8 1]. Therefore,

while it is possible to detect a person pointing by checking for a particular body and arm configuration

[MPB+94, WB98, a more appropriate detector must detect that the person's arm is actually oriented

towards some object in the scene. Even this detector is actually inadequate because it has not detected that

the person is indicating, or intending, to point to the object.
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player's role may be defined by a coach as follows: "The QB drops back and then
throws the ball about the same time that the RFL makes a cutting motion. The RFL
catches the ball after it is thrown." Two issues are as follows: what are the primitives
that the temporal detectors like "before" are comparing, and what are the semantics
of these temporal detectors?

Scalability. In this document the actions of interest are assumed to involve more than one
agent but less than 30. Some multi-agent domains such as troop movement analysis,
however, can have hundreds or thousands of agents [DR97]. Action recognition
systems for one agent do not necessarily scale to scenes containing 2 agents, and action
recognition systems for two agents may not be capable of representing systems with
11 agents. Representations for 11 agents, however, may not scale well to thousands
of agents.

Intentionality and the difficulty of physical modeling. In the computer vision commu-
nity, single-agent or 2-3 agent actions are often modeled using systems that reason
about dynamic and kinematic physical properties (e.g. [MJS96, RK94]). In domains
with multiple agents, particularly when the agents are sentient and interacting in com-
plex ways, modeling the action using only models of physical interaction of agents
is computationally impossible and does not necessarily lead to improved recognition
systems. For example, in the football domain, the action of each agent on the field
cannot be explained using physical modeling alone. Explanation of the movement
requires representing the pre-existing plans of the agents and the team. These plans
will use the dynamic contexts established by the space-time interaction between ob-
jects. In all three example domains - vehicle, kitchen, and football monitoring - the
agent behavior cannot be fully described using only physical models of interaction
because the agents are interacting in an intentional way. Intentionality will be more
precisely defined in Section 2.4. The behavior of an agent depends upon its external
environment, physical interaction with that environment, and pre-existing, history,
and mental models of activity. Issues related to the recognition of such "intentional
action" are discussed further in Section 2.4.

Availability of evidence. In addition to an exponential explosion in the number of features,
some features may not be obtainable in certain contexts. Evidence is not always
computable, and sometimes when it is it provides no discriminatory power. For
instance, in some plays there will be no RFL; therefore, the distance between this
player and the QB cannot be computed. Even when this information is available for
a play, however, it may provide absolutely no useful evidence indicating or counter-
indicating some play.

Contextual label interdependencies. In static object recognition, some objects in some
imagery are difficult to recognize without considering the image of the object and
surrounding objects. For example, many bridges viewed from an overhead camera
will appear nearly identical to a segment of road, except that the bridge is flanked
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by water [SF91]. Analogously, in multi-agent domains, many actions or labels are
impossible to determine without jointly considering multiple agents. For example, in
football, the label of a player at the start of a play is defined by the person's position
relative to other players and can depend upon how players far across the field are
standing.

Representational uncertainty. Actions have three types of representational uncertainty.
The first is that the temporal constraints of the action description itself are typically
probabilistic (e.g. B follows A, but only 80% of the time). Actions cannot be fully
described by necessary or sufficient conditions but rather by typical components.
The second source of uncertainty is the fuzziness of attributes that must be assigned
to individual elements (e.g. obj 1 is near obj2). Finally, the third consideration is
the probabilistic nature of perceptual sensing devices. Often, perceptual evidence,
especially visual evidence, can be either missed or hallucinated.

Noisy trajectory data. In a multi-agent domain, the features with the most discriminatory
power are relational features that compare the states of two or more objects; therefore,
noise in one agent's trajectory can propagate to many features.

As discussed later in this thesis, these multi-agent criteria make it difficult to apply
single-agent action recognition methods directly to recognize multi-agent collaborative
activity. Those representations were not designed to model situations when non-geometric
spatial and temporal relationships must be represented and recognized from trajectory data.

2.3 Characteristics of football team action

Using the football domain as an example domain influences the representation that is
developed in this work. Therefore, it is worthwhile to describe some additional properties
of multi-agent action recognition that are unique to this domain. These are listed below.

Infrequent collaborative re-planning. The actions of the offense in a football play are
scripted by the coach prior to the play action. The agents do adjust their individual
plans during the play in reaction to the actions of other agents, but major plan changes
in order to accommodate some team goal are infrequent. The resulting behavior can
be viewed as parallel event streams, one for each agent, that interact in pre-planned
temporal and spatial ways. Locally, however, each player is continuously adjusting
his motion to respond to the defensive agents. For some tasks in other domains
(e.g. recognizing cooking oatmeal), each agent may make large adjustments to a
long-term plan in response to the actions of other agents and with the explicit intent
to facilitate the collaborative action.

Agent based goal descriptions. The actions to be recognized can be naturally described
based on the relationship between goals of individual agents. Examples of agent goals
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in the football domain are catchPass, block(defensiveObject), and receiveHandoff.
Each goal action for a particular agent can be recognized partly from direct visual
evidence related to that agent (e.g. the agent just received the ball for a handoff)
and partly from contextual evidence established by other agents (e.g. the agent could
have just received a handoff because the quarterback has not thrown the ball and
the play has started already). Collaborative goal actions can then be constructed by
specifying temporal and logical relationships between agent goals. A team's football
play, for example, consists of primitive goal components for individual agents like
"the quarterback player will receive the ball via a hike action," then "the quarterback
player will have the goal to move back to a particular position at the same time that the
receiver players have the goal to run particular motion patterns downfield," then "the
quarterback will have the goal to throw the ball to a receiver player," then "a particular
receiver will have the goal to catch the ball." In short, a multi-agent action description
can be described using many goal-like primitive components assigned to particular
agents that are partially ordered in time and that obey certain logical constraints.
This assumption may not be true for some multi-agent actions. The cooking oatmeal
example, for instance, may require many more if-then contingencies (e.g. "if there is
oatmeal, then ...", "if the other agent heats the water, then...") that not only temporally
tie the actions of one agent to the other but that also result in the actions of one agent
changing the actions that other agent will perform.

Existing taxonomies. Coaches and fans have developed semantically meaningful football
annotation taxonomies that are used in this work. Consequently, the recognition
approach presented can be evaluated with respect to the entire taxonomy, including
those descriptions which are beyond the representational and/or recognition abilities
of the proposed system. The labels describe both low-level, agent-based actions like
"blocking," "intercepting," and "running through a hole" and high-level actions like
"executing an R34 play." In short, in this domain at a given level of abstraction, most
experts will agree on terminology.

No statistical databases. In the football domain, there are no existing large statistical
databases with labeled actions that can be used to generate statistical models. Ac-
quiring such databases is beyond the scope of this (and possibly any) project. Only
a small set of examples is available for any given high-level description, such as a
description of a play. Instead, a linguistic description provided by a domain expert,
the coach, is available. The scarcity of a large, labeled dataset and the availability
of a linguistic description of the action is a situation common to many real-world
domains of interest.

Structured but uncertain. The group activity in a football play is both highly structured
and highly variable. The offensive team always begins each play segment by trying
to achieve a particular set of coordinated goal actions that can succinctly be described
by a football coach. The system can attempt to recognize this activity. Typically,
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however, the defense prevents the team from achieving the plan exactly as described.

This leads to significant variability in how individual players move, how individual

goals are achieved, and the visual pattern of each particular play action. The multi-

agent action taxonomy in some other interesting multi-agent domains is less well-

defined. For example, there is probably greater variation in the order and the way that

a single family could make oatmeal, which a representation for "cooking oatmeal"

would need to encode [Pin99]. Although there is clearly structure to this type of

activity, the structure permits more variation in the order of certain actions and the

agents performing some actions than may be true for a coach's football play. A coach

or fan can easily write down what is supposed to happen in a given play.

Reset point. In the football domain, the global and agent context can be initialized at the

beginning of each play when the teams line up in their starting formations. This is a

property that is not typical of other domains and simplifies the current task.

Purposeful behavior. In the football plays studied in this work, the players are engaged in

highly directed behavior - nothing happens in a play without a reason. Although most

behavior in everyday life has some reasonable explanation, the reasons underlying

the behavior can often be more difficult to discern than they are in a football play

(e.g. someone having a bad day cuts off a driver or slams the oatmeal box on the

counter). This purposeful behavior results because a team has a limited set of

resources that it is trying to fully maximize. Typically, a player is either explicitly

creating a deception via his action or contributing some key component in the play.

Occasionally, players are doing neither because they are confused, but the reason for

the player's confusion is usually apparent to the observer.

Some of the mentioned football domain properties, such as adversarial action, make the

domain a particularly challenging action recognition problem. Conversely, other football-

specific properties, such as availability of a reset point, simplify the problem considerably.

2.4 Recognition of intentional action

The framework for action recognition proposed in this work will be discussed with respect

to the multi-agent action characteristics and football domain characteristics in Chapter 7.

However, one characteristic, the relationship between recognizing collaborative action and

representing intentionality, is addressed in this section.
The previous sections stated that when multiple agents in a rich environment are sentient,

their interaction cannot be fully modeled using physical rules of interaction because the

agents will often be making "intentional" decisions. This raises the following two issues:

what is intentionality and how does it affect a model for action recognition? In the multi-

agent domain, when agents are collaborating, agents are responding to both individual and

joint mental plans of activity.
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2.4.1 Defining intentionality

"Intentionality" is a poorly defined word in both English and technical vocabularies.
Philosophers and Al researchers do not agree on a single definition or theory of intention-
ality (e.g. see [Bra90, Hob90, Pol90a]). Most computational models of activity, however,
define intentionality with respect to agents, beliefs, plan recipes, and plans. A belief is
some stored knowledge about the world. A plan is a hierarchical construction of goals
and sub-goals, when a goal is the desired achievement of some belief. As Pollack pointed
out, "There are plans and there are plans" [Pol90a]. The first type of plan is one an agent
knows - these are typically called "recipes." The second type of plan is the plan actually
being executed. The distinction between these two types of plans is between knowing and
knowing and doing. Routine behaviors are pre-compiled plans. An agent is continuously
modifying its plan based upon its perception of the environment. Agents select and modify
pre-compiled plan recipes so that executing the plan recipes will achieve the plan goals.

In multi-agent domains, each agent may be responding to its environment intentionally
(i.e. using an internal plan to achieve certain beliefs). The behavior of agents, however, can
also be affected by joint intentions. Joint intentionality can be defined as agents having both
individual beliefs and mutual beliefs. Mutual beliefs are beliefs that are held with other
agents [GK96]. Computational models of joint intentionality specify how agents maintain
this mutual belief by communication of intention (or, in other words, the communication
of partial plans) between themselves. Models of joint intentionality are used to model the
interaction between agents engaged in collaborative (also known as shared cooperative)
activities [Bra90].

A distinction can be made between coordinated and collaborative activity. For example,
drivers can adeptly 6 maneuver around each other at high speeds, each guided by the same set
of rules that determine how a vehicle should react to the environment. The rules have been
explicitly designed to result in coordinated driving behavior. Drivers, however, also engage
in collaborative behavior, when multiple drivers have a shared plan to jointly commit to
the activity and communicate to achieve shared goals. One such collaborative activity is
driving in convoys or caravans [CL91], when both the leader and follower will modify
behavior to ensure that the other can achieve the goal of following. Agents are committed
to modifying the plan in tandem if necessary to achieve some shared goal. Coordinating
these changes means each agent is reasoning about the belief and mutual belief of the other
agents.

A football play is a collaborative activity because players will adjust their individual
goals in tandem in order to achieve a team goal. Each player is reasoning about both his
own plan and the plans of other agents as he executes a play. Players will infer the plans
of other agents and adjust their own plans accordingly; sometimes players will need to
infer what another player is able to perceive in order to do so. Finally, at times players
explicitly communicate information about their individual plans to other agents to facilitate
the achievement of their shared plan of progressing the ball down the field in a particular

6Some cities excluded.
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way (e.g. the ball carrier pointing to the defensive player that he wants his teammate to
block).

2.4.2 Using intentional models of activity for recognition

Given that football plays are collaborative actions with agents having joint intentions, it is
reasonable to investigate whether theories of joint intentionality can be used to model the
action for recognition.

One comprehensive theory of intentionality reasoning for domains with collaborating
agents is the SharedPlans model [GK96]. This model is described in Appendix B and
partially applied to an example from the football domain. The model reasons about activity
using modal, agent-based belief and mutual-belief primitives that are derived by recursively
expanding high-level properties of the collaborative activity.

Application of the SharedPlans formalism to the football example was hindered by
several issues, as discussed in Appendix B. For example, the model, which was developed
for analyzing discourse, implicitly assumes that agent communication is explicit and easily
detected; however, in the football domain, some agent communication takes place through
agent perception of the shared environment instead of by explicit (and detectable) cues like
speech. One problem, therefore, is that reasoning about visual communication requires that
a system make inferences about the visual perceptual abilities of individual agents. For
example, in the football domain, the QB may have the goal to throw the ball to the LSE, who
runs downfield ten yards. The QB, however, will adjust his plan if he observes that the LSE
has slipped and fallen after running three yards. In this case, interpreting the QB's actions
may require making assumptions that the QB observed that the LSE had fallen. Even from
the original video signal, which contains more information than the data trajectories used
in this work, these inferences can be difficult for a person, let alone a computer system.

Other problems of applying the SharedPlans formalism to the football example discussed
in Appendix B are summarized here. First, in the football domain, all evidence for beliefs
about the world are computed from noisy data and sensors, but the intentional model has no
mechanism for propagating the resulting uncertainty. Second, the SharedPlans model does
not provide insight into how the system can recognize visually primitive, non-intentional
actions (or even what these primitive actions should be) and use those results to "bootstrap"
the SharedPlans belief reasoning. Third, a mechanism is not provided for recovering from
(or detecting) situations when agents have erroneously perceived some situation and there-
fore reacted in an anomalous but explainable way. Finally, the SharedPlans representation
is computationally intractable for most real-world problems, especially given that it lacks
any mechanism for representing and propagating certainty of belief and observations. The
SharedPlans model, like other joint intentionality models, has been designed for applica-
tion in the discourse domain, and therefore, the model makes some assumptions about the
reliability and detectability of input data that are unrealistic for visual tasks like football
play recognition.
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2.4.3 "What things are" vs. "What things look like"

In summary, the SharedPlans model and related models for propagating joint intentionality
do not provide tools for recognition of collaborative action. In fact, the methods presuppose
the availability of detectors for cues of collaborative action that subsequently bias a logical
inference process towards correct interpretations.

The focus of the work presented here is on developing a representation of collaboration
that is sufficient to recognize some types of typical collaborative data from noisy data -
without making any assumptions about the availability of particular "intentional" feature
detectors. Therefore, it is useful to consider how a recognition system without a perfect
model of intentional behavior might interpret the intentional behavior that it perceives.

Dennett [Den87] has proposed three different "stances" that an agent (or a recognition
system) might use for interpretation of some observed activity. The first stance, the physical
stance, is adopted when one agent can predict the operation of a second agent at every
physical level. For example, a system predicting the behavior of an airborne football can
use laws of physics to accurately predict the ball's behavior because the ball's reaction to
its environment is well understood. Of course, the observer agent must have the ability
to measure the relevant properties of the environment. To precisely determine the path
of a football, a computer would need to measure the speed and rotation of the ball, wind
velocity, and even factors like the field altitude and current temperature.

The second stance is the design stance. Here, "one ignores the actual (possibly messy)
details of the physical constitution of an object, and, on the assumption that it has a certain
design, predicts that it will behave as it is designed to behave under various circumstances"
[Den87]. For example, using the design stance, a system might predict that a football
will fly straight when it has been thrown by a competent quarterback, unless someone else
touches the ball. "Only the designed behavior or a system is predictable from the design
stance, of course. If you want to predict the behavior of [an object when] it is pumped full
of liquid helium, revert to the physical stance" [Den87]. The design stance trades off the
ability to explain any anomalous observed behavior for an interpretation of activity that may
permit a simpler and more efficient computational model that can describe typical activity.

When the design and physical stances are not accessible, an agent resorts to an intentional
stance. Dennett describes an agent's reasoning: "First you decide to treat the object whose
behavior is to be predicted as a rational agent; then you figure out what beliefs that agent
ought to have, given its place in the world and its purpose. Then you figure out what desires
it ought to have, on the same considerations, and finally you predict that this rational agent
will act to further its goals in the light of its beliefs. A little practical reasoning from the
chosen set of beliefs and desires will in many - but not all - instances yield a decision about
what the agent ought to do; that is what you predict the agent will do" [Den87]. In addition
to reasoning about what an agent physically can do and what an agent is designed to do,
here an observer reasons about the beliefs of the agents in the scene.

In short, any object can be described with an intentional stance. A light switch can
be a device that "transmits current when it believes that we want it transmitted." This
belief-based description, however, seems ridiculous because it does not "buy us anything"
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over a standard mechanistic description [Sho90]. The number of variables that affect the
behavior of the light switch is relatively small; therefore, a first-order logic or probabilistic
representation can straightforwardly model the switch's behavior accurately and completely
using a design stance.

The intentional stance is useful in multi-agent domains like football play recognition
because explaining some player behavior requires explicit reasoning about the belief and
mutual belief of the players over time (see Appendix B). This work, however, makes
the following assumption: some multi-agent action can be identified by a system that
can recognize "what things look like" instead of an intentionally based description of
"what things are." In other words, recognizing team activity does not always require
that a system represent and reason about the intentional communication and interaction
of the agents being observed. Instead, recognition of some multi-agent action can be
accomplished using a probabilistic design stance. In some cases, the intractability of
modal logic intentionality reasoning systems can be avoided by using a representation that
describes complex activity using models of collaborative action that detect patterns of agent
coordination using small number of temporal and logical connectors linking probabilistic
visual components. The representation detects collaborative activity using a representation
in which typical collaborative interaction has been "compiled down" into coordinated action.
This representation is described in Chapter 6.

Some multi-agent recognition tasks will require explicit reasoning about intentionality,
such as explaining how players react to another player who has fallen (see the example
in Section 2.4.2). Most likely, however, a recognition system that does use an intentional
model of activity will require preprocessing algorithms that can prune the space of possible
actions being observed at any time by identifying typical examples of collaborative action
without using intentional reasoning. Making intentional models like SharedPlans tractable
for real problems with perceptual input will require some initialization. Here, initialization
consists of "compiling down" collaborative activity to a set of relationships encoding typical
agent coordination during a multi-agent collaborative activity. The approach trades off the
ability to reason about complex intentional interaction for computational tractability in
domains with noisy evidence detectors.

The model developed in this work is designed to use noisy perceptual data to recognize
multi-agent coordinated action, but the model's tradeoff for computational efficiency is that
it does not provide enough power to recognize some intentional collaborative behavior;
it can only be used to detect typical coordinated behavior but cannot be used to compute
an explanation for "why" some atypical but explainable collaborative behavior has been
observed. For some interesting domains, however, visual detection of typical, multi-agent
coordinated activity enables interesting, useful new applications. This dissertation develops
one method for recognizing typical multi-agent action from noisy data.
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Chapter 3

Data and data acquisition
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This chapter describes the football play data used to test the recognition system, the method
used to acquire the data, and some characteristics of the data.'

3.1 The play database

In order to study play recognition, a database of video data and the corresponding play
labels was required. The New England Patriots football team provided an entire season
of tapes of every offensive play they ran in an official game (1132 plays) and the name of
the play they intended to run.2 Of the full play database, 872 example plays (1.5 hours of
video) has been transferred to an analog video laserdisk and has been sorted by play label.
The laserdisk contains an average of six example plays for each of 133 types of Patriots'
plays.

The coach of the 1993 Patriots withheld the 1993 playbook. Therefore, it has been
necessary to "reverse engineer" the meaning of each play label by carefully viewing multiple
examples and comparing sets of play examples. Models for plays with only a few examples
can typically be reverse-engineered using other examples that are known variations on the
particular play. For example, the p5 1curl and the p52curl plays are identical except for a
vertical flip. Therefore, examples of both play types could be combined to determine the
description for the ideal p5 lcurl and the ideal p52curl.

The description recovered from this comparison of play examples consists of the fol-
lowing:

" the ideal paths of individual players

* temporal relationships between the movements of some offensive players

" desired space-time relationships between some offensive players and nearby defensive
players

" the primary and secondary path of the ball

* allowable variations in starting formation positions

" optional moves available to particular players as the play progresses.

This information can be encoded in diagrams like the p5 lcurl diagram in Figure 2-2. Some
information that is likely to be encoded in the original playbook has not been recovered from
the examples. For example, most professional football plays consist of highly specialized
blocking responsibilities for individual players that depend upon the exact configuration of

The data used for this project, as well as some additional football-related image, video, and trajectory data,
is freely available to researchers by sending a request via email to intille@media.mit.edu. Some of the data
has been annotated.

2Unfortunately, the database is from the Patriots' 1993 season, when an unusually large percentage of the
plays they intended to run were not completed successfully!
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(a) (b) (c)

Figure 3-1: Three New England Patriots' play diagrams for examples used in this work: (a)
p52maxpin, (b) p5lcurl, and (c) p56yunder.

the defense and sometimes on communication among the offensive blocking players prior
to running the play. This type of information has not been extracted from the examples
and is not used by the system described in this work. Three play diagrams for some of
the example plays used in this work are shown in Figure 3-1. More diagrams appear in
Appendix C.

3.2 Obtaining object trajectories

The input to the recognition system consists of trajectories of all moving objects given by
(x,y,orientation,label) tuples as a function of the frame number, i.e. time. Here, orientation
denotes the approximate upper-body orientation of a player and label is the name of the
player's starting position. The player and the ball trajectories are provided.

There are three methods by which such object trajectories can be obtained: automatic
visual tracking, tagged tracking, and manual tracking.

3.2.1 Automatic visual object tracking

A multi-object tracking system developed previously can track approximately half the
players in a typical play from the football play database. The tracking method uses local
"closed-worlds" of knowledge centered around each tracked object to adaptively select the
most appropriate features and algorithms to use for tracking given the local space-time
context [Int94, IB95]. The tracking algorithm handles non-rigid tracking of objects with
erratic motion, even when the objects are frequently interacting and the imagery available
is from a pan/zoom camera with relatively low resolution. The algorithm can track players
well, except when large groups (i.e. > 3 players) interact so that they are visually adjacent
or occluding one another. Typically, about half the players on the field clump into such
groups at the start of the play, prohibiting closed-world tracking. Figure 3-2 shows two
automatically recovered trajectory images where approximately half of the players on the
field have been tracked.
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Figure 3-2: All recovered paths from a particular play using the "closed-world" tracking algorithm
described in [IB95].

Figure 3-3: Partial frame of video containing players colliding with one another.

A few other tracking systems have been developed specifically focused on tracking video
of players and the ball in sporting events with characteristics similar to those of the football
video (i.e. rapid motion, non-rigidity, low-resolution imagery, collision and interaction).
They use color or correlation templates [CSKH97, GSC+95, YYYL95, KSH98] or color
histograms of blobs [KYA94]. No fully automated techniques are known that are capable
of robustly tracking all (or nearly all) the players on the field successfully given video of
plays in the Patriot database. Figure 3-3 shows a portion of a single frame from a football
game. The image contains colliding players that are visually difficult to differentiate and
problematic for existing tracking systems.
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3.2.2 Tagged tracking systems

To overcome the limitations of fully automated visual tracking, semi-automatic track-
ing systems are being developed for commercial sports broadcasting video highlighting
(e.g. [Ora99]). Such systems are not easily adapted to provide trajectories for all the
players in a scene.

The tracking problem is easily solved in the sports domain and in other useful domains
(e.g. the home and office) by adding electronic tags to objects of interest. Tagged uniforms
and sporting equipment will become commonplace in the next few years because the
recovered trajectory data can be used to digitally enhance sports broadcasts (e.g. Fox's
SuperPuck [Sup]). For instance, a tagged system using triangulated RF transmitters is
being developed explicitly for professional football games that will provide tracking data
for the players (and possibly ball) with an accuracy of 1 centimeter; it will be in use by
the National Football League by 2001 [Tra99]. The system described in this document
is capable of using such data. Further, inexpensive and wireless tagging systems for
everyday household devices are currently being designed in order to enable new interactive
applications in the home and office [Ger99]. These tagging systems are likely to make it
easier to obtain the type of trajectory data used in this work in everyday domains for many
objects of interest.

3.2.3 Manual data acquisition

In this work, manually acquired trajectory data for all players on the field is used. An
interactive graphical interface was developed that allows a user to follow objects with the
mouse pointer on the screen as the video plays slowly from the laserdisk. The position of the
mouse is recorded in each frame. The user views the play once for each player, following
the player with the mouse. Prior to tracking, the user marks the object being tracked with a
football position label (e.g. QB, C, etc.) The user then tracks points on the field, ensuring
that every frame has at least four tracked points. Finally, the user again plays the video
once for each player and uses the mouse to indicate each player's upper-body orientation.
Figure 3-4 shows a screenshot of the manual tracking software where some player objects
have been tracked.

Once all the players, field points, and player orientations have been tracked with the
mouse, a least-squares matching process is used to convert the tracked player points into
a common field coordinate system using the tracked field points and a model of a football
field.3 This rectification process assumes that all the player points are in the plane defined
by the field points. 4

3Although it is possible to use the grid structure of a football field to automatically stabilize the imagery
[Int94], these techniques are not robust to muddy fields, rainy days, and fans blocking video cameras, and
therefore, they have not been used in this work.

4The person tracking is therefore told to track thefeet of the player, which are assumed to be touching the
field plane.
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Figure 3-4: A screenshot of the GUI interface used to manually track players and field objects by
following objects with the mouse pointer as the video plays.

Acquiring the trajectory data is a time-consuming and tedious process. Tracking a single
9 second play carefully requires upwards of 2.7 hours of mouse work and much longer when
(necessary) rest breaks are included. Currently 27 plays have been fully tracked.

Only plays with more than four examples were selected for tracking off the laserdisk.
Otherwise, the class of plays currently used were considered randomly, with a slight
emphasis towards running plays. Within each class, some effort was made to track multiple
examples.5 In this work, "special teams" plays like punts, kickoffs, and extra points will not
be considered in order to maintain a manageable level of football knowledge engineering.

The three chalkboard images of a p51 curl play in Figure 1-1 were obtained using this
manual tracking system. Figure 3-5 shows two single frames of video with the player labels
marking each players position and a line indicating approximate upper-body orientation.
The field points used for transforming image points to the field coordinate system are also
displayed.

5Plays in the current database were selected somewhat haphazardly because initially a set of at least 150
plays were slated to be tracked and the first plays tracked were simply the first on the list. However, tracking
turned out to be more time-consuming than expected, which prevented the full set from being completed.
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Figure 3-5: Player position and upper-body orientation data overlaid on two frames of video from
a play example. At least four field points must also be tracked for each frame.

3.2.4 Characterizing trajectory noise

The manually acquired trajectories are noisy due to four types of systematic errors: place-
ment errors, center-of-mass errors, occlusion errors, and orientation imprecision.

Placement errors occur when human trackers fail to accurately mark the position of
points due to fatigue. The position entered via the mouse pointer can often be displaced by
3 or more pixels in the x and y direction from the ideal image position. Placement errors for
tracked field points are especially problematic because those points are used to transform
the player trajectories to the field coordinate system. Therefore, any error in field point
tracking propagates to all tracked objects. Consequently, field points are typically tracked
more slowly and carefully (e.g. about 1 frame per second) than player points (e.g. 2-3 frames
per second). Figure 3-6a shows an approximately 9 pixel error when tracking the ROLB
player.

Center of mass errors result from the difficulty of estimating an object's center of mass
as it projects onto the field. Only points that are in the plane of the field will be properly
transformed to the field coordinate system. Therefore, the person tracking attempts to mark
each player at the center of mass between the feet. The rapid motion of the players and their
animated body movement sometimes makes estimation of this point difficult. For example,
players often jump out of the ground plane, making it difficult to estimate where the center
of mass projects on the field. Figure 3-6b shows a situation where a player has fallen and
where the best point to mark is ambiguous. Typically, the feet are marked in this situation.

Ball tracking is handled by a separate interface component. When a player holds the
ball, the person tracking marks the feet of the player holding the ball as the ball position.
This position is marked independently of the player position, so the ball position rarely
perfectly matches the position of the player carrying the ball. When the ball is thrown
and is far from the ground plane, the ball's correct projection onto the field is difficult to
estimate. Therefore, the person tracking specially marks the frame where the ball is thrown
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and then specially marks either the frame when the ball is caught or the frame when the ball
hits a player or the ground. The position of the ball is then linearly interpolated for frames
when the ball is in flight. Similarly, if a ball is bouncing on the ground, the ball position is
marked each time the ball hits the field and interpolated when it is in the air.

Occlusion errors occur when a player is temporally occluded by another player or by
external factors such as an arm thrust before the video camera, as shown in Figure 3-6c. In
these situations, the person tracking has been instructed to smoothly guess the position of
the object until it is visible again.

Estimating upper body orientation is inherently imprecise. Often the torso faces one
direction and the head faces another. In these cases, the person tracking will indicate some
compromise orientation. The orientation itself is indicated simply by placing the mouse on
the video on the field in the direction of orientation.

Systematic errors present in the data are easily seen when the data is graphically
displayed in the field coordinate system and played at full frame rate. One such frame
is shown in Figure 3-7.6 The errors are difficult to characterize once the play has started.
Analysis of several plays containing segments where players are standing still in the original
video, however, has demonstrated that the standard deviation of a tracked object's position
from its actual position is, at best, .35 yards (.32 meters) in any frame. The positional
accuracy is certain to be worse as the play begins and the camera view undergoes rapid
panning and zooming, resulting in more human tracking error.

Finally, although the cameraperson tries to keep all players in view for the majority of
the play action, near the end of a play the camera is zoomed in on the area of the field where
the ball has been carried or thrown. Some players, therefore, drop out of the field of view.
In these cases, player trajectory data simply ends when a player is no longer visible.

In summary, the data used in this work are the trajectories of all moving objects given by
(x,y,orientation,label) tuples as a function of the time. Orientation denotes the approximate
upper-body orientation of a player, and the label is the name of the player's starting position.
The player and the ball trajectories are provided. This data was obtained by manual tracking
of objects in video, but the data is noisy due to human error and imprecision.

6A few QuickTime videos of player trajectories using this graphical representation are available at
http://vismod.www.media.mit.edu/vismod/demos/football/.
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(b)

Figure 3-6: (a) Placement errors result from the difficulty of obtaining perfect mouse tracking when
following players with a mouse in video. Here, the ROLB label is about 9 pixels below the ideal
position. (b) Center of mass errors result because it is sometimes difficult to estimate where the
center of mass of a player is in the plane of the field as players run, jump, and fall. Here, a player
has fallen and the individual tracking has been instructed to track the player's feet. (c) Occlusion
errors result when views of some players are blocked by other players or by factors external to the
play itself.
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Figure 3-7: The trajectories of the players, ball, and markers on the field are used to rectify the
trajectories to a common field coordinate system. This image shows one frame of a graphical
representation of the play as trajectories. Each player's position is marked by a cylinder that has a
small arrow indicating that player's approximate upper-body orientation.



Chapter 4

A test system: labeling a multi-agent
scene
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As discussed in Chapter 2, the complexity of the multi-agent recognition task results from,
in large part, the interaction between agents as they move. The more agents there are in
a scene, the more ways there are to measure different types of interaction between agent
actions.

This chapter examines an analogous non-temporal problem - labeling of static, multi-
agent scenes. The complexity of this task results from the large number of spatial relation-
ships between agents. The more agents there are in the scene, the more ways there are to
measure the spatial configurations between particular agents. Given a large possible feature
set of spatial relationships, the task is to assign labels to objects even though any given label
depends upon other labels that may or may not be assigned.

In particular, the task is to develop an algorithm that, given the (x, y) location of objects
on the football field at the start of a play, can determine the "player label" of each object. For
example, the algorithm must determine which object should be labeled "QB" (quarterback),
which should be labeled "C" (center), etc. The algorithm described in this chapter uses a rule
set, specifying allowable relationships between objects. Using these rules, the algorithm
searches for a labeling of objects in the scene such that each label is consistent with all the
other labels in the scene given the rule base.

The algorithm is based upon an approach developed for the recognition of natural objects
in static scenes. Natural objects like trees, shrubs, grass, and clouds are difficult to define
using the precise, geometric models often used to model man-made objects such as vehicles
and machined parts. Therefore, one strategy for recognizing a natural object is to find an
interpretation of a scene - a labeling of objects - such that each object's label is consistent
with the labels of all adjacent objects [SF91]. Consistency is defined by rules encoding
domain knowledge. This approach appears to be applicable to multi-agent scenes when the
labels of individual agents depend upon the labels of other nearby agents. For example,
the QB player label cannot be assigned without assigning the label for the C, but the player
label for the C cannot be assigned without considering the label for the QB.

The formation-labeling algorithm described in this chapter overcomes the multi-agent
labeling interdependency. Problems, however, were encountered when trying to extend the
approach to the dynamic problem of recognizing football plays. These representational
inadequacies motivated the development of a fundamentally different algorithm for play
recognition, which is discussed in Chapter 6. That system exploits one observation made
in this chapter that a large number of simple consistency checks can be used to generate a
good, multi-agent labeling hypothesis.

4.1 Multi-agent scenes and context

The problem with the multi-agent formation labeling task is that objects are defined less
by what they look like than by what other objects are around them and how those other
objects are configured. Recognizing an object's label requires finding objects with particular
attributes set in a specific context established by surrounding objects. This context-labeling
problem is similar to the problem of recognizing natural objects.
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Strat and Fischler recognized that objects in outdoor scenes are often difficult to model
using geometric models [SF91]. As a result, a recognition system trying to identify some
object is forced to use more information about how that object relates to other objects in the
scene (e.g. a shrub will almost always touch the ground, the QB always stands somewhere
behind the C). Analogously, a recognition system for multi-agent action exploits how one
agent's actions relate to the actions of other agents because these relationships may be the
most discriminating features for determining the action's label. Some objects and actions
are difficult to define independently of the other objects or agents in the scene.

Strat and Fischler, therefore, developed an object recognition algorithm with the goal
of avoiding the two main assumptions made by object recognition systems for geometric
objects: (1) that all objects can be defined by a small number of explicit shape models,
and (2) all objects have characteristic features that are reliable identifiers [SF91]. The
second assumption is made by some object recognition work when highly-characteristic
"focus features," which are assumed to always be present on an object, are used to rapidly
prune object search spaces [BC82]. Powerful focus features are more difficult to identify
for natural objects because most focus features are defined based upon view-invariant,
geometric edge intersections that are not found on many natural objects. Natural objects
like shrubs can vary substantially in shape, color, and texture from image to image, but their
relationships to other objects may be more invariant. For example, a tree has a region of
sky near the top. Unfortunately, the way that the sky appears can depend upon the weather
and upon the viewing angle. Neither the tree or sky has visual properties that are invariant
over time and imaging situations. The relationship, however, between the tree and sky will
nearly always hold true.

Strat and Fischler use explicit reasoning about multi-object context to minimize their
recognition algorithm's dependence on stored geometric models; instead, the algorithm is
dependent primarily on the detection of important relationships between objects. They
use contextual rules to simultaneously assign labels to natural objects in a scene and to
partition an image into semantically meaningful regions that are self-consistent given the
rule set. The strategy is to use conservative feature detectors, significant redundancy in the
representation of objects, and (primarily pairwise) contextual consistency rules to achieve
robust recognition of natural objects; this is done by enforcing that relationships between
hypothesized labeled objects be valid given a set of rules. The problem is that the mutual
dependency of object labels requires a (typically iterative) relaxation search process.

4.2 A formation labeling test system

Strat and Fischler developed a hypothesize and test algorithm for region partitioning and
object labeling of natural outdoor scenes of ground, sky, trees, and shrubs. The system,
CONDOR, searches for a consistent interpretation of a scene using three sets of context
rules [SF91]. The system presented below is based directly on this work.

Given the prima facie similarity between natural object recognition and action recog-
nition, a context rule labeling system for football formations was developed. The design
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intentions were to test the Strat and Fischler system on a static problem in the football
domain and then extend the system to consider temporal features and recognize multi-agent
actions.

To develop the formation-labeling system, each player's (x, y) position (but not orien-
tation) in the first frame was used from the trajectory play data described in Chapter 3. The
data is noisy due to the issues discussed in Chapter 3. Although the LG will always be
slightly behind and to the left of the C (with respect to the LOS) in the actual scene, in the
formation data the LG may actually be in front of the C. Similarly, some formation labels
depend upon knowing whether a given player is next to the LOS (i.e. < 1 yard) or just off
the LOS (i.e. > 1 yards). Discriminating these two cases, however, can be difficult due
to rectification errors and the fact that the LOS position must be estimated from the player
position data.' The data does not contain noise such as the addition of spurious player
blobs or missing player blobs that might result from a system that visually detects player
positions.

Figure 4-1 illustrates the formation labeling task. Assume that the (X, y) field positions
of the 11 offensive players are given, as shown in Figure 4-la. The goal is to determine a
correct player label for each of the 11 offensive objects; one such interpretation is shown
in Figure 4-1b. This is a context-sensitive problem because the player label of any given
player can (and often does) depend upon the labels of several other players. For example,
the object marked P1 in Figure 4-la can only correctly be labeled as LSE (left split end)
by knowing the player labels for PlO and P9. However, knowing P9 requires knowing
the player label for P6, and knowing the player label for P6 requires knowing the label
of P5, and so on. Noise complicates the problem. Figure 4-ic shows the original object
positions with positional error bars drawn around each player's x and y axis typical of
the data. The player's body (indicated by the circle) must be within the error bars, not
just the player's center point. These small positional errors increase the number of valid
interpretations and require a more extensive search during the labeling process. One of the
incorrect possible interpretations is shown in Figure 4-1c; C has been incorrectly assigned
to P4 instead of P6. Technically, the formation labeling shown in Figure 4-ic is correct
because it is self-consistent given the rule set. When noise is considered, however, it is not
the best interpretation of the data. This point will be discussed later in this chapter.

4.2.1 Searching for consistent interpretations

The goal for the labeling system is to compute a consistent position labeling for all of
the objects in the data given a set of football position labeling rules. The algorithm uses
conjunctive rules with the following form: L : C1 A C2 A ... A C,, -> A, where L is a class
name, C is a boolean context condition, and A is some action to be taken. A class in

'The LOS is defined in Appendix A. It is an imaginary line splitting the offensive and defensive players.
Multiple hypotheses for the LOS position may therefore be warranted if the positions of the players are
noisy.
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*P1 *RFL gRSE

SP2 RTE T
P3 RT
P4 RG

P6  P5 gP7 C QBFB L B HB
*P8 *LG G

gP9 *LT T
*P10 gLWB TE

LQS

P11 LSE FL

(a) (b) (c)

Figure 4-1: (a) Objects in a formation pattern to label with position labels. (b) One self-consistent
player label assignment for the formation given the formation rules knowledge base. (c) One
self-consistent player label assignment given noisy object positions, indicated by the error bars.
The label names are defined in Appendix A.

this domain is a player label (e.g. QB, LT, C, etc.) or an intermediate system label (e.g.
offensive-player-blob). An example rule is below:

QB: exists(OBJ)AleftOf(OBJ,RG)ArightOf(OBJ,LG)=-yhyp(OBJ,QB)

This rule encodes that some data object (OBJ) can be given a hypothesis candidate label of
QB when there is an unlabeled data object that has an object to the left that has been labeled
a possible LG and an object to the right that has been labeled a possible RG.

The algorithm uses a production, or blackboard, architecture. The results of applying
rules are deposited in a common blackboard memory space, B. Adding new information
to B may satisfy the context condition C1 A ... A C,, of other rules and those rules will be
activated. Some rules have context conditions that are satisfied merely by placing the input
data on the blackboard; these rules initiate the reasoning process, adding information to B
that triggers new rules, and so forth. Also stored on the blackboard is a set of mutually
consistent labels of the scene data, called a clique, C. The clique is constructed iteratively
by checking that each new label added to the clique is consistent with all of the existing
labels in the clique. The clique stores one partially labeled interpretation of the input data.
Some context rules have context conditions that activate based upon labels in C, and others
deposit new information in C.
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(ISA (ob-candidate db-candidate los-candidate person-candidate)
label-candidate)

(ISA (offense-candidate defense-candidate)
person-candidate)

(ISA clineman-candidate

lineman-candidate)

(ISA (c-candidate guard-candidate tackle-candidate)
clineman-candidate)

Figure 4-2: A sample of object classification hierarchy rules used by the formation labeling
algorithm. More rules can be found in Figure D- 1.

The recognition algorithm uses a database of context rules for the domain of interest.
Individually, the rules are relatively simple and activate only when specific contextual
conditions are met. To assign a label to some object in a scene, the label must satisfy a
large set of these relatively simple rules. The rules are used to iteratively label each object
in a scene by constructing a labeling of the entire scene. Hundreds of rules check that each
object label is consistent with all other object labels the system has proposed to describe
the scene data.

Objects in the data can be labeled with multiple classes. The classes are hierarchically
organized. Some examples are shown in Figure 4-2 (and more in Figure D- 1). An object can
be assigned a football label such as qb-candidate or c-candidate, but it can simultaneously
receive the labels offense-candidate, person-candidate, and ob-candidate. 2 The context rule
sets use the class hierarchies to simplify the encoding of rules that apply to multiple types
of objects or labels.

The formation labeling algorithm consists of four stages of processing: hypothesis
generation, hypothesis evaluation, grouping mutually consistent hypotheses into cliques,
and selecting the best description from sets of mutually consistent hypothesis cliques. Each
stage uses a particular set of context rules and is described below.

Hypothesis generation

The hypothesis generation stage assumes that it is easy to write hypothesis generation rules
that work in specific contexts. These rules are designed to aggressively generate all remotely
feasible label hypotheses given the observed data and other label hypotheses that have been
made. The proposed label candidates are added to B. Each generation rule has the format
shown below.

2 0b-candidate is short for "offensive-blob-candidate", which represents any input data that could be an
offensive player. Defensive player positions are used only to compute candidates for the line of scrimmage
(LOS).
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Candidate: los-candidate

Constraints: Clique: nil

Object: db-candidate ob-candidate

Funcs: vertical-midline-players

Candidate: c-candidate

Constraints: Clique: los-candidate lg-candidate

Object: ob-candidate

Funcs: (and (on-los OBJ los-candidate)

(same-side-los-p OBJ los-candidate lg-candidate)

(right-of-p OBJ lg-candidate los-candidate))

Candidate: c-candidate

Constraints: Clique: los-candidate rg-candidate

Object: ob-candidate

Funcs: (and (on-los OBJ los-candidate)

(same-side-los-p OBJ los-candidate rg-candidate)

(left-of-p OBJ lg-candidate los-candidate))

Candidate: lg-candidate

Constraints: Clique: c-candidate los-candidate

object: ob-candidate

Funcs: (and (on-los OBJ los-candidate)

(same-side-los-p OBJ los-candidate ob-candidate)

(left-of-p OBJ c-candidate los-candidate))

Figure 4-3: Example hypothesis generation rules. More rules can be found in Figure D-2.

Candidate: c-candidate
Constraints: Clique: los-candidate

Object: ob-candidate
Funcs: (and (on-los-p OBJ los-candidate)

(flanked-both-para-los-p OBJ los-candidate
ob-candidate))

This rule indicates that if the current clique, C contains a los-candidate and the black-
board, B, contains an ob-candidate (offensive blob candidate), then the test in "Funcs"
should be activated. The Funcs test is applied to each object, OBJ, labeled as an ob-candidate
on B. "(on-los-p OBJ los-candidate)" tests that the OBJ is next to the los-candidate, using
the los-candidate from C. "(flanked-both-para-los-p OBJ los-candidate ob-candidate)" tests
that the OBJ is parallel to the los-candidate and flanked on both sides by other obj-candidate
objects. If these two tests hold true, then the rule indicates that it is reasonable to hypothe-
size that the OBJ could be labeled as a C, and this hypothesis is added to B. A sample of
other hypothesis generation rules is shown in Figure 4-3 and Figure D-2.

The algorithm is initialized when the object (x, y) position data is added to the black-
board. Each object generates an initial blob-candidate (db-candidate or ob-candidate, for
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defensive and offensive blob respectively). A demon process, which is continually ob-
serving the blackboard and activating applicable context rules, will activate hypothesis
generation rules with satisfied contextual preconditions. For example, most rules are not
immediately activated because they require entries in C and C = {}. The first rule in
Figure 4-3, however, is activated because a db-candidate and ob-candidate are found in B.
The function "vertical-midline-players" is run and generates some los-candidate objects
that are added to B. Note that the function can (and usually does) return more than one
hypothesis location for the line-of-scrimmage, which is based upon the location of the input
objects. Later in the processing, one of those los-candidate hypotheses will be added to C
and trigger the activation of other hypothesis generation rules.

Hypothesis evaluation

The hypothesis generation rules are liberal. They propose too many hypothesized labels for
any given object and assume that later processing will sort out the inconsistent information
and select the best labels for the given input scene. The hypothesis evaluation stage uses a
second set of context rules to rank hypotheses within the same class. For example, if the
hypothesis generation rules have added several los-candidates (LOS 1,LOS2,LOS3) to B,
where each candidate has a different position on the field, a hypothesis evaluation rule can
compare and partially order the los-candidates. For instance, suppose a function, rankLOS,
exists to compute how well each LOS candidate partitions ob-candidates from db-candidates
and how well the partition is centered between the offense and defense players. rankLOS
can rank order two LOS candidates. By pairwise comparison of each label candidate on B
within the LOS class, a partial order within the class can be established. For example, the
partial order could be written as {LOS2 .- LOS1 - LOS3}, indicating LOS2 is clearly
the best hypothesis label. Often a class will have multiple hypothesis ranking rules that
apply in the given context. In this case, a given label must rank above some other labelfor
all applicable hypothesis evaluation rules in order to top the partial order. For example, a
partial order written as {LOS2 s LOS3, LOS1 

.- LOS3} indicates that LOS2 and LOS 1
rank higher than LOS3 for all applicable ranking tests, but that neither LOS2 or LOS 1
consistently ranks above the other.

Figure 4-4 shows some of the class partial orders at a particular time during the search
process. For instance, data object LOS 1 has been ranked as a better choice for the LOS
class using the ranking rules than data object LOS2. LOS3 and LOS 1, however, are ranked
as equally good choices. P5 is clearly the best choice for the QB class at this time.

Examples of hypothesis evaluation context rules are shown in Figure 4-5 and Figure D-
3. Whenever the hypothesis generation rules add a new hypothesis to B, the hypothesis
evaluation demon will activate any applicable evaluation rules and recompute the relevant
preference orders, which are stored on B.

Intuitively, if a label-candidate outranks all other hypothesized labels using a comprehen-
sive set of applicable ranking tests that take into account all known contextual information
(and therefore dependencies between label-candidates), the label-candidate is likely to be
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M LOS: LOS3
LOSI >- LOS2

P2 QB: P5 >- P4 >- P7
P4 C: P6 >- P5

A eP7 P6 >- P4 >- P8

P9 LG: P8 >- P6
*P1O LT: # (no hypotheses on B yet to rank)

FB: P7
LHB: P7

p11 LFL: Pl1 >- P10
~~LoPH P >- P9

LOS3 LSE: P11>-P10
LOS2

Figure 4-4: Example showing some of the label partial orders at a particular time during the
search process. For instance, data object LOSi has been ranked as a better choice for the LOS
class than data object LOS2 using ranking rules. LOS3 and LOS 1, however, are ranked as equally
good choices. P5 is clearly the best choice for the QB class at this time, given the object labels
hypothesized on the blackboard, B, and the ranking rules.

the correct label. When evaluators do not consistently rank one label candidate above
another, no ordering is imposed. Therefore, preference ordering is based upon consensus,
given all applicable hypothesis generation rules. This ranking mechanism is a variation on
the theory of endorsements [CG83], when all endorsements are of equal weight. To avoid

using a weighted sum of components, the algorithm instead relies on redundancy. The
implications of this decision are discussed shortly.

Grouping mutually-consistent hypotheses

A third set of context rules is used to create the clique, C, which is an internally consistent,
partial description of a scene given the rule set. C is constructed by incrementally adding
label candidates from B so that each new member of C is consistent with all previous
members. A search process selects a label candidate from one of the class partial orders. A
demon process then applies all applicable consistency rules, based on the label candidate,
B, and C. Each rule runs a consistency check. When all applicable rules evaluate to true,
indicating the selected candidate label does not conflict with some label in C, the label is
added to C. Examples of consistency rules are shown in Figure 4-6 and Figure D-4.

When no more labels can be added to B and C, the clique, which is one labeled
interpretation of the scene, is saved. The order in which label candidates are selected for
addition to C can significantly impact the labels that are selected. For instance, a poor
choice for the LOS class may invalidate nearly all other label candidates for entry into the
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Candidate: los-candidate Prefer LOS that split the off/def blobs well
Constraints: Clique: nil

Object: db-candidate ob-candidate
Funcs: (los-off-def-split-cs)

Candidate: c-candidate ; C: Prefer shorter distance to LOS
Constraints: Clique: los-candidate

Object: nil

Funcs: (eval (- (dist-los los-candidate cand)))

Candidate: c-candidate C: Prefer closest to lg
Constraints: Clique: lg-candidate

Object: nil

Funcs: (next-to-cs OBJ lg-candidate)

Candidate: c-candidate ; C: Prefer closest to rg
Constraints: Clique: rg-candidate

Object: nil

Funcs: (next-to-cs OBJ rg-candidate)

Candidate: c-candidate ; C: Prefer C near to QB
Constraints: Clique: qb-candidate

Object: nil

Funcs: (quantify (near-p OBJ qb-candidate))

Figure 4-5: Example ranking rules. For more rules see Figure D-3.

clique due to checks that enforce reasonable distance-from-LOS constraints.

Constructing cliques

The clique construction is heavily dependent upon the order in which label candidates
are selected for addition to C. Given N label candidates, there are N! possible label-
candidate orderings, which would need to be tested to ensure that the best achievable clique
is constructed. Search order heuristics are therefore required for (1) selecting a class and
(2) selecting a candidate from that class (from their partial order classes) to attempt to add
to the current clique. If a poor candidate is added to a clique early in the clique formation
process, the erroneous candidate will most likely prevent the addition of valid candidates
due to consistency rule conflicts. Therefore, the algorithm should add the most promising
label candidates to the clique first. Strat and Fischler randomly select a class. Within the
class, they try to add the label candidate at the top of the partial order for the class. If no
candidate is at the top of the partial order (as in the LOS class in Figure 4-4), the algorithm
selects a top candidate randomly [SF91].

In the football domain, if each class has a label candidate that ranks at the top of the
class, the search complexity is roughly M!, where M is the number of possible classes,
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Candidate: wb-candidate ; Backs must be off LOS

Constraints: Clique: los-candidate

Object: nil

Funcs: (just-off-los-p OBJ los-candidate)

Candidate: guard-candidate ; C and Guard need to be a bit apart in ydir

Constraints: Clique: c-candidate

Object: nil

Funcs: (bit-of-space-y-p c-candidate OBJ)

Candidate: c-candidate ; C needs to be between the QB and LOS
Constraints: Clique: qb-candidate los-candidate

Object: nil

Funcs: (between-p OBJ qb-candidate los-candidate)

Candidate: c-candidate ;C needs to be flanked on left (wrt LOS) by LG

Constraints: Clique: lg-candidate los-candidate

Object: nil

Funcs: (flanked-left-p OBJ los-candidate lg-candidate)

Funcs: (flanked-right-p OBJ los-candidate rg-candidate)

Figure 4-6: Example consistency rules. More rules are shown in Figure D-4.

or approximately 20. Therefore, an additional heuristic is used to bias the random class
selection towards a breadth-like search that is significantly different each time a new clique
is constructed. Each time the algorithm finishes constructing a clique, the algorithm saves
the clique and resets. On the following clique construction iterations, classes are randomly
selected, except that selection is biased to select classes not selected early in previous clique
constructions. Similarly, within a class that has multiple candidate labels at the top of the
partial order (e.g. LOS in Figure 4-4), the random label selection is biased towards labels
not tested early in previous clique constructions.

Strat and Fischler assume that the partial-order ranking system never mis-ranks labels
within a category. In the formation labeling system, a final heuristic is used so that when
a candidate label is tested unsuccessfully for addition to a clique, it is removed from the
partial order for the remainder of that clique construction. A new class is then selected.
This prevents a single, partial-order ranking error from blocking a desirable candidate label
from being added to a clique. Therefore, if in Figure 4-4 the algorithm selects the QB class
and attempts to unsuccessfully add P5 to the current clique, then P5 is removed from the
clique and in some future construction P4 will be considered.

Selecting the best consistent hypothesis

Label candidates are added to the current clique until either (1) no more label candidates
are being generated and all generated label candidates are inconsistent with the clique or



66 CHAPTER 4. A TEST SYSTEM: LABELING A MULTI-AGENT SCENE

(2) the clique is judged to be "good enough" based on a scoring function.
The evaluation metric for a clique selected by Strat and Fischler and used here is the

percentage of data that has been labeled [SF91], which is a commonly used heuristic (e.g.
[JJM85]). For the formation-labeling task, a heuristic scoring function evaluates cliques
based upon the number of the 11 offensive players that have been labeled and an additional
requirement that certain player positions such as the C and QB have been assigned. At any
time, the clique that has the highest clique score is considered the best match. Several cliques
can have the same clique score, in which case they are equivalently good interpretations of
the scene.

Once each clique is constructed, the clique and its score are saved and a new clique is
constructed. Intermediate feature computation results are cached to improve performance.
After each clique is completed, the cliques are ranked by their clique score. The stochastic
search process can be halted when a maximal score indicating a good description of all the
provided data has been achieved. Alternatively, the algorithm will provide the best answer
after some specified number of clique constructions.

Knowledge engineering

Encoding the three rule sets is a laborious process. Strat and Fischler argue that three
properties of this system mitigate the difficulty of rule construction [SF91]. The first is
that rules are broken down by label class, limiting the amount of knowledge that needs to
be considered when designing rules within a class. For example, when designing ranking
rules, the rules only need to compare between similar player labels (i.e. is P4 a better C than
P5?). Second, the rules reflect typical, sufficient conditions making the rule sets relatively
succinct. Finally, rules need not be perfect because the rule set is highly redundant.3 In
the formation labeling system, new hypothesis generation rules are relatively easy to add,
and simple functions can typically be used to check for consistency and for hypothesis
generation. Ranking rules, however, have been more difficult to construct for reasons
discussed shortly.

Formation labeling algorithm overview

To summarize the formation labeling system, the algorithm consists of the following steps
once the rule sets from the formation-labeling problem have been specified:

1. 11 object-candidate labels, one for each player, are added to the blackboard, B.

2. Activate applicable generation rules based on preconditions examining B. Rules add
label candidates to B for objects.

3. Activate applicable ranking rules based on preconditions examining B and produce
partial orders within each label class. Partial-order ranking information added to B.

3As discussed shortly, rule accuracy is critical for good system performance when unanimous endorsement
by ranking rules is required.
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4. Loop until maximum clique score achieved.

(a) Create a new empty clique, Ci.

(b) Select a label class randomly among classes, biasing selection towards classes
that have not been previously marked on B. Mark chosen class as selected on
B.

i. If label class contains no candidate labels on partial orders, goto step 4.b.
ii. From label class, select top-ranking candidate label (or randomly select

among multiple equally ranked options, biasing the selection towards labels
that have not been selected early in previous iterations). Pop candidate label
from partial order.

iii. If candidate label is accepted by consistency rules, given the state of B and
Ci, then add candidate label to Ci. Otherwise, goto step 4.b.ii.

iv. Activate applicable generation rules based on preconditions examining B
and C. Rules add label candidates to B for objects.

v. Activate applicable ranking rules based on preconditions examining B and
C; and update partial orders within each label class. Partial-order ranking
information added to B.

vi. Goto step 4.b.

(c) Compute the clique score for C, and add C and the score to B.

(d) Output the clique on B with the maximum score as best current result.

4.2.2 System performance

The construction of the system helped identify some problems with the approach described
here that led to the development of an entirely new algorithm described in Chapter 6 for
the dynamic-scene labeling problem of football play recognition. The system, therefore,
which suffers from problems to be discussed in Section 4.3, was only tested on a set of ten
formation examples - primarily to evaluate architectural problems.

In practice, on these ten examples, the stochastic search process is unlikely to find the
best clique without at least 1000 clique constructions, often 10,000 constructions.4 During
development of the ten examples, few situations were encountered when system rules could
not be added or adjusted to accommodate a new type of formation.

One specific troublesome example, shown in Figure 4-7a, was presented to the system.
The desired labeling is shown in Figure 4-7b. Figure 4-7c shows the best result produced
by the system. The first difference to note is that the system does not make distinctions
between the LSE (left split end) and SE (split end). The system was designed to minimize the
number of classes because every added label class significantly increases the complexity

4Each clique construction takes approximately 1 second on an AlphaStation 500MHz using (rather ineffi-
cient) LISP code.
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of the search space. Therefore, an assumption was made that a post-process could add
directional descriptors to labels like the FL and SE. The only other difference between the
two scene interpretations is the labeling of the RTE in Figure 4-7b as the WB in Figure 4-7c.
This is an error due to the label of the FL and RT; the object labeled as a WB must be the
TE, which is a player who is next to the LOS. The WB is a player who should be 1 yard off
the LOS. This error results from several missing rules in the rule set. One missing rule is
the preference to label an object that is close to the LOS a TE versus a WB, which should
be 1 yard off the LOS. Due to noisy data, the rule sets permit the object mislabeled as WB
to be detected as either on or 1 yard off the LOS. The rule sets, however, should encode the
information that an object in that position is more likely to be the TE than the WB.

The second missing rule pertains to the rule in football limiting the number of players
that stand in formation directly next to the LOS to exactly 7. All the other players must stand
at least 1 yard back. A rule is in the database that specifies that only 7 players can be next
to the LOS. Therefore, since the SE, LT, LG, C, RG, RT, and TE positions are all objects
that start on the LOS, a scene labeling where both WBs in Figure 4-7c are instead labeled
as TEs will never be proposed. No rule is present, however, that enforces the inverse: no
less than 7 players can be on the LOS. This rule would be added to the database indirectly
by using a constraint rule that indicates no more than 4 players can be more than 1 yard
off the LOS. Unfortunately, to improve search performance, this constraint on the number
of objects on the LOS needs to be added to the ranking rules, but the ranking rules cannot
rank a TE above a WB because labels are only ranked within their own categories.

4.3 Evaluating the representation

The formation-labeling system was developed to explore one method for recognizing scenes
in a contextually rich, multi-agent problem domain. The goal was originally to expand
the method to the temporal domain and apply context-based generation, ranking, and
consistency rules to the multi-agent domain of play recognition.

The system did successfully label static scenes. However, experience developing the
system and evaluation of the system's representational limitations prompted a complete
switch from a rule-based search to a probabilistic, graphical model classification approach
described in later chapters. The rule-based system was conceptually difficult to extend to a
temporal recognition system. The representation inadequacies are discussed below. Later
in this document, these issues will be discussed again with respect to the play recognition
system developed in Chapter 6.

Partial order sensitivity. The effectiveness of the search process is critically dependent
upon the partial orders generated by the ranking rules. Inaccurate partial orders will
often result in incorrect labels being added to cliques early in the search process. These
erroneous labels prevent correct labels from later being added to cliques. The partial
orders not only need to be correct, however, they need to be maximally ordered. Partial
orders are most informative when a single label candidate is ranked above other label
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Figure 4-7: (a) objects to annotate with position labels. The (b) ideal and (c) computed labeling
for the formation in (a).

candidates. Partial orders are least informative when no label candidates are ranked
above the others. Overall, three cases are possible: (1) informative partial orders that
are correct, resulting in a single or small number of label candidates at the top of a
class, (2) non-informative partial orders that are correct, providing no useful searching
guidance within a label class, and (3) incorrect partial orders, which will seriously
impede the searching process and can sometimes make recovery of a correct solution
impossible. In the formation labeling system (and in Strat and Fischler's CONDOR
system[SF91]), a candidate label, Li is ranked above other candidate labels L, ...L"
only if all the ranking rules prefer Li over each of L1 ...L,. Otherwise, no ranking
information is used, even if only one ranking rule is in disagreement. This strategy
was motivated by the observation that any candidate label that tops all the ranking tests
is likely to be a good label to try and add to the clique. This strategy, however, results
in the following counterintuitive behavior: the more ranking rules that are provided
to the system, the more difficult it is for the system to compute an informative partial
order. More information results in a less-directed, not a more focussed search. If p
is the probability that a ranking rule will produce an erroneous result, the probability
that n ranking rules will produce no error, (1 - p)fl, is continually decreasing as more
ranking rules are available. As a result, the knowledge engineering process is made
more complicated because the system lacks a clear separation between the search
control and the rule set. Adding ranking rules can adversely affect search efficiency
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and, in some cases, prevent the system from ever recovering a correct solution.

Typical solutions can be hard to detect. As a consequence of partial orders losing their
discriminatory ability, possible but unusual solutions can require an extensive search.
A more problematic issue, however, is that highly typical solutions can also require
extensive search because the ranking rules are only ranking within label class. A
ranking mechanism that provides a heuristic to help select which class to consider
next, in addition to which label within the class, is needed to ensure that highly typical
solutions are found quickly.

Lack of mechanism to "connive." The formation-labeling algorithm reuses little informa-
tion between each clique-generation phase. With the exception of some information
used to bias the search away from quickly selecting label candidates chosen early
for previous cliques, each clique generation process proceeds independently. 5 The
system has no mechanism for "conniving" [SM72] by checking for problematic rules
and candidate labels. A conniving system might statistically monitor each rule and
label candidate throughout the recognition process. Rules and labels that are causing
an unusually high consistency rejection rate might subsequently be tagged so that
they are given low selection priority during the intra-class and inter-class search se-
lection. During the generation of a single clique, if one label in the clique is causing
a large percentage of consistency rules to reject other labels, then the troublesome
label might be removed. The algorithm would then backtrack to the time when the
troublesome label was added to the clique and resume searching.

Lack of mechanism to "tweak." The formation labeling system suffers from a lack of
ability to "tweak" clique solutions. Cliques are commonly formed that are close to
the ideal formation-labeling but have the labels for two adjacent players swapped
(e.g. a RSE is labeled the RFL and visa versa). Some clear patterns are apparent that
could be addressed using an additional set of context rules that take a finished clique
and perform a set of common tweaks on the set, such as swapping two frequently
confused player labels (a form of case-based search, see [Ham89}). The system
would then recheck the consistency rules and continue processing either the original
or the newly tweaked clique, depending upon which has the higher clique score. The
tweaking rules could make use of the probabilities of observing particular formation
configurations.

No probabilistic ranking and evaluation. From the outset, the system described in this
chapter was developed with the assumption that one major flaw of the framework
must be overcome in the subsequent system: the lack of a mechanism for reasoning
about uncertainty. The resulting brittleness of the system is apparent in both the
partial-order ranking process and the evaluation process. The ranking process suffers

5Cached computation from feature detectors is also saved between clique searches for computational
efficiency.
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substantially because a candidate label Li is only ranked above L. if all applicable

ranking rules suggest that Li >- LJ. Uncertainty is replaced by percentage of consis-

tency. However, the ranking rules themselves depend upon continuous and uncertain

measurements of spatial concepts like proximity and relative orientation, and some-

times when combining two spatial measurements into one detector, information is

lost as each spatial measurement is conservatively quantized. A better mechanism

would propagate uncertain information throughout the reasoning process. Finally,
this algorithm can only detect a consistent scene labeling. It is often possible to

have multiple consistent formation labeling, but it should be the case that one of the

labelings is preferred over the others (i.e. has a higher probability).

No mechanism to evaluate partial interpretations. The algorithm proposed here does

not provide a mechanism for evaluating partial interpretations of the scene. The

first problem is that the entire scene must be observed. In the case of play recogni-

tion, detectors are desired that can partially (i.e. causally) observe the play in time and

make a hypothesis early in the play action. This is analogous to the labeling system

having player data revealed incrementally and the system continuously computing a

best guess formation. Second, as cliques are constructed, it would be desirable to have

a mechanism by which the reliability of operators used to generate the interpretation

combined with the percentage of the data explained could be used to compare the

clique being constructed with cliques already proposed. For example, a probability

or goodness function for the clique might be used to terminate the construction of a

poor clique early if other constructed cliques are clearly superior. Alternatively, the

algorithm might postpone the construction of the poorly scoring clique in favor of

completing construction of more promising cliques first.

Trading off space for time. The formation-labeling algorithm's performance could be im-

proved by trading off memory for computation time using the rule-monitoring RETE

algorithm [For8 1, For82].

Tuning the search complexity vs. brittleness tradeoff. The formation-labeling algorithm

essentially trades off the size of the searched space for confidence in the evidence and

ranking rules. For example, in the worst case assume that the evidence is so noisy

that no ranking rules obtain a consensus within some label class, L : L1 , L2 , ... , L,.

As a result, instead of a partial order that rapidly prunes the search space (e.g.

{ L 2 >- LI >- ... >- L,} designates a clear search order), every entry in L is equally

likely to be a clique member. A large search space results. As more ranking rules are

used, however, the performance of the algorithm will become more brittle. A single

faulty ranking rule can dramatically increase required search time and, sometimes,

prevent the desired solution from ever being recovered in a reasonable time. The

current algorithm scales poorly.

Using independence. Independence can be used to reduce the maximum size of the search

space, and recognition problems in real domains will require that the problem be
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grouped into mostly independent sub-problems of manageable chunks. For example,
in the football domain, the formation-labeling task described in this chapter can be
accomplished independently of the play-labeling task described in later chapters.
The system presented in this chapter does not make independencies explicit to the
designer, and it is not clear how they would be exploited.

Multiple rule sets. Having the three distinct sets of rules for three tasks: generation,
ranking, and consistency checking has proven problematic. Rules in each set are
similar but not exactly the same. For example, a generation rule specifies that an
object to the right of the LG could possibly be the C, and therefore, a c-candidate
label is assigned to the object. A ranking rule specifies that a c-candidate label for
the object that is to the right of the LG in just the right way should rank higher than
a c-candidate label assigned to some other object that is to the right of the LG but in
some problematic way (e.g. it's too far to the right). Finally, a consistency rule checks
that the c-candidate label for the object is to the right of the LG. Encoding three rules
for each concept in the domain is a tedious process that, in the case of the formation
system, proved prone to error. If the rule sets were extended to include a representation
of uncertain information, maintaining probabilistic consistency between the three rule
sets would be problematic for the rule designer. The rule base is more verbose, more
difficult to construct, and more difficult to debug than it probably needs to be.

Comparing across label categories. As described in this chapter, the framework has no
mechanism for comparing label candidates across classes using ranking rules (e.g.
ranking the TE and WB might fix the problem described in the example in Sec-
tion 4.2.2).

Incorporating a priori information. The algorithm presented here has no mechanism for
using uncertain a priori information to bias the search towards a particular set of
solutions. If a particular label is known, it can simply be added to the clique at the
start of each search process. If some label is known only to be more likely, however,
no mechanism exists for entering suggestive evidence so that it is used by the ranking
rules.

Handling fuzzy evidence. The algorithm described in this chapter does not have a mech-
anism for dealing with uncertainty in data. Further, the algorithm fails to provide a
robust mechanism for handling the fuzzy nature of spatial definitions like "behind"
and "near." Feature detectors are designed with worst-case thresholds and conse-
quently often ignore useful but subtle measurement differences. For instance, as in
the example in Section 4.2.2, the system often has trouble selecting between a label
for a player who is supposed to be next to the LOS and a label for a player who is
supposed to be 1 yard off. When the object is somewhere between 0-1 yards, the
distance detectors typically are not using the distance information that is available
to discriminate between the cases. Further, even when ranking rules do use this
information, they are doing so without taking into account the noise in the data. A
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better alternative would be to explicitly model the uncertainty of the detectors and

data.

Multiple labels per data item. The algorithm presented here assumes that the best label-

ing of a scene is one where each data item in the scene has one label assigned to it

and where all labels are mutually consistent. In many domains, however, a given

label may span more than one data item. Further, the "best" labeling may consist of a

scene where some data items have multiple labels and others only have labels shared

between data items. In particular, when actions with temporal extent are considered,
multiple actions can involve the same data items but overlap only partially in time.

The method does not prevent multiple label assignment to single data items. Doing so

will increase the complexity of the rule sets and require a completely new mechanism

for computing a clique score. The clique score most likely would need to be based

on the strength of the evidence for a solution in addition to the data coverage of the

solution. This suggests a probabilistic approach that integrates uncertain information

may be preferable to the current winner-take-all ranking approach.

Knowledge construction difficult. Constructing the knowledge base for the formation-

labeling system proved difficult and time-consuming. Rules, despite only being active

in limited contexts, are frequently dependent upon other rules. For example, an entire

set of rules for detecting the LG may depend upon the c-candidate label. However, if

one c-candidate rule eliminates the correct C hypothesis due to spurious noise, then

detection of the LG is adversely affected. These non-explicit rule dependencies are

time-consuming to "debug," requiring hours of run-tweak-analyze cycles.

Learning from examples. One way to make the knowledge base easier to construct is to

learn the context rules from examples. The difficulty of learning using several popular

learning frameworks in multi-agent domains will be discussed later in this document.

In summary, the representation used for formation labeling suffers from a lack of a

probabilistic framework to guide the search for a solution without relying upon hard, brittle

thresholds. Some of the assumptions made by Strat and Fischler [SF91] that led to the use

of a large set of simple rules were reasonable in practice except with respect to the critical

hypothesis ranking step in the algorithm; here the algorithm proved too brittle. Rules that

softly weight relative evidence - modeling some important dependencies between related

rules and evidence - seem necessary to make the algorithm practical given noisy trajectory

data. Additionally, a mechanism for representing temporal relationships is required.

4.4 Lessons learned: desirable recognition properties

Overall, perhaps the most important lesson learned from the exercise of implementing

the context-rule, formation-labeling system is that a large number of relatively simple,

context-based comparisons between properties of multiple objects can be used to evaluate



74 CHAPTER 4. A TEST SYSTEM: LABELING A MULTI-AGENT SCENE

an enormously large search space. The idea that a large set of simple, binary comparisons
can be used to recognize structured objects is a core principle of the multi-agent action
recognition algorithm described in Chapter 6.

The problems discussed in the previous section can be used to develop a checklist of
desirable qualities for a representation for recognition in a multi-object domain. These
criteria are listed below and used later in this document to evaluate the framework described
in Chapter 6.

* Exploit the power of many low-order comparisons between objects.

* Represent and reason about uncertainty in models and evidence detectors.

* Explicitly encode the "fuzziness" of spatial and temporal descriptions.

* Permit a priori information to be used to bias the recognition process.

e More information should improve, not degrade, system performance.

* As more information is added, less effort should be required to do so.

* Typical situations should be easy to detect (i.e. require the shortest computation
time to label). Unusual situations should be possible to detect given additional
computational time.

* A clean separation between the knowledge representation and the control mechanisms
should exist.

e Multiple, independent rule sets encoding similar information should be avoided if
possible. Unify the rule base.

* Allow early pruning of unlikely options.

* Encode domain rules in an intuitive format that a non-expert can use.

* Exploit independence in the problem domain to reduce combinatorics.

* Automatically generate some or all rules from examples.

* Feature evaluation should be cached for performance improvement.

Some intellectual effort was invested in trying to improve the recognition method
presented in this chapter so that it would be (1) more robust to uncertainty in the data
and descriptions of actions, and (2) extendable to the temporal domain of play action
recognition. On both counts, extending the representation directly proved problematic.
However, the play recognition algorithm described in Chapter 6 does maintain the idea of
using a large number of simple consistency checks between objects in the scene - only it
does so without ignoring the problem of propagating uncertain information from sensors
and a priori models and does so for the task of labeling a dynamic scene.



Chapter 5

Approaches for multi-agent action
recognition
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The analysis in Chapter 2 suggests that intentionality modeling may be necessary to explain
why some action happened but that a computational system may be able to identify what
an action is by "compiling-down" collaborative intentional behavior into patterns of typical
coordinated activity. The labeling test system described in Chapter 4 further suggests that
one way to encode the compilation of multi-agent activity is to develop action models that
use low-order relationships between the multiple objects in the scene. These models can
then be matched with perceptual data.

This chapter examines some prior approaches to object recognition, plan recognition,
and representing uncertainty. The work and representational issues discussed here and in
the previous chapter motivate the development of the representation proposed in Chapter 6
and will be used for comparison in that discussion.

5.1 Object recognition

In certain respects, the problem of object recognition, which has been well-studied (see
[Gri90, Pop94] for surveys), is similar to the problem of action recognition. The goal of
this section is to identify commonalities between the well-studied, static object recognition
task and the relatively new temporal and multi-agent action recognition task using an object
recognition framework developed by Grimson and Lozano-Pdrez [Gri90, GLP87].

Although some work has explored the recognition of objects by reasoning about object
function [SB94] and some work has investigated the use of color histogram features for
object recognition (e.g. [SC96, EM93]), the majority of object recognition research has
focused on shape-based, geometric representations for matching man-made geometric ob-
jects to images. Systems that recognize natural objects in natural settings are less common
(e.g. [SF91, HS93]).

Most generically, the task in geometric object recognition is as follows. Given some
model, M, compute a set of attributes, f((M). Given an image, I containing some objects,
o, compute some set of features, g(J). Find a good match between fV(M) and g(I) if such
a match exists using a set of allowable transformations. When designing a recognition
algorithm, critical questions are (1) what are the models and model attributes, (2) what are
the image features, and (3) how is the correspondence between features and some model
using model attributes found?

5.1.1 Geometric correspondence and search trees

Grimson has developed an instructive, general framework for analyzing the object recog-
nition problem [Gri90]. The goal is to estimate a "set of feasible interpretations" of some
data, which is most typically a two-dimensional image. The interpretations consist of sets
of known models situated in a coordinate system, where the models have been transformed
in some way to match with the given data. Given an image and a set of models, object
recognition consists of three stages: (1) determining which object or objects are present
in the image, (2) determining which subset of the image data should be matched with the
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Figure 5-1: (a) Object models, (b) an image of a scene containing some objects, and (c) a feature
image.

object model(s), and (3) determining the transformations on the models that map the models
to the data or subsets of data. These tasks are commonly referred to as indexing, selection,
and correspondence, respectively.

A simple example, an extension from [Gri90], is shown in Figure 5-1. Figure 5-la shows
simple, two-dimensional models of four shapes: an L-shaped model (L), a house-shaped
model ('H), a triangle-shaped model (T), and a square-shaped model (S). L consists of two
components, one of which is S. Here it is assumed that these models are sufficiently well-
defined in a geometric and color space so that a user can easily provide model specifications.'
Edge attributes (e.g. FLi and FH5) and intensity region attributes (e.g. FL8 and FT4) are
indicated. Attributes can be computed on these models using functions that detect edge
lengths, relative orientation between edges, edgel intensity, parallel edges, etc.

Figure 5-lb shows a particular scene of an image containing objects. Object I is occluded
by object s. Object h is distorted, and the circle object c does not appear in the database.
All the objects are rotated relative to the database models. Figure 5-1c shows a possible
edge image obtained by applying an edge-detection algorithm to the image in Figure 5- lb,
with each edge labeled, fi. The feature image contains spurious features that correspond to
none of the known models - some due to noise and some due to an unknown object.

'Not all models of interest can be as precisely conveyed. For example, non-rigid objects like trees and
clouds are difficult to define in a geometrically precise manner.
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Figure 5-2: An illustration (adapted from Grimson[Gri90]), showing the image interpretation tree
used to search matches from model image segments to image feature segments.

The task is to search for correspondence between the known model attributes, F
(edgels and region intensities), and the features extracted from the scene image, fi, using
some set of allowable transformations. Consider just a single model, 7, with attributes,
FHj(1 <= j <= 6) and a set of features, f;(1 <= I <= 25). The search space can then
be described by an interpretation tree [Gri90], illustrated in Figure 5-2.

The correspondence search begins at the root of the interpretation tree. Each layer of
the tree, i represents all possible matches (given matches higher up in the tree) between one
feature, fi and all possible model attributes, FH,. A hypothesis is a path from the root to a leaf
that specifies the match of each model attribute to specific image features. For example, the
highlighted path in Figure 5-2 denotes a hypothesis where image feature f, has been matched
to model attribute FH4 and image feature f2 has been matched to FH3. Following Grimson's
notation, F, denotes no match, or a "wild card" match. One good match for model L to object
/ might be fi:F,,f2:FL6,f3:FLi,f4:FL2 ,f 5 :FL5 ,f 6 :F,,f 7 :FL5 ,fs:F,,f 9 :F.,fio:FL5,fll:F, and
then for (12 <= i <= 25)fi:F,. Note that FL5 matches to two image features, f5 and fio,
since the edge was "broken" by the detector. Also note that some edges are missing due to
occlusion caused by s.

In this example, there are two attributes that could be matched - edgels or region
intensities (region intensity features are not indicated in Figure 5-1c). A scoring function
is required to test if r(fi) r FL, where r is some allowable matching transformation
(e.g. translation, scaling, or rotation). One unary scoring function, considering only one
attribute and feature at a time, might be (length(fi)-length(FLj)) where some threshold is
defined specifying the maximum difference in distance required to declare a good match.
Alternatively, no threshold could be used, and the function could return a "goodness value"
related to the distance. The unary length scoring function is not useful if one allowable
transformation is scaling. Binary detectors that simultaneously compare two features can
also be defined. For example, one scale-invariant binary detector checks if the angle between
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two model edgel attributes is the same as the angle formed by two feature edgels, once again

using some threshold to indicate a good match (or a continuous-valued goodness instead).

A robust goodness value might incorporate the reliability of the feature detectors as well as

the distance between the match. In addition to unary and binary comparisons, trinary and

n-ary (n > 3) relations can be computed and used to compute a match value at a particular

node in the interpretation tree. Examples of trinary features are the relative angles of three

model attribute edgels or the maximal distance between three model attribute edgels.

Each hypothesis consists of a set of attribute-feature comparisons. Therefore, a method

for integrating the uncertainty associated with each comparison is required so that hy-

potheses in the interpretation tree can be explored using an informed search (e.g. heuristic

best-first). A string of bad, but passable matches should eventually lower the goodness

value of a particular hypothesis; a hypothesis with many extremely good matches and a few

poor matches might be a better hypothesis overall.

One problem is that even though only one model is being matched to the image, the

search tree has (i + 1)i states, where i is the number of model attributes and j is the number

of detected features.
The search proceeds as follows. At any node, Fj, fi, which is on the ith layer of

the tree, the children of the node are checked for consistency. First all applicable unary

constraints are checked; fi+1 is compared with Fi.. .F,. If these tests meet the matching

criteria, then binary constraints in the current hypothesis path are checked. For example,
if the current hypothesis is {fi:F,,f 2:FL6 } at level 2, then each child would be checked

for binary consistency with {f 2 :FL6 } and also with {fi:F,,f 2:FL6}. In this manner, each

additional match to a hypothesis can consider new unary, binary, trinary, etc. relations. A

poor match will eliminate a huge section of the search tree.
The goal, of course, is to find a good match. This approach finds a consistent hypothesis

and assumes that consistency implies correctness. As developed in [GLP87], the order

of the consistency can be varied depending upon computational resources and accuracy

requirements, but low-order consistency does not guarantee correctness. For example, Fig-

ure 5-3, taken from [Gri90], shows a triangle model and some image features. Considering

only binary angular comparisons, any pair of features will match as consistent with the

model. However, the model can only be put into correspondence with two features simul-

taneously, as shown in Figure 5-3. All binary pairs being consistent does not imply that

the match is correct; the model and features must be transformed to the same coordinate

system and all attributes must be checked for matches. This appears problematic, because

it is computationally intensive to check all n-ary relationships.
Grimson and Lozano-Perez made a useful observation, however [GLP87]. Although

it is mathematically possible for an incorrect interpretation to satisfy the all unary and

binary relations, but not higher order relations, the probability of an object doing so falls

precipitously as object complexity increases. This conjecture allows them to construct

heuristic pruning methods that search for the correct interpretation by only maintaining

unary and binary consistency.
It is this idea, that massive low order consistency typically implies correctness, that
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Figure 5-3: Low-order consistency does not imply global correctness.

drives the approach to recognizing complex actions presented in this work. In this work,
the general principle of checking only unary and binary constraints will be applied to multi-
agent team activity in the temporal domain, as described in Chapter 6.2. The issue is how
to apply this idea to a noisy, multi-agent action recognition task.

5.1.2 Insights from object recognition

The goal of section is to compare the object recognition task to the action recognition task.
So far, the analysis in the previous section raises three issues: (1) what are the fundamental
feature model attributes for multi-agent recognition, (2) what are allowable transformations
on those attributes, and (3) what are the match scoring functions and how do they integrate
uncertainty over a hypothesis for a team activity? These questions are answered for the
football play recognition system in the next chapter.

Another question is how the issues that make object recognition difficult map into the
multi-agent action recognition domain. Those issues (as outlined by Grimson [Gri90] and
others) are described below. How the system proposed in this thesis handles these issues
will be discussed in Chapter 7.

Occlusion. Objects frequently occlude one another in image scenes, requiring that some
models match only partially to image data. S occludes C in Figure 5-lb. Conse-
quently, the recognition algorithm must either allow objects to be matched incom-
pletely or use information about other objects in the scene to explicitly reason about
the occluded model components. Both methods significantly increase the complexity
of the search space. In the football action domain, the defense creates situations anal-
ogous to static occlusion; sometimes part of an action may be missing or performed
in an atypical manner because of interference from some defensive player. Occlusion
results from unmodeled interactions between objects or actions of objects.

Noise and spurious data. Noise in the data and imprecision in feature detectors results in
noisy individual features (e.g. misaligned edges, shortened edgels, etc.). Further,
as shown in Figure 5-1c, edge attributes in the model be split in two or missing
altogether in the imagery. Additional data not associated with any known model is
also common. Noise in the football action domain is caused by inaccuracies in object
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tracking but also from bad judgment on the part of people in the scene (i.e. a player
makes a mistake) and from the unpredictable behavior of the defense.

Imprecise models. Model H poorly models the "house" object that appears in Figure 5-lb.
Although small, un-modeled distortions can be treated as noise and handled by the
matching metrics, larger, un-modeled distortions are problematic. In the football
action domain, it is less clear how to measure the precision of a particular multi-agent
model.

Hierarchical labels. There is an ambiguous situation in Figure 5-lb because the scene can
be interpreted as containing {L, S} or some other rectangular object (assume a model
for that is also available) and two S objects since S is a subpart of L. Therefore, there
are multiple "correct" object assignments for the given scene. The question arises,
which description is the "best" description. Further, should object I be modeled as a
single entity or as two attached components? The same problems arise in the temporal
domain, where basic units for recognition must be combined into temporal patterns
of action.

Hypothesis vs. testing differences. Object recognition systems that search the correspon-
dence space like the interpretation tree algorithm distinguish between making a match
hypothesis and testing that match for correctness. In Grimson's algorithm, unary and
binary detectors are used to generate hypothesis, and a small number of good hy-
pothesis are tested for full correspondence with the given model using a different
pose-transformation and matching metric. This situation is directly analogous to
the multi-agent action recognition problem of recognizing collaborative activity by
recognizing low-order consistency between features that indicate coordination. A
good match generates a hypothesis for some collaborative activity, such as a team
play. However, definitively confirming that the hypothesis is "globally consistent"
may require intentional reasoning about agent interaction; intentional inference may
be required to confirm that the observed coordination definitely resulted from team
collaboration and not random agent interactions.

Indexing. In the example, only one model, T does not appear in the image. However, for
many tasks there may be hundreds of objects in the model database; a football team
can have a repertoire of several hundred play variations. Which plays are matched
to the scene? Grimson notes that the expected amount of search to determine that
an object is not present is exponential in the number of features - even with early
termination based on match scores [Gri90]. Clearly, good hypotheses should be
identified as early as possible via a best-first search algorithm.

Feature clustering. In real domains, pre-processing of features to find clusters of highly-
characteristic features for an object is typically required to make the interpretation
tree search practical [Gri90]. One such method uses focus features [BC82] and can
be used to determine a small subset of data to match. Such focusing methods are
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potentially exponential in the number of features, however. An alternate to feature
clustering and then correspondence matching is global feature matching (e.g. Hough
clustering, see [Gri90]), but global matching algorithms do not cope with occlusion.
In the multi-agent domain, a representation for each agent is desired because a single
agent can create a single visual outlier but not invalidate the entire play. Additionally,
representing agents individually allows for the recovery of individual agent actions
(e.g. blocking, catching) that are useful for certain tasks.

Match score. In practice, real recognition problems require wild card matching to allow for
model attributes being occluded in the feature image, but wild card matching increases
the search space substantially. In these large search spaces, to limit complexity, search
cutoff based on matching scores is required for reasonable performance [GLP87]. The
search can be terminated when a "good enough" solution is found with either a high
match score or a high percentage of data features accounted for.

Invariants. In object recognition, features are most valuable when they are invariant to
changes in the environment such as viewpoint and scale. A weak feature can some-
times be made more powerful by checking for higher-order relationships between
features. Alternatively, features can be used to robustly recognize higher-level com-
ponents of an object and then recognize the relationships between the object compo-
nents. In the temporal domain, the important features are the spatial and temporal
relationships between objects. In fact, in the football domain, the temporal relation-
ships between agent goals are critical, as discussed in the next chapter.

Context-based models. In consistency generation using interpretation trees, the assump-
tion is made that object models are sufficiently strong to make similarity matching
possible. However, Strat and Fischler, studying the recognition of natural objects,
noted that "the verification problem changes from identifying objects based on suf-
ficient conditions (e.g. of similarity) to that of eliminating alternatives based on a
failure to satisfy necessary conditions" [SF91].

A primary difference between the object recognition task described in this section and
the multi-agent recognition task is that, visually, multi-agent action will tend to be less
constrained due to the interaction between individual agents. However, that does not mean
that the multi-agent action to be recognized does not have structure. In this work, the
structure will be temporal relationships between agent goals. Agent goals can be detected
visually with some likelihood value using a probabilistic framework, and then temporal
comparisons between goals can be used to check for consistency. The constraint results
from the agent coordination.

The principle of using low-order binary relationships will be used by limiting the
temporal reasoning to detection of just a few temporal primitives between goals. In effect,
the conjecture is that if many low-order temporal comparisons between goals are observed
as expected given some play model, it is unlikely the given data is not that particular play.
Absolute confirmation of a match (i.e. checking for full correspondence) would require a
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system that reasons about intentionality and propagates all temporal information to check

for global temporal consistency. Such a check will not be attempted here.

The ability to detect agent goals and integrate uncertain information from detectors will

require a framework for representing and integrating uncertain information.

5.2 Representing uncertainty

Any model used to recognize an object or action from noisy, perceptual data will benefit

from (if not require) the ability to represent uncertain information. For example, empirical

analysis suggests that when weak or conflicting evidence is observed, which is typically the

case for perceptual recognition tasks, probabilistic expert systems exhibit better diagnostic

capability than non-probabilistic rule-based systems [PHP+96]. As discussed in Chapter 2,
multi-agent action has three primary sources of uncertainty: (1) the temporal constraints

of the action description itself are typically probabilistic, (2) the fuzziness of attributes that

must be assigned to individual elements, and (3) noisy data and sensors. A representation

is called for that can robustly process uncertain input.
The search for geometric correspondence using interpretation trees discussed in Sec-

tion 5.1.1 suggests that it may be possible to recognize some structured objects using unary

and binary feature comparison detectors. However, not discussed as of yet is how these

detectors encode uncertainty. Grimson notes that in their simplest form, these detectors

return a binary decision indicating whether the features match within some specified toler-

ance [Gri90]. However, a preferable approach for applying the interpretation tree matching

algorithm in domains with noisy data and sensors is to use probabilistic detectors; in this

case a method must be specified for combining the uncertainty from all the unary and binary

decisions associated with any given interpretation into a single "goodness" score. 2 The next

few sections explore some options for representing uncertainty.

5.2.1 Options for representing uncertainty

Pearl noticed that expert systems that reason with uncertainty break roughly into two classes;

he called these extensional and intensional [Pea88]. Extensional systems are procedure-

based and have truth values attached to formulas. Examples of extensional systems are

n-state logics, certainty factors, and fuzzy logic. Intensional systems model states of the

world and attach uncertainty to these states. An example of an intensional system might be

a representation that computes via Bayesian analysis. In general, extensional systems tend

to be computationally convenient but with semantically sloppy rules. Intensional systems,

conversely, offer more semantic clarity, using elastic constraints about the state of the world,
but at the cost of greater computational complexity [Pea88].

2For example, assume a search has progressed down three levels in a tree, but each unary and binary detector

has returned "consistent but with low probability." Eventually, the series of low probability detections

should reduce confidence in the score for that particular interpretation.
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Extensional probabilistic representation

Extensional systems perform inference incrementally by applying individual rules guided
by search heuristics. Each time a rule is applied, it can change the certainty associated
with other represented knowledge. N-state logics, which in practice are most often binary-
state and sometimes tri-state logics, are widely used and well-understood [RN95]. Non-
deterministic search algorithms can be used to infer "explanations" for any particular
decision and to provide a sequence of logical inferences to the user if required. First-
order n-state logics, however, suffer from several problems when common extensions
such as the situation calculus [MH69] are used for temporal recognition tasks: (1) they
cannot represent duration, (2) they cannot represent delays between cause and effect,
(3) they have no explicit representation of time, (4) they cannot predict natural changes
not triggered by actions or events, (5) they cannot represent continuous changes, and
(6) they cannot predict the effect of concurrent actions [Taw97]. Although the situation
calculus has been extended to deal with some of these problems, even the most efficient
representations typically require a computationally-expensive non-deterministic search;
unfortunately, practical search heuristics are usually not defined. Probabilistic logics extend
the logical rules to include Bayesian probability combination rules [Had91, DHW94]. The
rules can be applied incrementally, but this requires an assumption of independence between
logical rules that places a design burden on the knowledge engineer.

Another once popular extension system for representing uncertainty is the certainty
factor (CF) model [Sho76]. The Al community has largely abandoned CFs, which can be
interpreted as measures of change in belief within the theory of probability [HS92]. The
CF model implicitly imposes assumptions stronger than simple Bayes. Heckerman has
suggested that the problem with the CF model is that it attempts to reason about uncertainty
in a modular way, much like a logical system, but that uncertain reasoning must account
for conditional probabilities in a non-modular way [HS92]. The CF model does have
the following advantages. First, the certainty combination heuristics are computationally
simple, leading to efficient propagation of uncertainty. Second, the CF model can be
embedded in a logical search framework, making it easy to apply to problems where logical
formulations have been proven in practice. Third, the assignment of certainty in the model
generally conforms to an expert's intuition. Fourth, the CF framework models the narrowing
of a hypothesis set as more evidence is accrued. Finally, the representation can represent
hierarchical relationships.

The CF model has several other serious disadvantages, however, as a representation
for uncertainty. First, it is deceptively intuitive but actually ad hoc. The designer is
therefore lured into thinking the representation is correctly representing uncertainty in a
normative way. However, results can be obtained using the CF representation that are
contradictory and that violate Bayesian reasoning [HS92]. The second disadvantage is
that the transitivity of rules are unjustified and lead to the model allowing (and sometimes
encouraging) the representation of inconsistent knowledge. The third disadvantage is that
assumptions of conditional independence are hidden from the user. Rule interdependencies
are not explicitly stated but do exist because rules interact with global certainty variables
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as they are applied. The result is that the rules encode "invisible" facts and rule exceptions

not covered in formulas [Pea88]. A fourth problem is that the CF model, while seemingly

making uncertainty assessments easier for the knowledge engineer, actually adds additional

modeling complexity. For example, some have argued CF assignment is more difficult

than assignment of conditional probabilities [HS92] because the CF method assumes that

evidence supporting the same explanation is independent in order to avoid an explosion in the

number of rules required for evidence combination. As a consequence of this assumption,

however, the knowledge engineer must carefully structure sets of rules to maintain this

independence as rules are applied. Finally, encoding knowledge in the CF framework can

be difficult because the model is unable to accommodate the tendency of experts to reason

about abstract entities before reasoning about a single hypothesis [GS93].
A third class of extensional probabilistic representation for uncertainty consists of

fuzzy logics, which model degree of belief and degree of truth. Fuzzy logic models suffer

from many of the same disadvantages as the CF models; they can produce result that

are inconsistent with first-order logic [RN95]. Fuzzy logic systems have generally been

applied to problems that require only a few inference steps, thereby reducing the likelihood

a logical inconstancy will be encountered; hence, the scalability of fuzzy logic reasoning is

in question (e.g. see [Elk93]).

Intensional probabilistic representation

Bayesian probabilistic inference systems avoid some of the problems with CF and fuzzy

logic propagation methods. The primary reason to adopt a Bayesian framework is that the

resulting decisions will be normative given appropriate estimates of prior and conditional

probabilities. The propagation of probabilistic information uses a widely-accepted, well-

understood mathematical formalism. For problems with large datasets, some priors (i.e.

P(explanation) and conditional probabilities (i.e. P(evidencelexplanation)) can be

statistically estimated from large example databases, reducing the number of quantitative
estimates required of the knowledge engineer.

In practice, several assumptions must be made to implement Bayesian inference in

real domains. First, most evidence is assumed to be independent to avoid an explosion

in the number of evidence combinations which is exponential in the number of variables.

Second, to accurately estimate relative probabilities of hypotheses, all possible world states

are assumed to be modeled. Third, the models typically assume mutual exclusion of

world states. Fourth, the models assume that the model has been provided correct and

complete statistics, where probabilities are internally consistent. Fifth, any piece of evidence

information used by the system is generally assumed to be counted only once.

The problems with applying the Bayesian model are as follows. First, there is no notion

of preciseness of a system's output probabilities. For instance, when no evidence has been

observed, a Bayesian system might compute that the probability of some hypothesis being

true is .5 based on priors. However, in actuality, the system has no evidence upon which to

base this decision and the user has no basis upon which to evaluate whether .5 was obtained
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after evaluation of a massive amount of evidence or if .5 was obtained after evaluation of
little or no evidence. The second problem is the burden placed on the knowledge engineer
of assessing large numbers of conditional probabilities. Although these assessments may
not be any more difficult than the assessment of CFs or fuzzy values, the task is still
tedious, difficult, and prone to error. A third problem is that the numerical precision an
expert must specify to use a Bayesian reasoning system can be unrealistic to obtain in
most real-world applications; the mathematical precision of the propagation of uncertainty
is typically overwhelmed by the imprecise estimation of probabilistic information when
modeling real problems. Fourth, some knowledge engineers believe that experts tend to
think in terms of degrees of certainty rather than actual probabilities, making elicitation of
probabilities challenging. The difficulty of probability estimation is compounded because
conditional probabilities are not modular (e.g. (P(H IE)) - P(H) if E and E is all
that is known.). Experts will introduce inaccuracies into the probability assignment as
they attempt to assume conditional independence. Finally, the Bayesian framework is not
straightforwardly embedded into a logical framework, and so the method is not conducive
to incremental searching.

A second intensional probabilistic representation is Dempster-Shafer evidential rea-
soning [Sha76]. Bayesian inference computes the probability of truth given evidence.
Dempster-Shafer theory computes the probability of a probability given evidence. Intu-
itively, the method provides a measure of confidence in some statement based upon the
amount of observed supporting evidence for the statement (or conversely, the amount of
ignorance).

The Dempster-Shafer method makes the following assumptions. First, it computes
P(explanation evidence) instead of P(evidence explanation). P(explanation) = X
indicates the probability that the explanation lies between X% and 100%.
P(evidenceAgainstExplanation) is represented by the probability for the complement of
the explanation, which is the set of all other explanations. Second, independence of evidence
is assumed except where pieces of evidence support the same explanation. Finally, mutual
exclusion of explanation states is assumed, as are correct and complete statistics.

The Dempster-Shafer model has the following advantages. First, it generates uncertainty
intervals around each hypothesis probability. Second, the model naturally handles the
narrowing of a hypothesis set as more evidence is accrued. Third, it is conducive to the
representation of explanation hierarchies and hierarchical relationships.

The primary disadvantage of using Dempster-Shafer theory is its computational com-
plexity. Computation where there are N possible results requires the consideration of 2N

sets. Exponential calculations are required for evidence source combination [Orp9O]. The
method can be computationally simplified if the data is restricted to a tree dependency hi-
erarchy, but at the cost of lost generality [SL87]. Like Bayesian inference, the basic model
does not account for the possibility of multiple, simultaneous explanations. No formal
theory is used in practice for decision making because the notion of utility is not well un-
derstood [RN95]. Finally, estimating P(explanationlevidence) is typically more difficult
than estimating P(evidencelexplanation) (for the knowledge engineer or automatically)
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because databases are normally sorted by the major class (e.g. diagnosis) [GS93].
Pearl has argued that evidential reasoning such as Dempster-Shafer reasoning can be

accomplished within the Bayesian framework [Pea86]. Probability intervals can be gen-
erated in a Bayesian framework by evaluating how a belief would change as the result of
future observations [RN95].

5.2.2 Bayesian networks: a compromise

Bayesian networks, also known as belief networks, are graphical representations of prob-
abilistic distributions (see [Jen96] for an introduction). Links in the graph represent de-
pendencies between the nodes, which represent random variables in the problem domain.
Algorithms that exploit the independence relationships encoded by the graphical structure
can (often efficiently) compute the impact of observed evidence on the given distribution.
The mathematics of Bayesian network uncertainty reasoning are based upon restricting the
structure of graphs to enforce a Markov assumption between variables - variables are only
conditionally dependent upon variables from which they are explicitly linked. The Markov
assumption and the corresponding graph structure make Bayesian inference practical for
real problems; just as importantly, the graphical representation aids the knowledge engineer
in the specification of domain knowledge and leads to knowledge bases that are easier to
analyze than those encoded using logic-like rule sets.

Bayesian network reasoning has several desirable properties:

Normative. A system using appropriately constructed Bayesian networks will generate
Bayesian results that are consistent with how people wish they could behave when
evaluating decisions [Hec9 1].

Dependencies explicit. One of the problems frequently encountered with rule-based sys-
tems and encountered in the formation labeling system in Chapter 4 is that dependen-
cies between rules are not explicit. Bayesian networksforce the knowledge engineer
to make all variable dependencies explicit in the network's structure. The complexity
of a particular domain can be assessed by analysis of the graphical structure itself.
Further, the graphical design of the knowledge base can expose expert inconsistencies
during knowledge encoding. The graphical representation is a cognitive simplifier
for the knowledge engineer.

Computationally efficient. Propagation of uncertainty in Bayesian networks is efficient
because algorithms use the dependency information (or more specifically, the inde-
pendence assumptions) specified in the graph to minimize extraneous computation.
For many tasks, networks can be constructed that can be solved quickly and by direct
methods [RN95].

Off-line initialization. Once a graph structure is determined, the NP-hard computation
that manipulates the graph structure for efficient uncertainty propagation (i.e. trian-
gulation) can be performed off-line. Propagation of probabilities upon receiving new
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evidence is then O(N/c), where N is the number of nodes, M is the maximum
number of states in any node, and C is the size of the largest clique. Appendix E
describes how to compute the size of the largest clique, which is dependent upon the
particular structure in the graph.

Mathematically grounded. Propagation of uncertainty in Bayesian networks operates
using principles from Bayesian theory. Networks can be designed to take input
from noisy sensors and propagate the sensor uncertainty to other random variables.
Bayesian mathematics is well-accepted and well-understood.

Continuous or discrete input. Bayesian networks can be designed to use input from dis-
crete sensors (e.g. inView(object)) or continuous sensors
(e.g. distance(object 1,object2)).

Evidence computation. Bayesian networks implicitly encode default evidence informa-
tion and can operate when only partial evidence is available. Sometimes evidence is
not available, conclusive, computable, or worth computing.

Utility theory. Utility theory is a well-understood mathematical formalism for using
Bayesian networks for optimal decision-making given evidence and probabilistic
prior cost functions [Jen96].

The useful computational and representation properties of Bayesian networks were
popularized in the Al community by Pearl [Pea88], and the one of the first uses of the
networks in a large, real application was the Pathfinder diagnosis system that modeled
100 features and 60 diseases [Hec9l]. Prior work that uses Bayesian networks for object
recognition and action recognition is discussed in upcoming sections. Appendix E includes
a brief discussion on the complexity of exact propagation of uncertainty with Bayesian
networks using the Jensen algorithm [Jen89, Jen96], which is based upon the graph theory
work of Lauritzen [Lau96, LS88] (see [Cha9 1, Jen96] for other introductory material).

In practice, belief networks are typically limited in size to several hundred nodes for
the following reasons: (1) exact propagation of probabilities is NP-hard for networks with
arbitrary structure [Coo90], (2) approximate propagation of probabilities is NP-hard for
networks with arbitrary structure [DL93], (3) the knowledge engineering task of specifying
prior and conditional probabilities is manageable, although often difficult, for networks
with only several hundred nodes (e.g. similarity networks can be used [Hec91]), and (4)
existing learning algorithms require complete and error-free datasets for learning conditional
probabilities automatically [Hec95]. Even with only several hundred nodes, a sparse and
tree-like linking structure is generally needed to make the networks practical for real
domains, and the nodes in the networks are usually limited to a small number of states to
minimize the number of probabilities that must be specified (e.g. one of the larger networks
used in practice has 448 nodes and only 908 links [PPMH94]).

Sometimes algorithms are applied to networks to reduce the network structure by
creating "approximate" networks that, for example, set rare states to zero probability to
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compress the corresponding conditional probability tables [JA90]. Similarly, "sensitivity
analysis," can be used to analyze networks and detect node and link combinations that result
in uncertainty propagation that is overly sensitive to minor variations in input data or nodes
that have little affect [JCNJ91].

Once a Bayesian network is specified, a solution method can be selected that will
compute the impact of any new evidence on the probability distribution for any random
variable. However, the design of networks dramatically affects computational performance
and usefulness of the representation. The network knowledge engineer, therefore, faces
several challenges:

Selecting variables. A set of random variables to represent states of the world in the
problem domain must be selected. Some of these variables are sensor outputs (e.g.
InContact(objectl,object2)), and some are internal "beliefs" of the agent being mod-
eled (e.g. ReadyToBlock(object])).

Selecting state spaces. Each random variable has a discrete or continuous state space.
Most complex networks use discrete states to simplify the knowledge engineering
tasks; otherwise, a large number of multi-variable distributions might need to be
specified. For example, in the football domain the variable "speed" is broken into
these states: {stopped,walkingjogging,running,airborne}.

Assigning probabilities. The designer must typically estimate hundreds or thousands of
prior and conditional probabilities that are often not possible to obtain from datasets.
To reduce this onerous burden, the use of qualitative Bayesian networks has been
proposed; however, the discriminatory power of qualitative uncertainty propagation
diminishes as the complexity of the problem domain increases (i.e. the outputs tend
towards the mean) [HD91, Dru96].

Managing large networks. Even small belief networks can be difficult to construct so
that they exhibit the desired, robust performance. The networks must be checked
for errors such as inconsistent conditional probability tables that result in impossible
conflicts given some particular set of observations. In practice, networks of just 30
nodes can require hours to construct and test; networks over about 100 nodes are
a significant knowledge engineering challenge. In practice, large networks require
design approximations such as using similarity networks [Hec9 1], generalizations of
"noisy-or" constructs [Pea88, PPMH94, Sri92]3, and modular network partitions.

Avoiding cycles. Efficient propagation in Bayesian networks to compute an exact solu-
tion is achieved by restricting the graphs to be directed, acyclic graphs (DAGs).

3 Some networks can be substantially simplified using generalizations of the "noisy-or" approximation that
reduces the number of probabilities required for an n-ary conditional or from O(2 n) to 0(n) by making an
independence assumption [Pea88].
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This requirement imposes modeling restrictions that must be overcome using de-
sign heuristics. The knowledge engineer can carefully chose the direction of variable
dependencies to maintain a non-cyclic network and to control which conditional inde-
pendencies and priors must be provided. Links are typically interpreted as indicating
causality. A directed edge from A to B is typically interpreted as "A causes B."

Using learning. Until recently, learning algorithms for Bayesian networks assumed an
existing network state and linking structure and used a large, complete, and error-free
dataset to learn priors and conditional probabilities for the network. Recent work
has focussed on modifying an existing structure. Developing algorithms for learning
network linking structure given the relevant random variables has proven difficult -
even for complete, error-free datasets [Hec95].

Continuous variables. In practice, moderately large Bayesian networks are designed with
random variables that have discrete state spaces. Continuous concepts (e.g. distance
or velocity) are typically quantized into a small set of discrete states. The Jensen
exact propagation algorithm can be extended to handle continuous variables; an exact
solution can be computed when a network has continuous nodes with discrete parents
but not when the network has discrete nodes with continuous parents [Lau92, Ole93].
The continuous variables can reduce the complexity of some inference but at the cost
of increasing the complexity of the triangulation step; therefore, the computational
complexity of the discrete and continuous solutions are, in practice, almost equivalent.

Leak probabilities. In practice, it is rarely possible to model all variables that can possibly
impact a given node's state. Consequently, practical systems typically compress
possible but low likelihood states into a single state called a "leak" state, which can
improve network performance substantially [HPF+96, PPMH94]. The knowledge
engineer must assess if some variable must be explicitly represented or incorporated
into a leak state.

Unfortunately, Bayesian network construction is as much a "black art" as it is a science.
Empirical studies have shown that it is more critical to get the qualitative linking structure
correct than the quantitative probability assignments [HPF+96]. Assignment of depen-
dencies between variables is probably the most critical step in network construction. For
example, if a problem can be modeled using singly-connected networks, it can be solved
in time linear to the number of nodes [Cha9 1]. A fully-linked network modeling the same
problem may require NP-hard computation and an exponential increase in the number of
conditional probabilities to assign.

Studies have consistently shown that networks with a reasonable structure encoding
some domain problem are relatively insensitive to most of the assigned conditional proba-
bilities [NA91, HPF+96, PHP+96]. In fact, in practice, most conditional probabilities can
be off by as much as +/- .1 without degrading the performance of the exact solutions for
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a network [RN95].4 The exception are probability values close to 0 or 1 which represent
"absolute certainty"; networks have been shown in practice to be sensitive to these values
[NA91]. To simplify probability assignment. some work has been done on correlating
English quantifiers (e.g. "very" "some") with changes in probabilistic values [EH90]. In
addition, research and practice suggest that binary nodes are as effective as nodes with more
states for many problems [PHP+96], and binary nodes can offer significant computational
savings. Representing action using Bayesian networks requires representing time either in
the links (transitions between random variables) or the random variables themselves. Some
temporal representations that have been proposed will be discussed in an upcoming section.

Overall, Bayesian networks can be a computationally-efficient representation for prop-
agating uncertainty, but the weaknesses above must be overcome. The structure of the
networks is the most significant factor determining how effectively a network can represent
some problem and how computationally practical the network can be for a real domain.
For a given type of action recognition problem, therefore, a structure must be established
that is powerful enough to represent the problem at hand but has a structure that results in
practical computation time.

5.3 Bayesian networks for object recognition

Bayesian networks have been used in computer vision systems for integrating uncertain
information into object recognition approaches. This section describes some of the network
structures that have been proposed.

5.3.1 Part-of models

Belief networks can be used to represent decomposable part object models for visual recog-
nition of objects in static scenes [Lev86, BLM89, Che90, MB92, SG92]. The networks can
naturally integrate high-level knowledge about expected states of the world with low-level
detected evidence, permitting top-down and bottom-up evidence to be used simultaneously
for inference. Belief network models can then be used to rank order possible hypotheses.

The simplest part-of model consists of a tree structure, shown in Figure 5-4a. St
represent state random variables for the problem domain and EZ represent evidence random
variables for the corresponding state variables. The root node contains states representing all
possible hypotheses and sometimes an "other," or leak, hypothesis. The root points to nodes
that represent the existence or non-existence of particular parts of the root node's object.
Borrowing an example task from [RB94], assume the example shows a network used to
recognize place settings (discriminating a continental setting from a British setting), nodes
might have the following states: S' = "Setting" with states {continental, British, none}, S2

4For exact algorithms, performance is determined by the network topology but for approximation algorithms
the performance is determined by the network's assigned probabilities [Cha9l].



92 CHAPTER 5. APPROACHES FOR MULTI-AGENT ACTION RECOGNITION

S, S S1 S,

S
2  

S3 S2 S
3  

S2 S3 S
2  

S3

SE S4 S S4 S5

(a) K (b) (c) (d) E

Figure 5-4: (a) A singly-connected tree part-of network, (b) a part-of network where one part,
represented by S4 is dependent upon two other parts, (c) a naive Bayesian part-of network, (d) a
hierarchical part-of network.

= "Place setting" with states {continental, British}, S3 = "Pot" with states {coffee, tea},
and S4 = "Cup" with states {coffee, tea, none}.

The object-to-part tree structure can be interpreted either as "the whole causes the
part," or "the object's interaction with the sensor "causes" the percept" [BLM89]. All
sub-components are conditionally independent given their parent component. This in-
dependence assumption generates a singly-linked tree structure that is computationally
efficient (linear in the number of nodes in the tree) [Pea88].

The same graph structure with nodes based on aspect graphs can represent a 3d object and
its part components, where nodes represent generalized cylinders, faces of 3d components,
and contours [BLM89, LJC96, MF92]. For complex objects, different components of the
object may "cause" the same subpart, which breaks the singly-linked tree structure, as
shown in Figure 5-4b. Even for the place setting example, this is probably a better linking
structure since the type of cup is probably related to the type of pot on the table and the type
of place setting. In a third alternative structure, a naive Bayesian network, each observed
variable (or class attribute), { S2, g3, S 4 }, is assumed to be conditionally independent given
the class, S', as shown in Figure 5-4c. Even for this simple example with only four state
random variables, it is not clear how to best model the problem, which presents a design
challenge for the knowledge engineer.

These top-down network structures makes it difficult to encode dependency on global
recognition variables, such as spatial location or object orientation. Further, note that
the relative importance of object components is hidden in the numeric differences in the
conditional probability tables; these numbers have typically been manually assessed in
vision applications. Finally, the representation assumes hypotheses are mutually exclusive.

The number of nodes required to represent a real domain can grow quickly. One domain,
ship identification from side and top silhouette views, required using 598 rules (i.e. nodes)
and 1000 links for a 10 class classification task [BH88]. A full 640 class system would
probably require significantly more links and nodes.
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Figure 5-5: Constraint links.

5.3.2 Part relationships

Modeling object descriptions that include the relationships between object parts (e.g. spatial,
size, exclusivity) requires special node and link structures in the part-of networks. One
method adds subpart nodes that detect relationships between other subparts [BLM89]. For
example, in Figure 5-4d, if S 4 represents "PartA' and S5 represents "PartB," then S3 might
represent "PartA nextTo partB" and S2 might represent "Size PartA." This model assumes
that the un-modeled dependence between S4 and S2 will not affect the value returned by
Si.

Sometimes two parts are mutually-exclusive and an xor logical relationship needs to
be encoded in a graph using a constraint node. This constraint node can be linked into
the graph in several ways. Figure 5-5 shows three possible linking models. In all three
representations, node S4 must have a conditional probability table designed to enforce
mutual exclusivity between S2 and S3 when S4 is observed. The model in Figure 5-5a can
only enforce a constraint between two parts, but it cannot explicitly use the certainty of the
xor constraint to support S1 [JCN92].

Alternatively, a link can be added from S to S4, as shown in Figure 5-5b, linking
the constraint directly back to the parent subpart (e.g. [SG92]). This extensions permits
uncertainty about the observed relationship to influence degree of belief in the parent
subpart. The added link, however, increases the complexity of the network and forces
the knowledge engineer to specify incorrect information when assigning some probability
values (e.g. P(S 2 1Si)). 5

The graph in Figure 5-5c can also model the mutually exclusivity constraint but requires
the knowledge engineer to specify priors on S2 and S3. For more on modeling mutual
exclusivity, see [Pea88].

5.3.3 Constraints in nodes vs. constraints on links

Relationship information can be entered into a network via detector nodes or they can
be modeled in the conditional probabilities between node states. The part-of models
generally have states that store {observed, NotObserved} information. Consequently, the

5Further, many of the probabilities that must be specified are non-intuitive.
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Figure 5-6: (a) Inverted object recognition network, (b) example structure for a multiple hypothesis
network.

only constraint that can be modeled using links is mutual exclusivity or mutual observation.
However, if the observation nodes store object characteristic information (e.g {bigCup,
smallCup, noCup}) then relationships can be encoded in conditional probability tables. For
instance, given cup detectors that store cup size, a detector constraining one cup part to
be "bigger than" another can be encoded within a link. However, adding additional nodes
to states increases the complexity of inference [Jen96]. Although encoding relationships
on links is common for temporal relationships (and will be discussed later), static object
comparison information has typically been encoded within nodes.

One problem is that representing global variables (e.g. position) and relational data can
explode the complexity of a network because nearly every measured feature may depend
directly on the global variables. Agosta has proposed that "local relationships - exclusion,
co-incidence, proximity, and orientation - can be exploited that do not require "completely
global" influences" [Ago90] and therefore avoid this additional link complexity. The
approach of separating inference about global variables like position from other part knowl-
edge and only representing relational information in a network, primarily within nodes, has
made it feasible to use standard, exact propagation algorithms for some recognition tasks
where they otherwise would have been impractical [DKB98].

5.3.4 Inverted networks

Networks with a top-down, object-to-subpart structure make the assumption that the sub-
parts are conditionally independent given the part. For instance, in Figure 5-4a, where S' is
the setting, S2 is the plate, and S3 is the cup, given the observation of a British table setting,
observations of the plate and cup are statistically independent. To more accurately model
the dependence, the structure of the part-of graph can be reversed, as shown in Figure 5-6a
[SB93], which makes the sub-parts conditionally dependent given the encompassing part;
low-level part concepts are dependent if the high-level concept is known [SB93]. Tractabil-
ity of this inverted structure is maintained by exploiting independencies among variables,
many of which arise because "features that are dependent tend to be close together spa-
tially" [SB93]. To minimize network complexity, composite nodes can be used to reduce
the number of links in a graph at the expense of increasing the number of states in some
nodes. For example, composite nodes can be used to represent a feature that can occur at
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Figure 5-7: (a) Network with constraint nodes, (b) copying a static BN from time t-1 to time t.

several different locations.
In this evidence-to-part framework, priors are specified for the occurrence of each

type of evidence. Equal priors are assumed when no information is available. Usually,
however, it is easier to estimate P(evidenceIS) than P(Slevidence). This framework

makes some other assumptions that are unrealistic for visual processing. First, the priors

are p(evidence) instead of p(object). Estimation of p(evidence) requires computing the

evidence over all possible inputs (or a large representative sample) and for many features

will result in numbers approaching 0. Although networks are typically insensitive to small

changes in the probability assessments, the networks are highly sensitive to numbers close

to 0 or 1 [NA91]. Further, a large, labeled database of objects and subparts can be used

to accurately estimate p(subpart part) whereas p(part subpart) and p(subpart levidence)

cannot be accurately estimated from a modest database that labels parts and subparts.

5.3.5 Multiple networks

Networks with a single hypothesis node enforce independence between the top-level hy-

potheses [BLM89]. Part-of networks with multiple hypothesis nodes, however, like the net-

work shown in Figure 5-6b, can model exclusion and co-incidence of hypotheses [Ago90].

Another way to account for multiple hypothesis is to use multiple detection networks. While

sometimes it is possible to encode all relevant information in one network, independent

multiple networks have been used to integrate different types of knowledge during a recog-

nition task [RB92, RB94]. When evidence is obtained, it is propagated in each network

independently and then the resulting probability is used as evidence in a composite network.

Another network composition approach for object recognition has separate networks

for recognizing 3d objects, CAD primitives, aspects, faces, and contours [LJC96]. Binary

spatial relationships (in particular, adjacency) are modeled using constraint nodes, as shown

in Figure 5-7a. For example, R2 is a constraint limiting S" and S 1 2. Small component

networks are run and results are input into the next network in the hierarchy using likelihood

evidence. For a 3D recognition problem of complex CAD parts, one large belief network

has been found to be too difficult to manually construct. Even the construction of small



96 CHAPTER 5. APPROACHES FOR MULTI-AGENT ACTION RECOGNITION

networks was found to be tedious and error-prone [LJC96], but the problem is alleviated
somewhat by using CAD models to automatically generate some conditional probabilities
(p(aspectviewmodel)). It is worth noting that while the authors point to the relatively
small network size as being critical for fast evaluation, the clique size, which bounds the
computationally complexity, is highly dependent upon the order of the feature constraints
selected. The higher the order of R 2 , the less "tree-like" the linking structure of the network
and the more likely it is that large cliques will be generated.

Use of multiple networks at different hierarchies in the recognition process has also been
proposed [MC93]. Using about 50 features, at each level BNs try to differentiate between
possible models. If they can, the networks for the next level are loaded. If not, the most
specific result obtained is returned. The same network structure with different conditional
probability tables is used to compare across model types, and each modular network returns
a binary decision of "isCategory" or "otherCategory".

The input from one network can be incorporated into another network using "virtual
evidence," or relative likelihood evidence [Pea88]; however, doing so usually results in an
approximate model that does not account for dependencies between variables in the two
networks.

Multiple agents can also be modeled using independent networks [JCN92]. In one
system, two agents in a multi-agent system communicate information and each try to
improve recognizing by maximizing models of internal "benefit." The two agents are an
interpreter, which uses a probabilistic network and a findings catcher, which performs image
processing.

Overall, even for the task of object recognition, a variety of network structures have
been proposed. Each structure makes different assumptions about the problem domain, and
each structure places different burdens on the knowledge engineer. The system developed in
this work presented in Chapter 6 uses an augmented naive Bayesian structure, where many
constraints are embedded in nodes instead of links. Reasons for selecting this structure are
discussed in Chapter 7 and 8.

5.4 Bayesian networks for action recognition

Action requires change and change requires time [Taw97]. In this work the goal is to
develop a system that can recognize real-world, multi-agent actions from perceptual input.
This system must, either explicitly or implicitly, make representational commitments about
time and monitor degree of belief in noisy observations and uncertain temporal models.

The previous section discussed network representations used for object recognition.
This section examines some Bayesian graphical model structures that encode temporal
representations for action recognition. Graphs have proven popular for representing uncer-
tainty over time for several reasons. Most importantly, the world is fundamentally causal.
Events cause other events. Graphical links can naturally represent the temporal causality
of the world.

Non-probabilistic temporal logics are used extensively within the Al community for
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reasoning about time (e.g. [A1183]). These systems, however, are brittle when applied to

the noisy data and uncertain models encountered in real-world recognition tasks. Non-

deterministic search, logic-based models such as the situation calculus [MH69] or default

logic [Rei80] are difficult to extend to noisy, probabilistic, temporal domains. An alterna-

tive, extensional approach is to use temporal representations that probabilistically integrate

temporal evidence [Web89]. If the world is stochastic in nature, representations of the

world will probably need to be stochastic as well [Had9 1].
Plan recognition systems based on extending Bayesian belief network graphical rep-

resentations to recognize dynamic activity have been investigated (e.g. [GC90, CG93,
PW95, Hub96]). In the computer vision community, work to extend finite state machines to

handle noisy input data has led to the use of Bayesian belief networks and hidden Markov

models for static object recognition and temporal recognition tasks. All these graphical

frameworks, however, share a similar, computational framework.
One way to extend static networks to a temporal problem is by applying static networks

independently at each time point in order to acquire temporal information, as shown in

Figure 5-7b. Output of networks can be used to set global variables that are used to propagate

information though time by setting evidence nodes. Alternatively, time-based functions

that change the probability distributions stored in each node can be employed [TN94]. In

these approaches, change is modeled externally to the network. Other approaches model

the change in state between observation times within the network itself. Some of these

representations are discussed in the following sections.

5.4.1 Hidden Markov model networks

A graph is kth order Markov if any given state only links to states at the kth previous time

periods. In graphs where time is encoded as the transition between two states, the Markov

assumption has proven to lead to network representations that are adequately constrained

for efficient propagation of uncertainty but yet still rich enough to represent some temporal
activity well.

The justification for making a Markov assumption is that the world is causal: states of

the world cause other states to occur. States of the world cause changes and changes will

(eventually) have observable consequences in the world [Taw97]. If most causal events

depend on a relatively small percentage of the states in a particular graph, causal effects

can be modeled by sparsely-connected graphs.
A strict Markov model assumes that states are directly observable. For recognition

problems, a more useful model incorporates the uncertainty of visual observation by prob-

abilistically modeling hidden states (the states of the world) and observable states (the

observations of the states of the world). Hidden Markov models (HMMs) can represent

both uncertainty in the world and in observations of the world [RJ93b]. Several compre-

hensive tutorials are available describing HMM use in practice [RJ93b, You93].

HMMs are simply BNs with a particular linear structure [SHJ96]. Figure 5-8a shows a

basic HMM encoded as a BN, modeling a single state changing over time given a sequence
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(a) (b)

Figure 5-8: (a) A HMM(1,1) Bayesian network, (b) a HMM(1,2) Bayesian network.

of observable evidence. The states are S = {s', 32- }, where si is a possible hidden
state of the system.

This basic HMM structure has been used extensively for auditory and visual recognition;
start and end states are specified and a sequence of observations is entered into the network.
Because the structure of the network is a singly-connected graph, the transition probabilities
can be estimated from a large data set of example actions.6 The variability in the training set
is probabilistically encoded in the network and, for some problems, can lead to promising
recognition results, even in real-time domains (e.g. [You93, SP95]).

Designers of HMM structures select the features to be used by the model. Then, they
typically manually estimate the number of states to model, after which a large dataset can
sometimes be used to automatically learn the states and the conditional probabilities in the
network using an algorithm that exploits the singly-connected tree structure of the networks
[RJ93b, You93]. Essentially, HMMs perform statistical, dynamic time warping, making
them effective for recognition of sequential patterns, such as a single-object action (e.g. a
hand waving [WB95]).

5.4.2 HMM(j,k)

The HMM model's representational power can be improved, potentially making it more
useful for modeling the interaction of multiple agents. An HMM(k, j) is defined in [SHJ96]
as a HMM with state memory k and j underlying state processes. The network in Figure 5-8a
is the belief network representation for a HMM( 1, 1).

Some actions to be modeled have multiple underlying state processes. Figure 5-8b
shows an example of a HMM( 1,2) network. The network consists of two semi-independent
HMM(1,1) models that have been linked periodically. Such networks have been used
to model tasks where there are two independent but occasionally linked processes such
as lip/speech reading [JJ94] or the interaction between two objects [BOP97, ORP99].

6The more hidden states the problem must represent the less likely it is that a complete set of examples will
be obtainable.
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Figure 5-9: (a) A factorial HMM. (b) Dynamically linked probabilistic decision trees.

HMM(1,2) models have met with some success for visual processing because they can

represent two independent but interacting world states that may make them better approx-

imators for certain motions [BOP97]. However, the coupled models do not scale well.

Analysis of the clique structure demonstrates that HMM(1,k) for large k is intractable

[JJ94].
An HMM encodes information about the history of a time series in the value of a single

multinomial variable (the hidden state). To represent 30 bits of information about the history

of a time sequence, an HMM needs 230 distinct states, but a HMM with a distributed state

representation could do the same with 30 binary state variables [GJ97]. This observation

led to the factorial HMM representation shown in Figure 5-9a [Gha97]. Each state variable

evolves independently of the remaining state variables according to some dynamic model;

the state variables are then "dynamically mixed." Like the HMM(1,k) representation that

also tries to model semi-independent processes, this network structure is intractable. The

network in Figure 5-9b removes the factorial HMM assumptions that each variable is a

priori independent of the other variables by coupling the variables within the same time

frame. This coupling results in a set of probabilistic decision trees that are dynamically

linked [Gha97]. This structure will model multiple resolutions of both temporal and spatial

structure but is also intractable [JGS97]. For HMM(1, k) models and relatives, even k = 3

is problematic and generally not used in practical systems.
HMM models are often used in practice as dynamic time warping devices. The models

have no explicit model of how long a particular state can remain active; the state duration

model is exponential, which is not appropriate for many problems [RJ93a]. DHMMs, called

duration HMMs or semi-Markov HMMs, are modifications of the standard HMM frame-

work to handle states with expected durations. For some problems where the relative time in

particular states is of importance, DHMMs can significantly improve system performance

[RJ93a]. However, modeling duration requires D times the storage of a HMM(1,l) and

D2/2 times the computation, where D is the maximum time length of stay in a particular

state. The estimation problem is also more difficult and requires much larger training sets,
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Figure 5-10: (a) A dynamic belief network, (b) representing evidence of change in nodes.

so DHMM systems are not widely used [RJ93a] (for one example where they are, see
[WBC97]).

5.4.3 Dynamic belief networks

HMMs are subclasses of a more general network model commonly called dynamic belief
networks (DBNs), which are independent belief networks that are causally linked in time
[RN95]. DBNs integrate classical time series analysis with BNs. The result is networks that
can represent rich static and temporal relationships and perform some temporal forecasting
[DGH92]. DBNs were motivated by the observation that it is sometimes difficult to evaluate
time-series processes for models with large numbers of variables; therefore, "due to certain
conditional dependencies among variables, it may make more sense to model the temporal
evolution of only the subset of variables which are in fact evolving, and use these processes
to drive the changes in the dependent variables" [Pro93]. As with HMMs, typically the
networks are sparsely linked. They are most often manually coded. DBNs have been used
for action recognition where time dependencies can be adequately modeled using only the
change in adjacent input samples.

Figure 5-10a shows a simple dynamic belief network that causally propagates some
temporal information between temporally adjacent belief networks. The networks model
the conditions at each time using a standard belief network. The network is "copied" at each
new time, and some state variables are linked from t - 1 to t. The conditional probabilities
model first-order temporal changes. The networks can be solved using an extension to
the Jensen and Lauritzen junction-tree algorithm [Kja92, Kja95] that "folds in" past time
slices of the network and allows the size of the active window to be adjusted dynamically.
These networks have been termed semi-static recognizer's because recognition occurs in
static frames using clues from observations from previous time frames [SG92].

Temporal prediction can also be performed by scrolling a state-based BN model one
time step (adding a new network for the new frame) and using parameterized functional
forms for conditional probability assessments [DGH92]. The DBN structure is fixed over
time and, depending upon the exact structure of the network, some networks may require
approximation solution algorithms [DG93].
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Figure 5-11: (a) Temporal "roll-up" example, (b) a "temporally-invariant" network for roll-up.

An alternative DBN model is shown in Figure 5-10b. Here the network uses evidence
that indicates a particular state as well as evidence that explicitly indicates a change in
state. This has been termed dynamic recognition because explicit information about change
in state is required for recognition [SG92]. All change is no longer represented by the
link-based conditional probabilities.

5.4.4 Rolling-up time

When implemented for recognition, HMMs are typically trained for a fixed length of
observations with an explicit start and end node. The same technique can be used with
a DBN. However, for some networks, the structure of the networks (given a long T,
o < t < T) leads to large networks that are computationally demanding. Some work,
therefore, has examined networks that "roll-up" over time. As time progresses, copies of
the belief network are added to the front of the DBN and copies are removed from the end
of the DBN. The result is a network that can be run continuously and that operates over a
window of time.

Figure 5-11 a illustrates the rolling-up process and how the structure of the network
affects the structure of the rolled-up network. In the example, a new link from SI to SI
must be added when the t - 1 network is rolled into the network because SI and S, are
both dependent on rolled state S' _. Figure 5-1 lb is a "temporally-invariant" network
[FHKR95] which is designed so that a roll-up can occur without changing the link structure
of the resulting network, thereby enabling fast re-computation.

Most network models copy identical node structure at every time point and model the
change between every measured time point (i.e. typically 30 Hz, the frame rate). An
alternative model only instantiates evidence into the network at "important" time points
[HM94]. Figure 5-12a shows one such network, where the time between copied networks,
N is variable. The major events and the (nearly instantaneous) consequences of those events
are modeled each time slice. An independent process is required to detect the occurrence
of the important events and trigger network expansion and roll-up.

In Section 5.4.2, a DHMM model was discussed. The implementation of this model
requires memory of some global or semi-global variable. In a dynamic belief network,
memory can be implemented by adding a memory state, or "history nodes," for each variable

101



102 CHAPTER 5. APPROACHES FOR MULTI-AGENT ACTION RECOGNITION

N

El~

N.~ s st

M1 M Mi

(a) (b)

Figure 5-12: (a) A network for a DBN that rolls-up only at "important" time points. Evidence is
observed immediately after the important time point. Time interval N changes based upon when
important events are detected. (b) Incorporating memory nodes into a DBN.

that is copied from state to state, remembering previous values and possibly influencing
some network nodes [Kan92, NB94]. Such nodes can model information like validity in
certain sensors or "how long an expert has been doing the same thing" [NB 94]. Figure 5-1 2b
shows one such network, but incorporating memory nodes within networks is inefficient
because a single variable can require the addition of a large number of links.

Overall, a variety of structures have been proposed - each with representational and
computational tradeoffs. In this work a new type of structure is developed in Chapter 6
combining attributes from some of the networks discussed in this section.

5.5 Action recognition

This section reviews some prior work that explicitly addresses multi-agent action recogni-
tion.

5.5.1 Multi-agent plan generation

Some of the earliest work in multi-agent systems investigated simulation, not recognition,
of collaborative multi-agent activity. These systems model communicative acts between
planning agents that result in coordinated action. For example, one system uses STRIPS-
like plan conditions to generate synchronization communication actions in collaborative
plan generation [Geo83]. Another system accomplishes team modeling for military air
mission modeling using a distributed multi-agent reasoning system, dMARS, that employs
first-order logic with a team hierarchy [TSH95]. Yet another system for modeling agents
with team behavior for a synthetic battlefield uses the SOAR system [JCG+97] with a
hierarchical task-decomposition and partial-order planning. Developing dMARS required
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ten work years of effort to construct, demonstrating the complexity of the rules required
to model agent interaction. Simplifying the manual construction of the knowledge base is
mentioned as an important focus of future work.

An alternative approach is to have the simulated agents broadcast broad behavior details
instead of specific details about their planned actions [DM90]. When one agent receives
behavior information from other agents, it anticipates the behavior of other agents, using
a behavior hierarchy, in order to determine which agents to interact with. In a similar
approach, agents predict other agents actions given knowledge of their sensory input and
make decisions based on that using a recursive modeling method (RMM) [VD95]. One
system, based upon an intentional model of teamwork [CL90], models individual and
team plans by having agents reason about joint goals and intentions [Tam97b]. Agents
assume other agents have identical sensing capability [Tam97a]. Since communication is
sometimes not possible, the author states that each agent needs the capability to visually
recognize the plans of other agents, but this is left for future work.

Overall, this and other work on generating team behavior [JCG+97, TSH95, STW+92]
highlight two key features that must be modeled to simulate team activity. These features are
as follows: (1) the ability for each agent to observe other agents and use predetermined plans
for coordination and (2) the ability to use agent-to-agent explicit communication [TSH95].
Since these multi-agent simulators have access to the complete state for each agent being
modeled, they do not need to implement routines for each agent that recognize the activity
of other agents from sensor data. Although often complex reasoning and communication is
required to generate coordination, recognizing the coordination may not require intentional
reasoning.

5.5.2 Multi-agent action and plan recognition

There has been little prior work describing frameworks for real systems that recognize
multi-object action with approximate models and noisy input signals. Most multi-agent plan
recognition work uses modal logics that can represent joint intentionality but that have not
been implemented in realistic domains with noisy evidence detectors [GK96, CL9 1, RM94].

A few systems have been developed that recognize actions from static scenes or the
change between just two time frames. For example, multi-agent soccer actions have been
modeled using blob transitions of histogram back-projected blobs [KYA94]. Soccer actions
like "shot at left goal" have been identified using color, ball position, and a field model
[GSC+95]. These systems, however, only recognize simple actions in specific contexts and
probably will not scale well. In general, a stronger visual model or plan model is required
that models change over longer time periods.

Plan recognition tasks can be classified as cooperative or keyhole [Loc94]. A cooperative
plan recognition task is one in which the agents in a scene are explicitly generating perceptual
cues to help observers infer their plans. For example, during a conversation between two
people, the conversant will use intentional cue phrases to help the listener identify shifts in
intentional focus [GS86]. Similarly, listeners will use cues (e.g. "uh huh" and head nods)
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to indicate that they are grasping the speaker's intent. A keyhole recognition task is one
in which the agents being observed are making no effort to convey information about their
goals. Therefore, the tasks of identifying football plays or identifying action in a kitchen
from visual input is a keyhole plan recognition problem.

Early keyhole plan recognition systems used sets of rules and hierarchical temporal
decompositions to infer an agent's plan from a set of observations (e.g. see [KA86,
WL92, Hon94]). These techniques infer any agent goal consistent with the rule set and
the observations. The knowledge engineer must indicate which plan goals are "top-level
goals." Search-based systems designed specifically to recognize multi-agent goals and
actions outside of probabilistic frameworks [RS88, AFH89, Tam96] are sensitive to noisy
data and detectors.

One multi-agent keyhole domain of particular interest is tactical plan recognition for
military aviation. Tactical plan recognition differs from typical plan recognition tasks (e.g.
recognizing cooking plans) because the scenes of interest contain multiple, adversarial
agents. Adding additional complexity is the uncertainty and size of the input set and the
time-critical nature of the recognition task [AFFH86]. One early plan recognition system
used the Plan Recognition Model (PRM) [AFFH86] that consists of plans expressed as
hierarchies and deterministic finite automata. Heuristic evaluation rules and a best-first
matching algorithm are used to identify and rank plans. The PRM model has been extended
to handle multi-agent goals [AFH89]. In the extension, each agent is assumed to be
pursuing action in support of the higher level goals of a shared "master" agent. The plan
descriptions encode goals (e.g. destroy-target), multi-agent missions (e.g. attack-mission),
and single-agent plans (e.g. strike-target). Missions are scripts with required and optional
components. For example, the destroy-target goal has a multi-agent attack-mission with
required plans such as strike-target and optional plans like tank7 and feint8 . The STRIPS-
like plan scripts are used with a heuristic measure of belief and disbelief, but all incoming
data is assumed correct, all agents are assumed to be operating under the same goal, and
the system's performance is not characterized on a real example.

The REPLAI system was developed to recognize intentional action in multi-agent
domains [RS88]. The input to the system is events such as "run," "pass," and "have ball"
that are assumed to be provided by some pre-processing system. A plan hierarchy, where
each node in the hierarchy is a goal with precondition attributes and a deterministic finite
automata, is used to represent action. Computational complexity for the domain with 11
agents is minimized using a "focus handler" that identifies "interesting' players using a
set of heuristics (e.g. have-ball, near the goal) and then adds players who are likely to
interact with agents already in the focus. The system performs top-down recognition on
the hierarchical goal structure using the preconditions of each node. A database of prior
probabilities of a particular agent performing a particular action is used to select when more
than one plan is valid for an agent. The system does not explicitly encode information

7Here "tank" indicates the goal is to fill up the plane's fuel tank remotely.
8Here "feint" indicates the goal of launching a fake attack to distract the opponent.
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about the interaction between agents. An extension to this work, REPLAI-II, uses Kautz-

like plan graphs with Allen's "meets" arcs and disjunctions and conjunctions. Each node has

preconditions, and the graph is automatically converted to a temporally-ordered automaton

for processing. The preconditions are used to limit top-down search complexity. The

method is critically-dependent upon the (non-probabilistic) preconditions. The system,
which forces unrealistic, hard transition boundaries between actions, is most likely quite

brittle and does not recognize team activity.
One system for recognition of aircraft maneuvers [RM94] uses "plans as recipes to

guide the recognition process and ... plans as mental attitudes to constrain the recognition

process." Inference is performed using means-end analysis. The assumption is made that

in many domains, given a particular situation, the observing agent will have have access to

the set of desires that the executing agent is likely to pursue and may decide to be attentive

to these desires. Computation is minimized by considering only a small number of plans,
and the system does not use real sensor data.

Tambe and Rosenbloom proposed a method for "agent tracking," defined as plan recog-

nition where the observed agents are engaged in a mix of goal-driven and reactive behavior

(since they are in dynamic environments like air-combat simulations) [TR95b]. The model

commits at each time step to a particular plan for the observed behavior and uses single-step

backtracking, where backtracking is determined based upon the current context. Unlike

some other domains, in this domain ambiguities cannot be resolved using communication

due to the adversarial task. Heuristics are used to resolve ambiguities whenever possible

(e.g. by assuming hostility is more likely than friendly behavior). Overall, the method

attempts to "keep tracking firmly tied to the now" in order to recognize action efficiently.

The method is extended so that it can handle two adversarial agents [TR95a].

Non-probabilistic finite state machine representations have been used in early action

recognition systems. Events are described using labeled, directed, hierarchical graphs

where links have conditions. One such system output natural language descriptions of

activity using spatial referents (e.g. describing an object as next to the circle). The input

to the system was not noisy, perceptual data, however [AGR88]. The NAOS system also

generated natural language descriptions of traffic scenes from manually-obtained geometric

primitives [Neu89]. Another recognition system using FSMs for single-agent recognition

in multi-agent simulated domain [Thi86] detected actions like chasing and opening a door.

Charniak and Goldman [CG93] observed the following problems with some of the

hierarchical decomposition models. First, the models do not commit to a particular plan

explanation as long as there is another plan that could also explain the actions. Second,

there is an artificial distinction between top-level goals, which are minimized during plan

recognition, and the remainder of the goal actions in the hierarchy. Finally, the strategy of

using inference that minimizes the top-level goals recognized is flawed because it is often

possible to have multiple causes of the observed actions.

Carberry introduced the idea that a plan recognition system should incorporate a mech-

anism for reasoning about uncertainty [Car90] to deal with this first problem. Carberry

was interested in developing an algorithm that could analyze a discourse and return the
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conversant's most probable plan, even it is not the only possible plan. 9 A system using the
Dempster-Shafer theory of evidence [SL87] was developed so that unwarranted decisions
could be deferred until more evidence is available. Dynamically computed preference rules
are used to order evidence according to plausibility, and sanctioning a default inference de-
pends on its plausibility with respect to plausibility of alternatives. The use of probabilistic
networks is dismissed because the networks provide poor explanation capabilities.

Charniak and Goldman, however, adopt Bayesian networks for probabilistic inference
because Dempster-Shafer theory is computationally more complex than Bayesian inference
using graphical networks, and making decisions using the Dempster-Shafer formalism usu-
ally requires relating the DS intervals to probabilities [CG93]. Both formalisms require the
non-intuitive specification of conditional and prior probabilities. Charniak and Goldman's
system constructs BNs automatically from English narratives using forward chaining rules
relating objects, parts of speech, and prepositions [GC90]. No distinction is made between
actions and graphical, probabilistic plans; actions are simply plans with sub-actions.

Huber and Durfee [HD93] observed that in some robotic domains where agents can
not explicitly communicate, plan recognition is required for effective collaboration and
interaction. They advocate the importance of plan recognition techniques that can handle
observational uncertainty and design a robot interception task that uses simple Bayesian
networks with noisy input data. This work led to a system for recognizing multi-agent action
using belief networks [HDW94, Hub96]. Huber has shown that simple goal recognition
belief networks can be constructed automatically from representations of action used by a
plan generation system and then used by a planning agent in a multi-object scene [Hub96].
This thesis builds on Huber's work of automatic construction of networks, but none of
the existing systems for probabilistic plan recognition have been tested on real data and
recognized actions requiring the representation of fuzzy temporal relationships among
multiple goals of multiple agents.

Pynadath and Wellman use Bayesian networks to recognize agent plans in the driving
domain [PW95]. The recognition networks are designed to "[account] for the context in
which the plan was generated, the mental state and planning process of the agent, and
consequences of the agent's actions in the world." Plans are thought of as "descriptions of
action patterns" and are probabilistic to account for noisy sensing and so that probabilities
can be used to distinguish between equally possible but not equally likely plan options.
The model uses BNs with about 13 nodes that model low-level driving activity like lane
changing. Modeling interaction between agents is not addressed [PW95].

Simulated data of vehicles is used in another probabilistic plan recognition system that
uses temporally-invariant DPNs [FHKR95] (see Section 5.4.4). Blob data is extracted
automatically from video. Each vehicle is modeled using a separate DPN and the networks
each use deictic features computed from the blobs in the scene. Decision making using
decision trees leads to behaviors being generated such as vehicles passing slow cars, reacting

9For example, assume a person asks how late a supermarket is open. The system should infer that the person
intends to purchase groceries even though there are other high-level goals that could be valid given the
query
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to unsafe drivers, avoiding a stalled car, aborting a lane change, and merging into traffic.
One DBN is active per vehicle with fast roll-up [HKM+94]. A similar system, but one
that infers longer-term goals, has been developed for keyhole plan recognition in a multi-
user dungeon (MUD) online system [AZNB97] (following [LE96, FHKR95]). A DBN
recognizes one of 20 goals where each goal can consist of series of actions from a set of
7200 and 47000 locations. Extraneous actions are allowed but goals must be well-specified.
The probabilistic structure models the ways that users typically perform to achieve a goal,
not actions that necessarily advance the user toward a goal (as would be represented in a
more traditional STRIPS-like plan recognition system).

Overtaking, following, and queueing actions from the vehicle surveillance domain are
recognized in one system using DBNs and deictic relationships such as "behind," "beside,"
and "now" [BG95]. The use of an active focus of attention for gathering evidence under
some set of expectations is proposed.

Finally, Bayesian networks have been used in pedestrian and car parking lot surveillance
system for modeling the interaction between pairs of agents [RTB98]. Each agent has a
BN and each two-object interaction (defined by close spatial proximity) has a BN. The
networks are less than 9 nodes each. Group states such as "standing next to" as well as
single agent states such as "parked" and "walking slowly" are detected.

Devaney and Ram investigate the problem of recognizing group action in real and noisy
military training data with trajectories for hundreds of agents. They have had some success
identifying simple group "gathering" actions in real time using binary comparisons between
all pairs of agents [DR98].

One of the most comprehensive recognition systems has been developed by Nagel et
al in a series of papers [Nag88, KHN91, KN094, Nag94, NKHD95]. In this system,
three-dimensional geometric models of vehicles are automatically extracted from video
of road scenes. The trajectories and orientations of each vehicle are used as input to a
recognition system that uses a fuzzy metric temporal logic (see [SN] to recognize motion
verbs associated with driving activity such as "follow" and "drive in front of" [Nag94].
Motion verb actions are identified as follows: (1) features are fuzzily quantized using
piece-wise linear membership curves (e.g. speed is quantized into null, very small, small,
normal, fast, and very fast), (2) features are combined using fuzzy set rules into precondition,
monotonicity conditions, and postconditions, and (3) a finite state automaton (FSA) matches
observed data to the verb model. Each verb model has its own FSA. Hierarchical "situation
trees" can then be defined that represent "possibly occurring situations" in scenes such
as intersections and parking lots. Situation analysis (i.e. recognition of action) consists
of finding a path through the situation tree [HN98]. The situation graphs represent the
typical activity of single agents. This same framework has been used to generate linguistic
descriptions of activity [GN98].
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5.6 Summary: previous work

The goal of this chapter was to highlight some previous work on object recognition, the
representation of uncertainty, and multi-agent plan recognition.

First, analogies between the geometric object recognition problem and the multi-agent
action recognition problem were discussed. In the context of the discussion from Chapter 4,
the following insight was drawn from work in object recognition: low order (e.g. unary
and binary) features used for recognition of static, structured objects might also be useful
for the recognition of structured, multi-agent action. The representation described in the
next chapter is designed to explore this idea.

Second, representations for reasoning about uncertainty were briefly introduced. Over-
all, Bayesian networks are found to be a principled, robust, and sometimes computationally
practical representation. In fact, the networks have been used extensively for plan and
action recognition, but generally not in multi-agent domains. The usefulness of a network
as a representation, however, is dictated by the way the problem domain is encoded in the
network. The representation described in the next chapter uses Bayesian networks to repre-
sent uncertainty. The question is then how to model multi-agent action in the networks so
that a structured, multi-agent action can be recognized from perceptual data for a real-world
task. One structure is proposed. Practical tradeoffs between using Bayesian networks and
other frameworks for representing uncertainty are discussed in Chapter 8.



Chapter 6

The representation
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In this chapter a representation for recognition of multi-agent action is developed. The
motivation for this representation, which is based on insights from the object recognition and
plan recognition literature, was discussed in Chapter 5. Results of using this representation
on a database of football play trajectory data of the type introduced in Chapter 3 are
discussed in Chapter 7.

6.1 Representational principles

The representation presented in this chapter was developed to overcome some of the prob-
lems encountered with the formation labeling system described in Chapter 4. Specifically,
the representation is designed to accommodate a noisy temporal input signal. Further, the
representation proposed here permits multi-agent coordinated activity to be easily specified
by a domain expert and then converted into a Bayesian graphical network formalism that
can be used to evaluate the likelihood that the observed data was caused by a particular
play.

The representation is based upon six primary representational principles:

1. Reducing intentional action to visual components The difficulty of applying existing
intentionality reasoning systems to some multi-agent action recognition problems
was briefly discussed in Chapter 2. Instead, this work is based on the assumption that
for some multi-agent recognition tasks, a system can recognize "what things look
like" instead of an intentionally-based description of "what things are." Recognizing
team activity does not always require that a system represent and reason about the
intentional communication and interaction of the agents being observed. Instead, the
intractability of modal logic intentionality reasoning systems can be avoided by using
a representation that describes structured activity using a small number of temporal
and logical connectors linking probabilistic visual components. Some multi-agent
recognition tasks clearly do require explicit reasoning about intentionality. One ex-
ample is understanding a multi-agent discourse in which coherent dialogue between
speakers depends upon intentional "speech acts" [GS86]. Even understanding some
variation in football plays appears to require explicit intentional reasoning, as dis-
cussed in Appendix B. However, the representation presented in this chapter may
provide sufficient power to recognize some "intentional" action without explicit in-
tentional reasoning. In cases where the representation is inadequate, it may still
provide useful pre-processing information for intentional reasoning systems.

2. Using low-order temporal consistency The second principle is that low-order unary
and binary temporal relationships are sufficient for recognition of some structured
action. This observation was drawn from analogy to work done in computer vision
object recognition discussed in Chapter 5. Here only three temporal relationships
are used: (1) whether an event A has been observed during some time, (2) whether
an event A occurs before event B, and (3) whether an event A occurs around the
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same time as event B. This representational commitment is weak in comparison

to existing temporal reasoning methods that use situation calculus [MH69, PR95],

temporal modal logics [Sho88], or temporal interval propagation [A1184, A1191] to

enforce complete temporal consistency. For instance, in the framework proposed

here, if A is around B and B is before C, the temporal closure that A is before C is

not enforced.

3. Using probabilistically-detected "goals" as action primitives If A is before B, just

what are A and B? The third principle advocated by this work is that visually-

based goal detectors are useful atomic units in which to specify temporal and logical

relationships. Goals detected using visual cues are the "action components" of team

activity. Powerful goal detectors can be created by integrating local spatial and

temporal visual evidence using a Bayesian graphical network formalism.

4. Representing uncertainty using graphical models A method is required to integrate

uncertainty resulting from noisy data and faulty detectors. The representation pro-

posed here uses Bayesian networks, for reasons discussed in Section 5.2.

5. Using local space-time modularity Any complex problem that requires specification

of domain-specific rules by a person will need to allow the knowledge engineer to

modularize concepts. This framework uses local space-time modularity to reduce

complexity and simplify knowledge engineering. Goal detection networks are de-

signed to primarily consider evidence local in space and time.'

6. Deictic referencing The last principle advocated in this work, which has been used

successfully in prior work [AC87, FHKR95, BG95] is that deictic, or agent-centered,
goal detectors can manage the complexity of multi-agent feature selection. By using

deictic features such as "the closest agent" instead of "agent-5," some detectors can

be built without an explicit search that matches data to objects.

The remainder of this section describes the details of how these representational criteria

are achieved in a framework used to recognize multi-agent action.

6.2 Representational framework overview

The approach consists of the following representational elements:

1. The primitive action recognition atoms used for building up multi-agent play descrip-

tions from visual evidence are the single-agent goals. Examples are

goal:catchpass(receiverPlayer) and goal:blockForQB(TE-player).

'Occasionally the networks do use state information which has been set by the evaluation of other networks

that persists through time, such as whether the ball has been thrown. These exceptions are discussed later

in this chapter.
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Database Domain
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Figure 6-1: The recognition system diagram.

2. A temporal structure description of the global behavior, in this case a football play,
is defined. The basic elements of this structure represent individual agent goals
that must be detected. The relations coded in the structure are temporal and logical
constraints to be verified.

3. For each basic element of the temporal structure a visual network that probabilistic ally
detects the occurrence of the individual goal at a given time is defined. These networks
encapsulate the knowledge required to address the individual decisions. The networks
may refer to other such networks, but the more they do the less they decouple the
individual goals. The evidence nodes of these graphs are direct perceptual sensors,
such as the relative position of two players.

4. Temporal analysis functions are defined which evaluate the validity of a particular
temporal relationship. For example, if there is a visual network detecting a quar-
terback throwing the ball and another detecting a receiver catching it, the temporal
analysis functions can evaluate whether one goal happened before the other.

5. A large multi-agent temporal goal beliefnetwork is automatically constructed for each
group activity to be recognized that reflects the temporal and logical constraints of the
temporal structure description. The nodes are the individual goals and the specified
temporal relations. The links enforce conditional probabilities and associated logical
relations such as xor.
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Figure 6-1 shows an overview diagram of the system. Assume the data consists of

trajectory information for each player from frame 0 to frame N obtained from video input

where each player has been tracked. In this work manually-acquired trajectories are used

(see Chapter 3). A domain expert (i.e. a coach) has provided prototypical temporal structure

descriptions of all known team plays. The system is designed to operate causally, computing,
at each time, the likelihood the observed data is a given play in the play database. At each

time, visual networks are applied to each object in the trajectory data and output likelihoods
of observing agent goals such as dropback (QB) and throwPass (RSE). Over the course of

the play, those networks produce likelihood curves as a function of time. Temporal analysis
functions use the visual network likelihood curves and heuristic functions to compute new

likelihood curves detecting temporal relationships between agent goals (e.g. dropback

(QB) is observed before throwPass (RSE)). At initialization of the algorithm, each play's

temporal structure description is automatically converted into a multi-agent belief network

used to compute the likelihood of observed data being that play. The multi-agent belief

network uses evidence from the temporal analysis function likelihood curves to compute

the likelihood of having observed a particular play at time i. Likelihoods are computed for

each model and rank-ordered. The maximum likelihood play model indicates the system's
best play recognition hypothesis at frame i.

The remainder of this section describes the representational components in more detail.

6.3 The temporal structure description

The temporal structure description is the format in which a domain expert (e.g. a coach)

encodes typical examples of team activity. The description is used to generate multi-agent
belief networks used for computing the likelihood of observing a particular play.

The temporal structure description represents the prototypical scenario of the described

action. It is comprised of fundamental behavior elements connected by temporal and logical

constraints. In designing such a structure the assumption is made that the structured actions

being represented have such a prototype. Furthermore, since the description needs to be

generated manually, the description needs to be simple to express.

6.3.1 Agent-based goals as atoms

One goal of this work is to use prior work in visual object recognition and plan recognition,
both discussed in more depth in Chapter 5, to gain insight into the action recognition task.

Much of the object recognition work uses image edge segments as primitive input features.

Unary and binary constraints on edge segments are then compared with edges of the models

in the database (i.e. the model edges). Researchers have found that hypothesized solutions

that are consistent over large number of unary and binary checks on edge segment positions

are most likely the correct solutions even if higher-order constraints have not been explicitly

checked [GLP87]. The question then arises: What are the equivalent of the "model edges"

in object recognition for the multi-agent action recognition task?
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Within the current framework, individual agent goals are used as the basis for the
descriptive structure. Actions are viewed as a partially ordered set of goal directed behaviors
on the part of interacting agents. Goals are defined by their visual and probabilistic
characteristic behaviors, building on work in probabilistic plan recognition [CG93]. The
perceptual evidence is evaluated to determine whether an agent has a particular goal at
a particular time. For example, the halfback can have the goal of running between the
tackle and the guard. To determine if indeed he has such a goal, a recognition system must
evaluate the visual evidence, particularly the position of the tackle and the guard and the
direction of motion of the halfback. Later, the construction of belief networks that serve as
the recognizers of the individual agent goals is described more fully.

There are two reasons that agent goals are selected as the atomic units used for multi-
agent action descriptions:

* Agent-based goals are a natural and convenient way to describe ongoing human
activity. When watching a football play, someone knowledgeable in the game will
typically describe the goals that particular agents are engaged in. For example, a
person might say a particular agent has the goal to block another agent or to catch a
pass (i.e. catchPass).

* When an agent is situated in the midst of other agents engaged in some activity, the
main goal of each agent will usually have visual consequences. These observable
consequences are of two forms. First, the agent itself may move in a particular way
individually. For instance, a receiver may run so as to create a motion pattern of
a particular type (e.g. run straight down the field 10 yards, a streak(10) action).
Second, the agent will change its movement to respond to the contexts established
by the other agents as it interacts with them. For many goals, much of this context
can be determined by considering the agents in a small spatial-temporal window
around the agent of interest. Sometimes the local context is so strong that goals
can be detected before the primary visual activity associated with the goal. For
example, it is possible to detect that the goal of the quarterback is to throw the ball
using the relative movement of the quarterback and nearby agents before actually
observing the ball leaving the quarterback's possession. Hence, what the system
should actually recognize is patterns of motion and contexts (setup by relative agent
motions over time) that signal consistency with a given goal. Much like the context-
based description of natural objects discussed in Chapter 4, goal events can often be
detected based on space-time contexts.

6.3.2 Criteria for selecting goals

Unlike methods based upon computational simulation of intentional communication [Pol90b,
GK96], here there is no principled basis by which to define what can constitute a individual
agent goal. However, several desirable heuristic design criteria are used when selecting
individual goals for modeling. First, if a goal or behavior is causally related to other goals
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(e.g. catchPass and throwPass) the temporal relationships are easy to define. Second, the

goals need to have visually-detectable components. For example, a goal to "win the game"

may have many subgoals that have visual components, but it is difficult to define visual

cues associated directly with the goal "win the game" itself. Third, if the behavior involves

a single primary agent (e.g. the quarterback) then detectors for these behaviors are easier

to construct, and the application of these detectors is easier to control. Finally, the more

certain the behavior is to occur within the current context of the play, the better. Some

examples of goal actions for the s51 play are described shortly in Section 6.3.4.

6.3.3 Linking goals with constraints

Given that agent goals are used as fundamental action components, the temporal and logical

relationships between the goals can be used to describe a typical example of a multi-agent

coordinated action.

Temporal relations

Three temporal relationships are defined for the temporal description: observed, before,
and around. Given two agent goals, A and B, the following temporal detectors are available

in this framework for describing activity: whether A has been observed2 , whether B has

been observed, whether A is before B, whether B is before A, and whether A is around

B (and therefore, since around will be implemented symmetrically 3, B is around A). By

assumption, the goals of an agent are active during temporal intervals of finite duration.

The detectors therefore compute the relationships between goals that extend for intervals

of time.
The justification for using only low-order temporal relationships is discussed in Chap-

ter 5. Systems that reason about the temporal relationships between intervals typically

permit Allen's 7 possible temporal relations, not counting inverses: before, meet, during,
start, finish, equals, and overlaps [A1183]. Since Allen's framework does not model un-

certainty, any interval that exists is, by definition, observed. Here, however, an explicit

observed detector is employed to integrate evidence for an action over a temporal window.

Allen's detectors require temporal precision - single-frame start and end points. In this

work, the intervals are defined by likelihood curves computed using Bayesian networks and

noisy evidence. Ideally, the curves would have distinct cutoffs and plateaus that could be

detected using an automatic thresholding algorithm. In reality, the curves are rarely have

sharp activation and deactivation transitions. Some of this imprecision is due to noise, but

much of it results from actions not having clear start and stop points (e.g. precisely when a

cutting or throwing action or throwing begins and ends is not clear).

2Observed is a unary temporal relationships that sums up evidence for a single goal over a window of time.
3Since an around detector could can take into account the percentage of an interval that overlaps with another

interval, it is possible to generate a non-symmetric around detector for cases where interval A is shorter

than interval B and a occurs entirely during B.
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The before detector is common to both Allen's framework and this work. The remaining
relations are ill-defined when the start and end points of temporal intervals are uncertain. For
example, in the framework presented here the temporal relation of simultaneity is expressed
as around which can be interpreted as "about the same time as" or as a combination of
Allen's during and overlaps relations. Without explicit interval borders, the relation is not
transitive and cannot support the hard chaining used by Allen.

Due to this imprecision, transitive closure is not applied to the temporal relations.
Rather, only relations manually constructed by the knowledge engineer designing the action
description are exploited. The only temporal relations in the temporal structure graph are the
before and around relations explicitly coded in the temporal structure description. Further,
only observed, before, and around relationships are used for action recognition due to the
ill-defined boundaries of the intervals being temporally compared.

Logical relations

Two logical relationships can be used in the temporal structure description: xor and or. The
semantics are standard: xor requires that exactly one subset of a set of goals be observed;
or requires that some element of a set of goals be observed. Implicit in the temporal
structure description is the logical relationship and, as will be discussed below. These
logical relations will be converted into biases on conditional probabilities when the issue
of uncertainty is addressed.

The small set of logical relationships will permit nested logical options to be modeled.
However, as discussed in Chapter 2, modeling some intentional team action can require
reasoning about agent interaction where single agents make decisions that cause other
agents to change their plans. This type of plan recognition requires a reasoning process that
backward chains logical decisions, because all decisions can be critically dependent upon
the output of a previous decision. The framework proposed here cannot model that type of
plan.

6.3.4 Example

Figure 6-2 shows the temporal description for the s51 example play, diagrammed in
Figure 6-3. The description contains four agents: obj 1, obj2, obj3, and obj4. Each agent
has an agentGoal definition. The first slot in the definition, called agent, is a rank-ordered
list of player positions that can possibly map to the object definition. This slot is necessary
because the same play definition can apply to multiple starting position configurations. In
the s51 definition, for example, the first object (obj 1) always maps to the trajectory labeled
as the C object. The third object (obj3), however, can map to more than one starting
trajectory. Obj is most likely to map to the RWB trajectory if a trajectory in the dataset has
that label. If no such trajectory exists, the obj3 definition could map to a trajectory labeled
RTE. The next best match - if there is no RWB and RTE trajectory - is RHB.

Following the agent slot, one or more goal slots are specified. The example indicates
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(goalTeam s51 "Team goal for simple-p5lcurl (s51) play."

; Objl is always the Center (C)

(agentGoal objl (agent (objl (C)))

(goal objlactl "snapToQB (objl)")

(goal obj2_act2 "blockQBPass (objl)")
(before objlactl objlact2))

;Obj2 is always the Quarterback (QB)

(agentGoal obj2 (agent (obj2 (QB)))

(goal objlactl "dropback (obj2 5)")

(goal obj2_act2 "throwPass (obj2)")

(before obj2_actl obj2_act2))

;The Right Wing Back (RWB)

(agentGoal obj3

(agent (obj3 (RWB RTE RHB HB FB TB LWB LSB)))
(goal obj3_actl "passPatStreaking (obj3 4 45 defReg

nearRightSidelineReg 0)")
(goal obj3_act2 "passPatCutting (obj3 70 offSidelineRightReg

freeBlockingZoneReg)")
(goal obj3_act3 "runBehind (obj3 obj4) ")
(goal obj3_act4 "passPatParaLos (obj3 3 defReg

of fSidelineRightReg 4)")

(goal obj3_act5 "catchPass (obj3)")

(before obj3_actl obj3_act2)

(before obj3_act2 obj3_act4))

(agentGoal obj4 ;The Right Flanker (RFL)
(agent (obj4 (RFL RWB RSB LFL LSB LWB)))

(goal obj4_actl "passPatStreaking (obj4 4 50 defReg

of fEndZoneReg 0)")

(goal obj4_act2 "passPatCutting (obj4 70 offSidelineLeftReg
freeBlockingZoneReg)")

(goal obj4_act3 "passPatParaLos (obj4 3 defReg offCenterLineReg 4)")
(goal obj4_act4 "catchPass (obj4)") (before obj4_actl obj4_act2)
(before obj4_act2 obj4_act3))

(around obj3_act2 obj4_act2) (xor obj3_act5 obj4_act4))

Figure 6-2: A temporal structure description for the s51 play example with only some actions and
temporal relationships specified.

that in an s5l play, objl (which will match the trajectory labeled C), should have a goal to
snapToQB (snap - hand the ball to the quarterback) and blockQBPass (block for the QB
as the QB passes the ball). Each goal has a label, such as objl1actl (short for object1's
action 1). The s51 example has been limited to just six goal types: snapToQB, blockQBPass,
passPatStreaking, passPatCutting, passPatParaLos, catchPass. For each goal type, there
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5 yardsl

LOS &tbj1 1..*
obj2 ,0*bj3 o0bj4obj2 obj

Figure 6-3: The s51 example from Chapter 2.

exists a detector which receives a list of parameters. The detectors are implemented as
Bayesian networks that integrate direct visual measurements. Some of these detectors and
their parameters are described below:

blockQBPass (obj) Obj blocks for the QB as the QB tries to pass the ball.

passPatStreaking (obj distance angle inReg toReg distLOS) An eligible receiver, Obj,
runs a pass pattern segment that is approximately straight for at least distance yards
at an angle of approximately angle with respect to the line of scrimmage region
(losReg). For example, if angle = 90, the obj will run perpendicular to the LOS for
distance yards. This pattern occurs while obj is located in region inReg and when
the obj is headed towards region toReg. Finally, distLOS specifies the approximate
distance from the losReg that the motion starts. For example, "passPatStreaking
(obj4 5 90 defReg offEndZoneReg 0)" indicates that obj4 will run perpendicular to
the LOS for 5 yards in the defReg (defense's end of the field) moving towards the
offEndZoneReg (the offense's end zone) starting 0 yards from the LOS.

passPatCutting (obj angle toReg inReg) Obj, which must be an eligible receiver, runs a
pass pattern segment making a sharp (e.g. about angle degrees) change in motion in
inReg after which obj is moving in towards the toReg.

passPatParaLos (obj distance inReg toReg distLOSatStart) An eligible receiver, Obj,
runs a pass pattern segment moving parallel to the losReg for at least distance yards
while in inReg and heading towards toReg. This motion occurs at approximately
distLOSatStart yards from the LOS.

catchPass(obj) Obj intends to catch the ball from a pass.

The remaining slots in the temporal structure description indicate the temporal and
logical relationships between agent goals. Two temporal primitives are available: before and
around. For example, "(before obj 1 act 1 obj 1-act2)" indicates that goal obj 1 actl occurs
before obj 1_act2, where obj l.actI is the label for "snapToQB (obj 1)" and obj2_act2 is the
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(agentGoal obj3

(agent (obj3 (RTE RHB HB FB TB LWB LSB)))

(cgoal obj3_act1

(goal obj3_act2 "passPatStreaking (obj3 4 45 defReg

nearRightSidelineReg 0)")

(goal obj3_act3 "passPatCutting (obj3 70 offSidelineRightReg
freeBlockingZoneReg)")

(before obj3_act2 obj3_act3))

(cgoal obj3_act4

(goal obj3_act5 "blockForQB (obj3)")

(goal obj3_act6 "blockForBC (obj3)")

(before obj3_act5 obj3_act6))

(xor obj3_actl obj3_act4))

Figure 6-4: A temporal structure description for the s5J play example with only some actions and
temporal relationships specified.

label for "blockQBPass (obj 1)". Similarly, "(around obj3_act2 obj4_act2)" indicates that

either object3's passPatCutting goal occurs around the same time as object4's passPatCutting

goal. The meanings of "before" and "around" will be defined shortly. Finally, "(xor

obj3_act5 obj4_act4)" indicates that object3's catchPass goal or object4's catchPass goal
should be observed, but not both.

6.3.5 Compound goals

A compound goal is simply a goal comprised of multiple primitive goals. Temporal and

logical relations can exist between the compound goal and other primitive goals, as well as

between the primitive goals of the compound goal itself.
Since compound goals could be expanded by their definition in terms of their primitive

goals, one might wonder why use them at all. The main reason is that compound goals

represent causally linked individual goals that are tightly coupled. Therefore, it is possible

to specify temporal and logical relationships between compound goals. For example,
consider the temporal structure description fragment in Figure 6-4. Two compound goals

(cgoals) are identified: obj3_actl and obj3_act4. Within each compound goal, subgoals are

listed with appropriate temporal relationships specified (e.g. obj3_act2 before obj3-act3).

However, a logical constraint is also specified between the two compound goals, "xor

obj3_actl obj3_act4," indicating that either all the sub-goals of obj3-actl are observed or

all the subgoals of obj3_act4 are observed, but not both.
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6.4 Perceptual features

The temporal structure description uses agent goals like blockQBPass and catchPass to
describe a multi-agent action. The input to the system, however, is the labeled player
trajectory data. Some of the features are computed directly from the trajectories of an
object or group of objects without directly comparing attributes of multiple objects. These
detectors can be roughly grouped into the following categories:

Movement of objects The most basic detectors are for movement and angular movement
properties of single agents (e.g. velocity, angular acceleration). Many of these
detectors also operate on groups of agents (e.g. velocity(offensePlayers)).

Trajectory curvature These detectors analyze a single trajectory curvature and allow
curvature inspection over particular temporal windows of the trajectory (e.g. curva-
tureTraj(obj)) They also measure properties with respect to points of locally maximal
curvature along a single agent's trajectory (e.g. how long ago was a point with high
curvature?).

Categorization and visibility All objects have types and supertypes, and these detectors
can confirm an object is of a particular type and also check if particular objects are
visible in the scene (e.g. typeOf(obj,offense)).

Although information computed directly from the agent trajectories can be used by the
system, in multi-agent domains the most salient features are sometimes the relationships
between the trajectories of individual and groups of agents and other agents or regions in
the scene. These detectors can be roughly grouped into the following categories:

Distances between objects These detectors check for distance relationships between ob-
jects and spatial regions. Some use a deictic perspective. Detectors can also use
individual objects or collections of objects (e.g. closestAgent(obj,defenseObjs)).

Relative orientation of objects These detectors check if objects and groups of objects are
oriented in particular ways with respect to other objects, groups of objects, or regions
(e.g. facingOneOf(objl,defense)).

Measurement of change These detectors detect some type of spatial change (or orientation
change) greater than some specified value between the current time and some specified
time change. Some of these detectors detect change with respect to some region (e.g
compareDistanceMoved (obj timePT distance) checks if obj has moved distance since
timePT).

Trajectory properties These detectors operate over the entire trajectory for some object
observed up to frame currentTime and measure properties such as if the trajectory
passes between particular spatial regions (e.g. enteredReg(obj decTime region) checks
if obj entered region within decTime).
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Spatial relationships between objects The spatial relationship detectors can compare in-
dividual and collections of objects (e.g. behind(obj,linemen)).

Spatial relationships during intervals of time These detectors examine spatial relation-
ships between objects or objects and regions during intervals of time (e.g. closestAp-
proach (obj, QB, decTime) returns the closest distance obj came to QB in the interval
from currentTime to decTime).

Path interception estimation Some detectors use the current time and velocity and accel-
eration estimates to predict when two objects, an object and a region, or the orientation
of two objects, will intercept in the future (e.g. intercept (obj1 obj2 incTime) deter-
mines if obj 1 will intercept obj2 before incTime assuming current trajectories stay
constant).

Temporal extent checks These detectors compare some given domain-dependent time
point to the current time (e.g. timeElapsed((throwTime)) returns the time elapsed
from throwTime if that time has been computed, otherwise nil).

Figure 6-5 and Figure 6-6 list a representative set of feature detectors. Each detector
takes a set of arguments, which are usually either objects, groups of objects, or regions.
The detectors can be applied at any time and are causal, only using data from frame 0 to
(just after) the current time.

Each detector quantizes its output into a small set of output states. For example, the
states for the "velocity" (velocity (obj s)) detector are {stopped walking jogging
running airborne}; the states for the "facing each other" detector (facing (obj s1
obj s2)) are {facing oriented notFacing}. The output states are used for convenience
when simplifying the specification of conditional probabilities in the visual goal networks,
to be described in Section 6.5. To avoid hard cutoffs in continuous-valued concepts (e.g.
velocity, distance), the functions actually compute a degree of membership in each state
[Zad78] using overlapping piecewise linear functions.4 Figure 6-7 shows the piecewise
discretization functions for the velocity and facing evidence functions. In this work, these
functions are manually specified by the domain expert.5 A value of 1 indicates that the
detector output is definitely a member of the state and ,conversely, a value of 0 indicates the
detector output is not a member of the state. The interpretation of the membership curve
values as relative likelihoods and how they are used by the visual networks are described in
Section 6.5.

Figure 6-8 shows a screenshot of an interface used to view the output of feature detectors
for a particular play example. Only a small subset of the features computed are shown. The

41n this work, the degree of memberships are interpreted as probabilities. This is just one of the semantic
modeling tradeoffs required to make Bayesian networks work in a large, practical system. See Section 7.5.

5With a large dataset of recorded actions where the states have been manually labeled by multiple users,
it would be possible to automatically obtain degree of membership curves. In this work, such a labeled
dataset could not be obtained.
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accelerationMaxVect (objs) Value of accelerationX (objs) and accelerationY (objs) that is farthest
from zero. States: accelFastPos accelPos none accelNeg accelFastNeg.

angularChange (objs) Abs(angularAcceleration (objs)). States: none change fastChange.

backupReg (obj region) Determine if obj velocity is in opposite direction of shortest path from
obj to region. States: true false.

closestDistance (objsl objs2) Distance from objs1 to closest agent in objs2. States: lessp5 less1p5
less2p5 less5p5 less9p5 lessl4p5 morel4p5.

distanceReg (objs region) Distance from centroid of objs to region. If there are multiple regions,
the distance to the closest region is used. States: lessp5 lesslp5 less2p5 less5p5 less9p5
less14p5 morel4p5.

agentsWithinDistBetweenObjsReg (objIs objs2 region) Number of agents in objs2 within d ra-
dius of any objects in objs1 where d is the closest distance between any agents in objsl and
region. States: nO n I n2 n3 n4 more4.

facingDist (objs1 objs2) Centroid angle and position of agents in objsl facing towards centroid
position of objs2 taking into account the distance between objsl and objs2. States: facing
oriented notFacing.

facingOneOf (objsl objs2) Centroid angle and position of agents in objs1 facing towards at least
one of objs2. States: facing oriented notFacing.

facingSameDir (objsl objs2) Centroid angle of objsl facing in the same direction as centroid
angle of objs2. States: facing oriented notFacing.

facingAngToReg (objs region angle) Centroid of objs is facing perpendicular (when angle 90)
or parallel (when angle 0) to the line segment of angle closest to objs. States: aligned
partlyAligned notAligned.

Figure 6-5: Some perceptual feature detectors.

shaded bars indicate the output of the feature detectors over time. Not shown is the degree of
membership value associated with each output state at each time. Which perceptual features
are computed is determined by the goals listed in the temporal structure description. The
next section explains how these goals are modeled.

6.5 Visual networks

Previous work, discussed in Chapter 5, demonstrates that agent goals can be represented in
a probabilistic framework using Bayesian belief networks [CG93, HDW94, PW95]. These
networks are applied instantaneously to each image frame. The Bayesian networks use
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curvatureTrajAbs (obj) Abs(curvatureTraj (obj)). States: straight curved curled.

enteredReg (obj decTime region) Check if object entered region between currentTime and (cur-

rentTime - decTime). States: true false.

leftOfReg (objsl objs2 region) Objs1 is leftOf objs2 with respect to the direction of the vector

from objs2 to the closest point on region. States: true false.

between (objsl objs2 objs3) Objs1 is between objs2 and objs3. States: true false.

moveAngToReg (obji region decTime angle) Check if obj moving at approximately angle orien-

tation to region (where 0 is parallel and 90 is perpendicular) from currentTime to (currentTime

- decTime). States: true false.

compareDistanceMoved (objs timePT distance) Difference between given distance and the dis-

tance the objs centroid has moved from the timePT to currentTime. States: less2 less4 less6

less8 less 10 less 12 less 16 less20 less24 more24.

interceptSpace (obj1 objs2 objs3 incTime) Obj 1 is moving towards crossing the dividing line be-

tween objs2 and objs3 within incTime timesteps. Computed using obj l's velocity. Obj 1 must

go between every pair from objs2 and objs3. States: observed maybeObserved notObserved.

possibleTolntercept (obj1 obj2 timesteps) Determine if obj 1, moving in the most direct path at

"running" speed can intercept obj2 before (currentTime + timesteps) given obj2 maintains

its current velocity. States: observed maybeObserved notObserved.

Figure 6-6: Some more perceptual feature detectors.

stopped walking jogging running airborne 1facing oriented not facing

0 velocity 00 angular difference (degrees) ISO

Figure 6-7: Two examples of the piecewise-linear functions used to compute a degree of member-

ship value by perceptual detector functions computing object motion and object-to-object facing

angle.

the output of the visual feature detectors, so they will be referred to as visual networks.

Belief networks, which are reviewed in Appendix E, can be designed so that they can

represent uncertainty in evidence, goal models, spatial reasoning, and temporal reasoning.

The networks are used as building blocks for recognizing multi-agent activity by using their

outputs to check for temporal consistencies such as the visual evidence for goal A is before

the visual evidence for goal B.
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Figure 6-8: Screenshot of an interface used to display perceptual feature output. Only a small
percentage of features is shown.

6.5.1 Network structure and evaluation

A single belief network is used to detect each goal in this framework. Each network can
be instantiated at any time during a play in order to compute the likelihood the goal has
been observed at the given time. The networks typically contain only between 15 and
25 nodes, because they are designed to integrate information in a relatively small, local
spatial-temporal window.

The random variables (i.e. nodes) and structure of each network is manually specified.
The networks are generally sparsely connected, having only two or three connections
per node. Sparse connectivity is possible because the knowledge engineer hierarchically
clusters concepts within the networks. Propagation of uncertainty in sparsely connected
networks with less than a about 100 nodes can be performed using exact probabilistic
propagation techniques [Jen96] in interactive times (i.e. < 1 second of compute time
on a 500 MHz Digital AlphaStation). Currently the priors are also manually assigned,
however some priors could be obtained from analyzing the evidence and the performance
of particular feature detectors. Some issues related to learning networks will be discussed
in Section 7.5.4.

Figure 6-9 shows two networks, catchPass and playInProgress. The networks consist
of two types of nodes: unobservable belief and observable evidence.

Unobservable belief nodes A belief node has two states, true and false (each with a

124



6.5. VISUAL NETWORKS 125

G ~ catohPass (obji B..... p ..... ........

B: elhglb~etocrebj Rbeeoe To

T( mOPNF ((endT lme PNF((n30i

,p' t mEIpsed sttTime 0) ( B m

(obib e) -etAge tDist (BALL f~~ce0eg ((ofE(nd) L

dosest.gent~is )oil3

cos e genti stb(bjB(detAgenDist (BALL (i t tngS aeDi r (8

(a) (b)

Figure 6-9: Two visual networks: (a) the catchPass goal network (left) and (b) the playnProgress
belief network.

corresponding probability value), and reesents an internal state of the agent or
some external state in the world at the time when the network is evaluated. Belief
nodes can also represent the belief that an agent has a particular goal; these nodes are
not attached directly to evidence nodes. This distinction forces the network designer
to explicitly represent two types of uncertainty: (1) the uncertainty of the detectors
given noisy data, modeled in the conditional probabilities P(evidencelbelief), and
(2) the uncertainty resulting from the use of an approximate model, which is modeled
in the conditional probabilities P(belieflbelieflncoal). Each visual network has a
designated main belief node (e.g. catchPass and playInProgress).

Observable evidence nodes An evidence node's states and state values are directly de-
pendent upon the data. Some nodes are binary (e.g. observed, notObserved), most
are trinary, (e.g. observed, maybeObserved, notObserved), and the remainder have
specialized states that quantize a particular feature detector output (e.g. the result of
the distance detector is quantized into states in Contact, next To, near, in Vicinity, far,
distant). When the data is inconclusive, the function can return a NIL value, and the
evidence node will not be instantiated with any value in the network.

Evidence nodes, which use the feature functions described in the previous section,
can take objects, groups of objects, object categories, regions, or times. For instance,
the distanceReg ((offEnd) LOSReg) node in the playlnProgress network will compute
the distance from any offensive end in the play (of which there are several possible
types) to the line-of-scrimmage (LOS) region. Most evidence functions will work
with groups of agents. velocity (LTRTLG) will return the average velocity of the three
objects. Some regions and functions (e.g. LOSReg and snapTime()) are dependent
upon variables that have been previously set by other networks.

By nesting functions, references to most agents in the local spatial-temporal window
can be made from within a network. For example, to compute the distance from the
agent to the closest defensive agent, the detector distance (closestAgent (defense)) is
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applied.

References to other agents are generally deictic - relative to the position of the current
agent - (e.g. closest agent, second closest agent, agents within some distance, etc.) Using
deictic feature references reduces the number of features that need to be considered by a
network; the networks primarily include features computed locally in space and time.

The main node of each visual network can accept parameters set by the caller of the
network at run-time. For example, goal node catchPass (obji) accepts one argument, a
specific agent. Each network is designed so that it can be applied to any world object and
return a reasonable result. Child nodes of the main node inherit the top-level parameters and
can refer to additional objects. In the catchPass example, if the network is evaluated with
obji bound to WR, then the E:intercept (obji BALL 30) evidence node will return either
observed, maybeObserved, notObserved, or NIL depending on whether it appears that the
ball's current estimated trajectory will intercept with the WR's estimated trajectory within
30 frames. Appendix F briefly describes the visual networks used by the system.

6.5.2 Approximations to the closed-world principle

The task for the knowledge engineer is to estimate the probabilistic causality between an
agent's particular goal leading to the agent having a specific set of beliefs which will lead to
evidence of particular actions. In doing so, a small space of the domain's knowledge space
is carved out and within that subset of knowledge rich interdependencies between the data
and a goal can be modeled. By assumption in Bayesian networks, dependencies between
evidence and beliefs for a particular goal are either fully modeled or not considered at all.
The networks are intended to be closed in time and knowledge - by considering information
local to the given time and given agent position, the amount of domain knowledge that must
be considered remains manageable.

Networks are designed to use primarily evidence detected from a local space-time
window. Note, however, that some goal networks make use of dynamic state variables (e.g.
throwTime used in the catchPass network of Figure 6-9a), and some networks use the output
of other goal networks as evidence (e.g. catchPass uses the result of the playInProgress
network). Therefore, the networks are not entirely "closed." External knowledge can
impact the network, which violates the belief network assumption that all dependencies are
modeled via explicit conditional probabilities. This approximation is acceptable because
the networks themselves are simplified approximations to the actual dependency structure:
partitioning actions into small networks simplifies the job of the knowledge engineer and
makes it manageable.

The same virtual evidence computation described in the previous section can also be
used to use continuous-valued output from visual networks as evidence in visual networks.
The evidence from the output of the playInProgress visual network is entered into the
catchPass network in Figure 6-9a using this method. For example, evidence from an
external network, such as the playInProgress evidence node in Figure 6-9a, is incorporated
into a network such as catchPass (obji) as follows. If the playInProgress network cannot
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evaluate and returns NIL, no evidence is entered for the node. If the playInProgress
network returns a high certainty of a particular state that exceeds a predetermined threshold
for playInProgress, evidence is entered directly into the catchPass network (e.g. if observed
= .99 and notObserved = .01 and threshold(playInProgress) = .85 then observed = 1.0 is
entered into catchPass). Finally, if playInProgress evaluates below the threshold, the
beliefs are treated as direct evidence and the probabilities are converted to likelihood
evidence[Pea88] (e.g. if observed = .8 and notObserved = .2 and threshold(playInProgress)
= .85 then the evidence that observed is 4 times more likely than notObserved will be
entered into the catchPass network).

In practice, nested visual networks were required to manage the complexity of knowl-
edge engineering the visual networks for the play recognition system. Appendix F breaks
the implemented visual networks into "generic action detectors" that detect basic motions
or agent relationships in a small space-time windows (e.g. movingBackwards(obj), stay-
ingBetween(obj 1 obj2 obj3), runningStraight (obj distance), runningToward (obj 1 obj2))
and football-specific detectors (e.g. catchPass (obj), dropback (obj)). Implementing the
football-specific detectors without use of smaller, generic network components that could
be inserted as evidence proved impractical. One change to a generic action detector would
require changes in nearly all of the football-specific networks. Consequently, the football-
specific detectors were constructed to use generic network outputs as evidence. Using
virtual evidence insertion in this way assumes, incorrectly, that all variables in the generic
network are independent of the variables used in the football-specific network. This is just
one of the many "non-Bayesian" assumptions being made by the system in order to allow
practical construction of the system; these assumptions are discussed further in Chapter 7.

Some agent goals have an additional property: "achievement" of the goals can set
global states. A goal is achieved when its likelihood value surpasses a fixed threshold. A
throwPass detector, for example, will return a high likelihood value (i.e. close to 1.0) once
the ball and QB player have undergone appropriate motion in the appropriate context and
the ball has left the QB player at a high speed. At this time, the threshold value is typically
surpassed. Once a throwPass is executed, some goals are no longer likely (e.g. tackle(QB)),
so some achieved events set global state indicators that other visual networks can use as
evidence.

One performance problem is the potential for circularity in the visual goal networks.
Network A uses the output from network B, network B uses the output of network C,
but network C uses the output of A. To avoid the computational cost of evaluating all
the networks and then iterating to convergence, in this system, the knowledge engineer is
encouraged to minimize the number of interconnected networks. Loops that remain are
handled by having the evidence computation algorithm avoid recomputing any networks
that have already been computed during the current iteration.
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6.5.3 Evidence quantization

Many of the evidence detectors measure naturally continuous quantities (e.g. velocity);
however, although it is possible to design Bayesian networks with continuous variables
[Ole93], developing such networks requires the knowledge engineer to provide multi-
variable continuous distribution functions. Practical networks typically use discretely-
valued nodes because of the modeling difficulty of specifying continuous conditional prob-
ability functions that model real world concepts with non-smooth transitions. Quantized
values can be entered into a network as continuous evidence, keeping the knowledge en-
gineers task manageable without ignoring continuous evidence. To maintain continuous
valued information with discrete states, whenever possible evidence is entered as "virtual"
likelihood evidence (see [Pea88]). The likelihood is obtained using the degree of member-
ship values obtained for each of the node's states (see Section 6.4 and Figure 6-7). Virtual
evidence is discussed in the next section.

6.6 Temporal analysis functions

Temporal analysisfunctions are functions which evaluate the validity of a particular temporal
relationship. For example, if there is a visual network detecting a quarterback throwing the
ball and another detecting a receiver catching it, the temporal analysis functions determine
whether one event happened before the other.

The output of a visual goal network at each frame for a given object results in a likelihood
curve over time. Two curves returned by the networks "dropback (QB 5)" and "catchPass
(RSE)" are shown in Figure 6-10. Temporal relationship evidence detectors use these
curves as input. The functions compute a certainty value for the observed, before, and
around tests at each time frame using the heuristic functions in Appendix G that compare
the activation levels of each goal over time, characteristics of each input curve, the temporal
distance between features of the curves, the amount of overlap between the curves, and
a minimal activation time for each goal. Figure 6-10 shows the certainty values for the
before and around detectors corresponding to "dropback (QB 5) before catchPass (RSE)"
and "dropback (QB 5) around catchPass (RSE)".

The semantics of (before A B), where B is a compound goal are interpreted as A is
before all the subgoals of B. Similarly, for around, A is around all the subgoals of B. In
practice, if compound goal B consists of subgoals { Bo, . .. , B} then the certainty value
for B at each time t is simply argmax(Bo(t), ... , Bi(t)). This new certainty curve is then
compared with the curve for A using the functions in Appendix G.

6.7 Multi-agent networks

The fundamental hypothesis of this work is that visual networks and the temporal structure
description can, when integrated so as to propagate uncertainty, be used to recognize
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Figure 6-10: Goal likelihood curves returned by the networks "dropback (QB 5)" and "catch-
Pass (RSE)" superimposed with the corresponding temporal curves for "dropback (QB 5) before
catchPass (RSE)" and "dropback (QB 5) around catchPass (RSE)".

structured team goals in some interesting multi-agent domains without explicit reasoning
about group intentionality and communication. This integration is accomplished by an
extension of visual networks to multi-agent networks. Each multi-agent network represents
a "compiled-down" description of the collaborative action of a particular play.

6.7.1 Multi-agent network structure

Figure 6-11 shows an example of a multi-agent network for recognizing part of the action
description shown in Figure 6-2 for the s51 play example. The network is similar to the
visual networks described previously, but it has some special structure, described below, to
facilitate recognition of group action by multiple agents.

All nodes in the multi-agent networks represent beliefs or evidence observed over all
the play data seen from the start of the play until the current time. All nodes have the state
(observed, notObserved). The main node in the example is B:s51 (obji obj2 obj3 obj4).
To apply this network, four arguments matching the objects in the action description to
objects in the data are required. Below this node are nodes representing:

e Compound goals (e.g. B:s51 (obji)). A compound goal represents several related
subgoals (or temporal relations between subgoals). In the network, each component
of a compound goal is causally related to some compound goal node. Each agent in
the scene has one top compound goal node that is conditioned on the main play node.

e Binary temporal relationships between goals (e.g. B:obj1_act1 before objtact2),
which represents the belief that snapToQB (obji) is before blockQBPass (obji)).
These nodes encode the belief that a particular temporal ordering of agent goals has
been observed during the action sequence. They are assumed to be causally related
to a parent compound goal node.

e Observation of goals (e.g. B:obj4-act4 observed). When the temporal structure
description does not specify any temporal relationship for a goal (e.g. obj4_act4 in
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Figure 6-11: The multi-agent network structure for the s51 play temporal structure description in
Figure 6-2.

Figure 6-2), the goal is inserted into the network using an observation node. The
node is assumed to be causally related to a parent compound goal node.

* Evidence for temporal relationships between goals or observations of goals (e.g. the
boxed E nodes). By tuning the conditional probability table, P(evidencelbelief),
sensor uncertainty is modeled.

* Logical relationships between goals or compound goals
(e.g. B:obj3_act5 xor obj4_act4). The two logical relations, XOR and OR are
represented using special nodes. For each operand of the relation, an observed node
is included in the graph. The logical relationship node is then a child of the observed
nodes and the first compound goal node common to the goal actions being compared;
in the example, this node is the main goal node (because the xor relationship spans
two agents).

The network shown in Figure 6-12b is an example network for the play description in
Figure 6-12a. This example demonstrates some additional multi-agent network properties.
If a goal does not have a corresponding temporal relationships, it is inserted into the network
using an observed relation (e.g. obj2-actl). Further, any goal with a logical constraint is
inserted into the network as an observed relation, even if a temporal relationship is already
in the graph (e.g. obj _act2 has both a temporal relation node, "before obj 1 act2 obj _act3"
and an observed node). Logical relationships between compound goal nodes are treated
exactly as relations for single goal nodes (e.g. "xor obj 1 act2 obj2_act3"). Finally, temporal
relationships between a compound goal node and single goal node are implemented as shown
by the "before obj2_actl obj2_act2" node and "around obj 1_act3 obj2_act2" node.
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(goalTeam play "Play example"

(agentGoal obj 1 (agent (obj 1 (C)))
(goal objIlactI)
(goal obj Lact2)
(cgoal objl _act3

(goal obj 1 lact4)
(goal obj1-act5)
(goal obj 1 -act6)
(before obj 1 act4 obj 1 act5)

(before obj 1 act2 obj 1 act3))
(xor obj Lact1 objlIact2))

(agentGoal obj2 (agent (obj2 (LT)))
(goal obj2-actl)
(goal obj2_act2)
(cgoal obj2act3

(goal obj2.act4)
(goal obj2-act5)
(before obj2_act4 obj2_act5))

(before obj2_act2 obj2_act3))

(around obj 1 act3 obj2_act2)
(xor obj 1 _act2 obj2_act3))

B: play (obj1 obj2)

B: play (obj1) B: play (obj2)

B: obj1_act2 before obj1_act3 B: cgoal obj1_act3

E B: goal objact3 : obj2_act1 observed

B: obj1 act1 before obj1_act2 B: obj1_at o ns T e fract B: obj2ajt1 _ace rael E
E E j:ob2_act2 before obj2_act3

B:obj1_act1 observed B: obj 1act6 observed c
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B: obj1_act2 xor obj2_act3

Figure 6-12: A temporal structure description and the multi-agent network structure generated.

There are two important observations. The first is that the graph node and linking
structure is clearly an approximation to the true dependencies in the world. For example, the
node "B:objl- act3 around obj2_act2" is certainly causally related to "B:cgoal objl1 act3",)
but this dependency is not modeled in the graph in order to reduce the number of links
required in the graph for a typical multi-agent action. The second observation is that the
graphs are using all observed evidence from frame 0 to the currentTime. Therefore, the
integration of evidence over time is encoded within the nodes of the network, not within
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transitions between the links. These two observations will be discussed further in Chapter 7.
The network shown in Figure 6-11 is for the simple s51 example, which has only a

few agents with a reduced set of goals and temporal relations. The temporal structure
descriptions normally describe the actions of all 11 offensive agents with about 5 goals
per agent, 5 temporal and logical goals per agent, and 3 between-agent temporal/logical
goals. Hence, a typical multi-agent network contains about 188 nodes (1 main node, 11
compound player nodes, 55 temporal relation nodes, 55 temporal relation evidence nodes,
33 between-agent temporal relation nodes, and 33 between-agent temporal evidence nodes).
Propagation by exact algorithms in interactive times remains feasible because the networks
are relatively shallow, sparsely connected, and consist of binary nodes. Performance will
be discussed in Chapter 7.

6.7.2 Generating networks automatically

Multi-agent networks are generated directly from the temporal structure descriptions pro-
vided by the domain expert given a set of construction rules and conditional probability
templates. The multi-agent network structure is generated using a set of rules specifying
how to insert and connect nodes for a temporal structure description so that the node-link
structure described in the previous section are obtained.

Conditional and prior probabilities for the network are inserted automatically using
node-link structure templates that match to specific situations and apply pre-designed ta-
bles. This process of template-based insertion of probabilities is similar to the method
used by Huber [Hub96], although with networks of a different structure. The conditional
probabilities themselves are estimated by the knowledge engineer.

The automatic structure creation and probability assignment is possible in practice only
because the networks are limited to just 6 node types (before, around, observed, cgoal,
evidence, and main play) and a small set of possible links (.e.g. evidence nodes will always
only have one incoming link from either a before, around, or observed node).

Huber [Hub96] and others have used the idea of automatic construction of networks
using rule-based expert systems [Hol88, NHH95], first-order logic [GC90], Horn clauses
with associated conditional probability tables [Bre92], and construction of networks based
on sensitivity analysis pruning [Bre92, PC93, HHNK95]. All these methods rely on pre-
specified conditional probability tables and (to make the techniques practical) a relatively
small set of primitives that can be be combined.

6.8 Applying the representation

6.8.1 Trajectory to model consistency matching

So far, this section has described how the system can compute a likelihood that a particular
play is being observed. However, the description has assumed that the matching between
object trajectories and objects in the temporal structure description is known. In the worst
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case, given n objects and n trajectories, there are n! possible pairings. However, the football
domain can be used to limit valid combinations. The trajectories in the football play dataset
are labeled using standard football position notations (e.g. QB, C, RFL). These labels
provide information about the role of the object for the given trajectory. Given such labels,
the number of valid object to trajectory pairings can be reduced by specifying preference
information in the temporal structure description. In the example described in Figure 6-2,
the agent slot of the agentGoal obj3 description indicates that object obj3 can possibly
match with a trajectory if the trajectory has one of the labels (RWB RTE RHB HB FB TB
LWB LSB). This list is a preference ordering. obj3 will most often be the RWB, then the
RTE, and so on. Object obj2 in the example always matches with the trajectory labeled QB
since there is a QB in every play. Given the preference orders, a consistent assignment of
trajectory data to the object description must be made. Here, a rule-based algorithm finds
the single most consistent interpretation using preference assignments, the constraint that
all trajectories must be assigned to an object in the temporal structure description, and a
scoring function. In the example, the most preferred assignment is (obj1 = C, obj2 = QB,
obj3 = RWB, obj4 = RFL) when there are C, QB, RWB, and RFL trajectories in the data.
If the data does not contain a trajectory labeled RWB, the next most preferred assignment
is (obji = C, obj2 = QB, obj3 = RTE, obj4 = RFL). On the dataset used in this work, this
matching algorithm finds the correct trajectory-to-object assignment for the examples, so
in the recognition system described here, only the best assignment is used for recognition.
However, most likely the top several best matches would need to be used for recognition
with a larger dataset where the matching algorithm cannot reliably find the best match. This
situation has not been tested.

6.8.2 Network propagation performance

One multi-agent network exists for each play in the database, and the networks are evaluated
simultaneously as data is observed. Figure 6-13 shows an example of output curves for
the football play detection system, showing the likelihood values for each play over time. 6

As time progresses and the play begins, the likelihood of the correct play rises above
the other play types. Currently the system is computing the certainty at each time for
each possible play for the entire play. After some preliminary feature computation that
takes a few minutes for each play instance, the system requires approximately 1 second
of computation per frame per tested play on a 500 MHz Digital AlphaStation. Since each
multi-agent network is evaluated independently of the others (other than sharing cached
feature computation results), the computation can be parallelized. A control structure
could be used to improve efficiency by pruning plays from consideration during processing
or pursuing the most rapidly rising likelihood values first, but control strategies are not
investigated in this work.

The next chapter describes the recognition performance of the system and discusses the

6The algorithm's recognition performance is discussed in the next chapter.
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P143DIG (frames 192)
P56YUNDER (frames 192)
T38 (frames 192)

Figure 6-13: Some likelihood curve outputs for the p5 Icurl play.

strengths and weaknesses of the representation proposed in this chapter.
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Recognition results and evaluation
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Figure 7-1: Football specific field regions. Some regions are defined based upon the starting
position of the ball in each play.

This chapter describes the results of applying the representation for multi-agent action
recognition developed in Chapter 6 to a database of play examples. The performance of the
algorithm is discussed. The algorithm is then analyzed in terms of the desirable multi-agent
representation criteria raised in Chapter 2 and Chapter 4. Finally, the chapter concludes
with a brief discussion on the scope of the proposed recognition algorithm by considering
how it might be applied to the two non-football domains introduced in Chapter 2.

7.1 System components and knowledge engineering

The representation for action recognition developed in Chapter 6 is applied to a data set of
29 plays consisting of 14 example play types. In order to apply the representation, each
play needed to be encoded as a temporal structure description. To describe the action in a
football play, general and football-specific knowledge had to be encoded. Sixty player types
(e.g. quarterback, receiver) and ISA relationships between player types (e.g. wide-receiver
ISA receiver) were defined. More than 60 evidence detectors (e.g. distance(closestAgent))
and their corresponding functions have been defined. Some of these evidence detectors,
which are applied to the trajectory data and produce degree of membership values for small
sets (e.g. inContact = 0.3, nextTo = 0.7), were described in Chapter 6. Football-specific
regions of the field were specified and are shown in Figure 7-1. Some regions are static
(e.g. center-of-field, near-sideline-region) and some are defined with respect to the starting
position of the ball in each play (e.g. line-of-scrimmage, post-region, defensive region).

Over 60 visual goal networks have been implemented; these were described in Chapter 6
and are listed in Appendix F. The knowledge engineering process for visual networks is a
time-consuming one. In general, Bayesian networks, despite their desirable properties as
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Figure 7-2: Interface showing output from visual goal networks used for testing.

a representation for uncertainty, are tedious and time-consuming to construct. It was not
atypical for a thirty node network - assuming all evidence detectors were implemented and
working properly - to require 3-5 hours of work to construct and longer to properly test
and debug. Unfortunately, a data set labeled with "ideal" visual goal network outputs is not
available or easy to obtain for testing.' Therefore, networks were tested by running each
network for each player in a few example plays and using the interface shown in Figure 7-2
to visually check that the detector generated reasonable outputs when applied to any player
object. This testing was also used to set a threshold value for each network. The threshold
indicates a value above which the network's goal is considered to be definitely detected.2

Constructing the visual networks is the most time-consuming and challenging knowledge-
engineering task required to implement the action recognition algorithm. Although some
networks are generic and could be applied to other domains, about half of the networks are
specific to the football domain.

Other knowledge utilized by the system includes the conditional probability values used
during multi-agent network construction and the rules used to generate the multi-agent
network structure from the temporal structure description. The estimates in the conditional
probability tables were designed to softly weight evidence and are discussed further in
Section 7.4. The structure of the networks was described in Section 6.7.

The time-intensive knowledge engineering task is adding new visual networks, not
adding new temporal structure descriptions. A new temporal structure description can be
encoded quickly given a play example, if a sufficiently rich set of football-related visual
networks are already available.

I See Section 8.2 for information about an online system that has been developed to obtain such data.
2This value is used to set the few global variables used by the system, such as ballThrown. See Section 6.5.2.
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Figure 7-3: Result of running 7 play detectors on a t39 play example. Shown is the likelihood of
each play having been observed at frame t considering all evidence from frames 0 - t.

7.2 Recognition performance

Figure 7-3 shows the likelihood value obtained by evaluating the multi-agent network at
each frame for 7 play models on an example of a t39 play. Here, the desired behavior is
achieved because uncertain evidence of temporal relationships between goals is sufficient
to cause the t39 play detector's likelihood value to quickly rise above the other plays shortly
after the play action begins at frame 90.

Chapter 3 described the data acquisition process. The system has been evaluated on
the example set of 29 tracked plays using a database of 10 temporal play descriptions.
Chalkboard diagrams of each play type appear in Appendix C.

Figure 7-4 is a confusion matrix showing the final likelihood value obtained for each
temporal play description when run on the 29 example plays. A "-" value indicates a play
where no good object-to-trajectory consistency match could be found (see Section 6.8.1).
The examples below the line (i.e. p58 through s35) do not have fully-implemented temporal
play descriptions because not all the visual networks required have been implemented. The
highest likelihood value obtained on each data file (each row) is marked in bold.

Considering only the top portion of the table, the maximum likelihood value along each
row selects the correct play for 21 of the 25 play instances. For each of these examples,
the intended play is within the top two ranked options. 3 of the 4 errors are caused by
p56yunder examples being misclassified as p52maxpin plays. This error is discussed in the
next section.

The bottom section of the table are the probabilities produced when applying the system
to instances of plays for which there is (as yet) no action network due to required but
missing visual networks. The discouraging result here is that false positives have values
comparable to the correct positives above. That is, while the system is capable of selecting
the correct play description, it cannot yet determine when a play does not belong to one of
its known categories. This problem will only be addressed by strengthening the models of
play action by including more action components and temporal relations per agent. The
weaker the model, the more easily it is matched by some incorrect instance. More detailed
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Name pl43dig p50curl p5lcurl p52maxpin p54maxcross p56yunder p63up p63upa 38 139
pl43dig (file 1) .75 .49 - - .37 .33 - .24 .53 -
p143dig (file 2) .98 .63 - - .75 .71 - .57 .65 -
pl43dig (file 3) .93 .45 - - .57 .63 - .32 .39 -
pl43dig (file 4) .87 .35 - - .53 .49 - .27 .30 -
pl43dig (file 5) .91 .42 - - .50 .36 - .60 .41 -
pl43dig (file 6) .86 .42 - - .43 .41 - .70 .43 -
pl43dig (file 7) .98 .58 - - .85 .65 - .57 .36 -
p50curl (file 8) .19 .87 - - - .44 - .62 .58 .27
p5lcurl (file 9 - .21 .69 - - .27 .35 .34 - .58

p51curl (file 10) - .54 .95 - - - - .55 - .66
p5lcurl (file 12) - - .98 - - - - .82 .09 .68

p52maxpin (file 13) - - .37 .93 - .66 .88 - - -

p54maxcross (file 14) .55 .55 .37 .57 .97 .48 - .77 - -
p56yunder (file 15) - - .47 - - .63 - - - -

p56yunder (file 16) - - .24 .51 - .69 .39 - - -

p56yunder (file 17) - - .75 .88 - .83 .72 - - -

p56yunder (file 18) .61 .26 - - - .80 - .73 .41 .47
p56yunder (file 19) .38 - .38 .78 - .62 .57 - - -
p56yunder (file 20) - - .54 .76 - .64 .34 - - -

p63up (file 21) - .41 .56 - - - .87 - - -

p63up (file 22) - .61 .79 - - - .95 - - -

p63up (file 23) - .35 .43 - - - .89 - - -

p63upa (file 24) - - .52 - - - - .73 .12 .76
t38 (file 25) - - - - - - - .27 .83 .51
39 (file 26) - .25 .39 - - .27 .55 .30 - .83

p58 (file 27) - - - .30 - - .57 - - -

r34wham (file 28) .35 .62 - - .42 .43 - .65 .56 -
sl4wham (file 29) - - - - - .27 - .57 .72 .53

s35 (file 30) .16 .45 .22 .64 - .31 .40 - - -

Figure 7-4: Likelihood values when the recognition system is run for each of 10 play models over
a data set of 29 examples.

models, requiring the construction of more visual networks, should improve the ability of
the system to determine that a play is "none of the above."

The next section analyzes some of these results in more detail.

7.3 Recognition case study

The multi-agent data in Figure 7-4 is difficult to interpret because a football play is not
"one action." It is the simultaneous action of 11 people when, even in a "perfect" example,
agents are permitted to vary their motion. In this data set, the offensive players are adjusting
their motion based on the defense. Therefore, there is no undisputed measure of similarity
to use when comparing the differences between two plays. The examples in the table must
be examined individually to understand why the algorithm performs as it does.

The "file 20" example in Figure 7-4 (highlighted) is one of the erroneous matches
of a p56yunder example being misclassified as a p52maxpin play. The system returned
likelihoods of .64 for p56yunder and .76 for p52maxin. Figure 7-5 has a p52maxpin and
p56yunder play diagrams approximately overlaid. In addition, the player movement in
"file 20" example is overlaid as well. The diagram demonstrates why the system has
difficulty classifying the example. Both plays, when executed perfectly, are similar when
the "optional action" of one player is not taken into account. The only large observed
difference between the plays is for the rightmost player, who follows a trajectory different
from both the p56yunder and the p52maxpin. The temporal structure descriptions currently
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Example play

Opti na actions

-Ideal p52maxpin

Figure 7-5: P56yunder and p52maxpin play diagrams with one p56under example play approxi-
mately overlaid. The system returned likelihoods of .64 for p56yunder and .76 for p52maxin.

do not include optional actions. Reasons for this are discussed in the next section. If the
optional action were to be modeled, it would contribute evidence to the desired p56yunder
classification.

The performance of the algorithm is promising, but some caveats are necessary. Given
the limited available data set, the same data was used for training and testing. Training
consisted primarily of reverse engineering the play descriptions, using a much larger set
of plays on video prior to developing the recognition algorithm. However, visual goal
networks and ultimately temporal structure descriptions were developed using the data that
has been used for testing. If a much larger data set were obtainable, a useful experiment
would be to apply the existing multi-agent play networks to that data.

There are a number of problems with the representation, which are discussed in Sec-
tion 7.5. Despite these issues, however, the algorithm is performing well on a real-world,
multi-agent recognition task. The next section considers why.

7.4 Evaluating the multi-agent network structure

What are the multi-agent networks actually doing? Most fundamentally, the networks act
as softly-weighted, probabilistic voting mechanisms for uncertain features of the multi-
agent .action. The conditional probabilities specify the relative weights of action feature
components. For instance, consider only the main node, B:s51 (obji obj2 obj3 obj4)
and the compound agent action nodes (e.g. B:s51 (objl)) of Figure 7-6 (repeated here
from Chapter 6 for convenience). These nodes are structured as a naive Bayesian network
[DH73]. The network represents a soft, probabilistic summary of a class (in this case the
play), where the class is detected via a set of attributes (in this case combined evidence for
an agent's goals) that are assumed to be independent given the class. The network designer
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Figure 7-6: The multi-agent network structure for the s51 play temporal structure description in
Figure 6-2.

specifies P(attributeIclass) and P(class).
Each compound agent action node is also structured like a naive Bayesian network (e.g.

see B:s51 (obj4) and children nodes), where the class is the value of the compound action
and the attributes are evidence of the goals of that particular agent. The network, however, is
not quite a hierarchical naive Bayesian network. For example, binary connections between
some nodes model logical relationships. Further, the nodes themselves are not simply
object attributes. Most nodes represent a relationship between two agent goals. These
nodes capture attribute dependencies.

7.4.1 Capturing important attribute dependencies

Naive Bayesian classifiers make strong (and often clearly incorrect) independence assump-
tions that each class attribute is independent given the class. They also assume that all
attributes that influence a classification decision are observable and represented. For these
reasons, they are sometimes assumed to perform poorly in real domains. On the contrary,
experimental testing has demonstrated that naive Bayesian networks are surprisingly good
classifiers, despite their strict independence assumptions between attributes and the class.
In fact, simple naive networks have proven comparable to much more complex algorithms,
such as the C4 decision tree algorithm [LIT92, CN89, JL95, DP96]. One theory is that
the low variance of the classifier can offset the effect of the high bias that results from the
strong independence assumptions [Fri97]. The probabilities encoded in the classifiers are
typically learned from large data sets.

The naive Bayesian classifier can be substantially improved by reintroducing a small
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subset of dependencies between pairs of variables. In particular, one method uses Tree
Augmented Naive Bayesian (TAN) networks, where each attribute has as parents the class
variable and at most one other attribute [FGG97]. TAN classifiers improve the performance
of Bayes, and on standard machine learning data sets, they are equivalent to or better than
some of the best performing (and more complex) methods, such as the C4.5 decision tree
classifier [FGG97, KP99].

The TAN networks are naive Bayesian classifiers where binary dependencies have been
encoded between attributes using links. The multi-agent networks developed here are struc-
tured as naive classifiers where binary temporal relations between attributes (i.e. goals)
have been encoded within nodes. The multi-agent networks contain some additional explicit
dependencies between variables due to logical relationships. Generally, both network struc-
tures assume significant independence but they attempt to model "important" dependencies.
For instance, as discussed in Chapter 6.2, the multi-agent networks do not compute closure
on temporal relationships (i.e. if A around B and B around C, A around C is not used
unless explicitly encoded by the domain expert). The excellent performance of the TAN
networks suggests that the idea of assuming independence but specifying some important
low-order dependencies is a promising approach for modeling real-world domains.

7.4.2 Network computability

The computational efficiency of the multi-agent networks depends entirely upon on the
number of logical relations enforced. Without logical relations, the networks are singly-
connected trees. Evidence can be propagated in time linear to the number of nodes [Pea88]
because the size of the largest clique is just 2 regardless of the number of nodes (see
Appendix F for a discussion of Bayesian networks, clique size, and propagation complexity).
This tree structure is obtained because the relationships between features are captured within
nodes. This is a representational compromise because by encapsulating relationships within
nodes, some dependencies between states in the network have not been modeled. For
example, in Figure 7-6 the B:obj3_act2 around obj4_act2 node is not linked directly to
B:obj3_act2 before obj3-act4 node even though the nodes are related because they both
depend upon B:obj3_act2. Fully modeling all the real-world dependencies, however, would
result in a heavily linked (and therefore computationally impractical) graph.

The logical relations break the singly-linked tree structure. Figure 7-7 illustrates the
problem when two branches of the tree are linked by a logical relation. The logical
relationship bridges the two paths and forces connections along the path to be triangulated
in such a way that rapidly increases the clique size. Tree paths linked by logical relations
lead to a minimum maximal clique size of 4, as illustrated by the example in Figure 7-7 that
is 5 nodes deep. This structure is computationally manageable because the complexity is
O( 2 N) (where the 2 results from each node in the multi-agent network being binary and N
is the maximal clique size of 4). Of course, the complexity can increase further depending
upon whether either side of the tree path is connected to another logical relation - these new
links can sometimes increase the maximal clique size. In practice, however, the multi-agent
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(a) (b)

Figure 7-7: Original and triangulated graphs for tree chains linked by a logical relationship (gray
nodes). (a) A logical relationship linked directly to the class has maximum clique size of 4. Nodes
for one of the cliques is filled in. (b) Not connecting the logical relation directly to the class reduces
the maximum clique size to 3.

networks are typically only 3 levels deep and have just a few logical relations that span
across agents.

As illustrated by Figure 7-7b, logical relationships can be enforced with a smaller
clique size if the logical constraint node does not link back to the main node, as they
do in the multi-agent networks. The network, however, then cannot explicitly weight the
importance of the logical relationship in determining the class. In the multi-agent networks,
the logical relations can be considered both as a constraint influencing other attributes and
as an attribute as well. In practice, the multi-agent networks generated from the temporal
structure description have maximal cliques sizes of 4.

Intuitively, logical relationships are computationally expensive because Bayesian net-
works are not performing a directed, explicit search of a space using an efficient search
heuristic. Instead, the entire space is "searched" when evidence is propagated according to
Bayesian rules. This is a desirable property for combining uncertain evidence from multiple
sources because each bit of evidence can appropriately influence the probability of any state
in the graph (depending upon the structure of the graph of course). However, the more that
states depend upon particular key decisions (i.e. global variables), the larger the search
space becomes. Consequently, the entire space is considered each time new evidence is
propagated through the network. Networks where evidence is only provided at leaf nodes
have no mechanism by which to effectively prune large regions of the search space.

Network structures previously used in object recognition research were discussed in
Chapter 5. In this thesis, a network structure has been selected that captures some important
logical relations (deemed "important" by the domain expert) but that primarily softly
integrates uncertain information. The network is a top-down, part-of network, where
logical relations link back to class nodes. Object characteristics (or in this case, goal
characteristics) are not stored in node states, so there are no comparisons on links. Node
state size and link complexity are therefore kept low. Links operate as and relations for
class attributes. Unary and binary temporal comparisons are modeled within nodes. The
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graph stores primarily relational information about an action over time instead of absolute
information. For example, goal A before goal B is stored instead of more direct information,
like goal A is active 2 seconds starting at 1 second into the play and goal B is active 1.5
seconds starting at 5 seconds into the play. The latter approach requires the network to
represent global variable information internally, increasing network complexity. The multi-
agent networks, however, do rely on some information being stored outside of the network
(e.g. ballThrown). Multiple networks have been used to make the knowledge engineering
task manageable. Finally, the network structure is convenient because it requires the
specification of P(evidenceIstate) instead of P(statelevidence). DBNs have not been
used because the knowledge engineer in this domain is specifying change that can be
measured by evidence detectors - the temporal analysis functions. DBNs, however, usually
represent changes in temporal state in transitional probabilities on links that are difficult to
encode. Further, it is unclear how to encode logical relationships between temporal events
in a DBN framework.

7.5 Representational strengths and weaknesses

This section discusses some strengths and weaknesses of the proposed algorithm with
respect to issues raised in Chapter 2, Chapter 4, and Chapter 5.

The main strength is that the algorithm is performing well, recognizing a collaborative,
multi-agent action in a real-world domain with noisy input. The algorithm demonstrates that
using probabilistically weighted, low-order temporal relationships to recognize coordinated
visual components of collaborative activity permits the recognition of highly structured,
collaborative multi-agent action. The idea that the networks capture the most important
temporal dependencies, which are relationships between individual agent goals, should
extend to some other domains of interest. Work in learning using naive Bayesian networks
and TAN networks also suggests that this is an approach worth pursuing further, although
perhaps with components that are partially learned from data sets to minimize the role of
the knowledge engineer.

The algorithm is now discussed with respect to issues raised in previous chapters.

7.5.1 Comparison to object recognition

In Chapter 4, some properties of the object recognition task were identified. This section
reviews the multi-agent recognition system with respect to those criteria.

Object recognition models, features, and correspondence In this work the models used
for recognition are not geometric; they are temporally ordered agent goals. The
goals are detected using the visual networks. The features are the goal likelihood
curves, which are computed using networks that integrate evidence computed from
trajectory data. The algorithm does not explicitly check for correspondence. Instead,
it finds a consistent hypothesis, given low-order temporal relationships between goals.
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Therefore, the algorithm is invariant to local spatial and temporal distortions but not
temporal reordering, which (as discussed later) requires a representation that can
model a re-plan.

Occlusion. The equivalent of occlusion in the static object recognition domain is unmod-
eled interaction between agents. These unmodeled events will disrupt the action of
other agents in ways that are explainable only if the action of the deviant agent is
also explainable (e.g. the analogous situation in static object recognition is that a
system cannot reason about an occlusion situation if it does not have a model of the
occluding object that is sufficiently strong to explain the observed deviation in the
occluded object). The algorithm presented here is robust to small "occlusions" that
cause local changes in the trajectories single agents, but the algorithm has no mech-
anism to model agent occlusion that causes a temporal re-ordering of agent goals - a
transformation not modeled by the representation.

Noise. The data used by this system are noisy. The algorithm's probabilistic integration
of uncertain information can handle noise in individual agent trajectories and unpre-
dictable but minor behavior modifications of individual agents (e.g. in response to a
local defender). Explainable "noise" in agent behavior, caused by an action such as
mistake by a player (e.g. falling), is not handled by this representation any differently
than random perturbations.

Natural labels. Objects can be labeled at multiple scales and specificities. In this work
the hypothesis is made that the action components of high-level, collaborative action
are the goals of individual agents. These action components are temporally and
logically linked to model multi-agent actions. All representations for multi-agent
action will need to make a commitment to some level of description of action. Even
representations that are completely learned from data and do not require a knowledge
engineer will need a training database of action with semantically meaningful labels.
This work advocates labeling individual agent goals. Designers of Bayesian networks
know the importance of using meaningful state labels. One of the most important
steps when designing a network is to assign the nodes in the network with semantically
unambiguous names, so that the modeler is accurate in the way that conditional links
are assigned. The same will be true for systems that learn action representations from
data.

Hypothesis vs. testing. In geometric object recognition, the task is to find a hypothesis for a
match and then perform a full transformation and match to confirm that the hypothesis
matches the data. Grimson and Lozano-Pdrez [GLP87] use low-order relationships to
find good hypotheses. Analogously, here low-order temporal relationships between
goals are used to find hypotheses of collaborative action by identifying coordination.
Definitively confirming that the hypothesis is "globally consistent," however, may
require intentional reasoning about agent interaction. Intentional inference is required
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to confirm that the observed coordination definitely resulted from team collaboration
and not from random agent interactions.

Indexing. This work does not solve the indexing problem. All existing play models are
tested against each play example. As shown in Figure 7-3, however, once play
action begins the likelihoods of some plays rise substantially above the remainder.
The likelihood values could be used to prune the recognition process and reduce the
amount of computation required for a large model set.

Feature clustering and focusing. Making object recognition practical requires heuristics
for clustering features and finding "focus features" [Gri90]. In this work, no features
are explicitly specified as more important than others. An additional node type could
be added to the multi-agent networks, however, to bias the multi-agent network result
by differentially weighting features. Implicit differential weighting in the multi-agent
networks is discussed below.

Match score and good-enough termination. A match score that permits early search ter-
mination is also necessary to make geometric object recognition based on searching
interpretation trees practical. The multi-agent networks are computing a likelihood
value that could be used to prune hypotheses and terminate search for some models
before the entire play has been observed. The likelihood value results from the inte-
gration of all available evidence observed from the start of the action to the current
time.

7.5.2 Properties of multi-agent action

In Chapter 2, some properties of multi-agent action were identified. These properties are
revisited with respect to the proposed multi-agent action representation.

State space size. The state space of multi-agent problems is exponential. The proposed
representation circumvents this problem by using many low-order relationships be-
tween agents to probabilistically recognize collaboration by observing coordination.
The representation is allowing minor variation in individual actions to take place and
observing major temporal changes between those actions. The major changes can
be encoded in a moderately-sized network. For example, the multi-agent represen-
tation uses the temporal analysis functions to condense information from the entire
observation interval into a single evidence detector that is then incorporated into the
multi-agent network.

3Other methods to improve performance could also be explored. For example, some similarity measure
between action descriptions could be used to reduce the number of models tested at the beginning of the
play. As time passes, models that have performed well may activate other similar models to be tested.
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Feature space size. The size of the feature space is large because features of importance
are features that relate two object trajectories. Using deictic features in visual net-

works limits feature computation significantly. Using these agent-centered features is

reasonable because most agent-goal action behavior can be recognized by analyzing

an agent's interactions locally in space and time. The feature space size is further

controlled by hierarchically using recognized agent goals as input features for recog-

nition of multi-agent action. In the football domain, a given agent usually only has

3-8 goals per play.

Feature complexity. Feature complexity refers to features that are context-dependent, such

as many spatial relationships. In this work, detectors, like behind, are approximated

as functions that return a continuous certainty value that is then inserted as continuous

evidence into a visual goal network. Although the detectors do not incorporate as

much contextual information as they could, hard thresholds are not required when

the evidence is entered into the visual goal networks, and the networks propagate the

uncertain value to related variables.

Representing time. The representation for time in this work is simply a set of low-order
relationships between intervals. The interval boundaries are fuzzy, determined only

by likelihood curves. This temporal representation is weak because it cannot be

used for propagating temporal constraints for reasoning about temporal activity. The

representation, however, is adequate for recognizing some temporal behavior.

Explicit search and object assignment. As discussed in Section 7.4.2, networks poorly

represent search spaces with many global state variables. Since every model-object

to trajectory-object assignment depends upon the assignments made for other play-

ers, designing networks that perform action recognition and object assignment is

extremely difficult, resulting in unmanageably large networks that have impractical

clique sizes due to all the cross dependencies in agent labels. Explicit search with

heuristics is a more computationally efficient representation. The object assignment
step used by the current representation (described in Section 6.8.1) performs an ex-

plicit search to match trajectory data to the object description. This dichotomy in the

representation - part Bayesian network, part explicit search - may represent a more

general problem. Bayesian networks are excellent at integration of information, but

they do not replace explicit search. Explicit search with effective search heuristics,
however, is probably necessary to develop a representation that goes beyond recog-

nizing "what things look like" and recognizes intentional interaction - "what things

are." Action representations that encode intentional concepts will probably require

more dependency on explicit search, but the Bayesian network framework proposed

here may make the explicit search possible by providing robust, probabilistic inputs.

Relative geometric spatial and temporal knowledge. The most useful features used in

both the visual goal networks and the multi-agent networks are features comparing

two agent trajectories or two agent goals.
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Scalability (in agents). The proposed algorithm was designed for scenes with 11 agents.
The idea of using many low-order temporal relationships between agents may scale
up to multi-agent actions that involve hundreds of agents (e.g. see [DR98] for a
simple example). In such cases, it may be possible to monitor aggregate behavior
of the many agents to simplify the problem or to use distinctive clusters of activity
to find specific agents in the scenes upon which to focus computation. Scaling the
algorithm down to fewer agents results in a greater dependence upon the visual goal
networks (see the cooking oatmeal example later in this chapter). In the 1-2 agent
case, the representation probably offers little benefit over other existing techniques,
like HMM models, because the HMM techniques can be learned from examples if
appropriate data sets are available.

Scalability (in classes). The algorithm must also scale in the number of multi-agent actions
that can be differentiated. The current algorithm will suffer when two actions are
differentiated by only a small subset of motions. For example, if two plays are
identical except for one motion of one player, there may be only one or two temporal
relationships using the differentiating motion; therefore, noise in the other relations or
small variations in agent behavior may prevent the correct play from being selected.
The algorithm also fails to scale when actions that require intentional differentiation
are introduced. For example, if two plays are identical except that in one play the
primary receiver is A and in the other play the primary receiver is B, the quarterback's
thinking process that led to the change in receivers must be represented (e.g. "A is
primary but covered, so I'll throw to B"). The system would need to infer the
quarterback's logic by detecting that one player is covered and thereby unavailable to
receive a pass (a subtle distinction in football) and then weight that against the cost
of throwing to a secondary player, who is less sufficiently covered.

Intentionality and the difficulty of physical modeling. Examples were discussed in Chap-
ter 2 and Appendix B that illustrate how the actions of players on the team will never
be possible to predict using physical models alone.

Availability of evidence. One major advantage of using Bayesian networks is that any
evidence, observed at any time, can be incorporated into a network. Evidence that is
missing or not computable is considered via the network priors.

Contextual label interdependencies. The multi-agent representation does not provide a
mechanism for context-based labeling (discussed in Chapter 4), which requires an
explicit search.

Representational uncertainty. The visual networks and multi-agent networks adequately
encode uncertainty from noisy trajectory data. The multi-agent networks softly
weight components, thereby making the representation robust to small variations in
observed multi-agent action.
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7.5.3 Desirable recognition properties

In Chapter 4, desirable properties for a recognition system were discussed.

Probabilistic ranking. The formation labeling system described in Chapter 4 lacked prob-
abilistic ranking rules. The formation labeling system uses networks to softly-weight
uncertain information.

More information leads to better search. One of the problems with the formation label-
ing system is that more ranking rules can degrade the search (see Chapter 4). In

the play labeling system, more information will improve the search if approximately

equal amounts of detail are added to each play description. This issue is discussed

further later in this section. In addition to more information resulting in more effi-

cient search, as more information is added, less effort should be required to find a

model hypothesis. The modularity of the multi-agent system achieves this property.

Once a sufficiently rich set of visual networks is designed and tested, then it is easy

to incorporate that information into temporal structure descriptions. Similarly, the

more visual networks that have been constructed, the more quickly new networks can

be designed. This modularity, however, is achieved at the expense of making non-

Bayesian independence assumptions. Adding a new action involves only creating

one new temporal structure description, not modifying existing descriptions, because

each multi-agent action is modeled using an independent network.

Separation of search control and rule set. The knowledge engineer does not need to con-

sider the impact of a modeling decision on control directly because the multi-agent

recognition system proposed here performs probabilistic evidence propagation instead

of traditional search. Indirectly, however, a poor modeling decision (e.g. in a visual

network) can increase the complexity of a network substantially and in non-obvious
ways. To minimize such problems, the system can alert the knowledge engineer when

a Bayesian network with a unmanageable clique size has been designed.

Typical solutions easy to detect. A desirable property in a recognition system is that typ-

ical solutions require the shortest time to detect but that less typical solutions can

(eventually) be detected. The multi-agent networks require the same time to com-

pute any solution. They do exhibit the property that the likelihood value for good

solutions quickly rises above poor solutions when action commences. The networks,
however, offer no mechanism by which to detect unusual situations using a longer,

more comprehensive search, as the formation labeling system does.

Conniving and tweaking search. Conniving and tweaking search heuristics are not rele-

vant for the multi-agent network framework because networks directly consider all

evidence simultaneously.
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Maintaining uncertainty. The networks also do not disregard uncertain information. Un-
certainty is preserved from evidence detectors through the generation of play likeli-
hood curves using multi-agent networks.

Evaluating partial interpretations. The multi-agent recognition system is causal, using
data observed from the start of the play to the current time. The networks permit
the observation of partial information. Some observations, however, are particularly
important because they influence many features (e.g. the position of the ball).

Trade space for time. The RETE algorithm trades memory space for computation time in
rule-based expert system search [For8 1, For82]. The proposed representation is not
amenable to this strategy. The algorithm, however, is highly parallelizable because
each multi-agent network can be run independently.

Exploiting Independence. Independence is exploited within Bayesian networks in this
representation, but the models of action do not provide any insight or mechanism that
might permit automatic exploitation of independence, as mentioned in Chapter 4. The
algorithm assumes the availability of a "reset" point, used to initialize each network.

Comparing across class. There is no need for a mechanism that ranks two labels across
classes because this system is not attempting to find a consistent labeling of a scene,
as the formation labeling algorithm does. Such a ranking might decide that at a given
time or time interval, a player is more likely to have the goal to do A than B. Could
visual networks be used for this comparison? Perhaps, however, there are problems
with comparing the output of two visual networks. The networks are assumed to be
independent, and each network can be considering different features. The network
designer tunes the networks so that near perfect examples return high likelihoods. The
networks are tuned independently. Therefore, there is probably too much variability
in the numeric outputs to directly compare two networks with similar likelihood
values. Networks with large differences in output likelihoods, however, can probably
be compared. An analogous problem occurs when comparing multi-agent networks,
which is discussed shortly.

Using a priori information. A priori information is easy to incorporate into the proposed
framework by simply setting the appropriate evidence or internal state nodes or
adjusting the prior probabilities of the multi-agent network main nodes.

Fuzzy spatial and temporal definitions. Information from fuzzy spatial detectors (e.g.
behind, near) is propagated throughout the recognition process, so that subtle evidence
is not ignored. The temporal analysis functions preserve the uncertainty output by
the visual goal networks when they compute before, around, and observed relations
using intervals without well-defined boundary conditions.
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7.5.4 Network structure

This structure discusses some implications of the multi-agent network structure.

How much to label. In the formation labeling system, labels are assigned to objects in the

scene, which is a natural assignment to make. Alternatively, labels can be assigned

to every 2d image region [SF91]. In the temporal domain, what to label is less

clear. In fact, in this work, labels are associated with temporal intervals, where the

"intervals" are defined by likelihood curves computed using goal detectors; labels

are not "assigned" to coherent objects.4 The concept of "covering the space" with

labels to detect a global, consistent labeling is more difficult to define in the temporal

domain. Temporal labels can overlap in time, and some labels will involve multiple

agents while others involve individual agents. Therefore, some metric of "fully

labeled" is required to extend the formation labeling system to the temporal domain

to find a consistent and fully labeled description of activity. One metric might be that

each agent has at least some goal assigned at each time, but there are clearly times

when multiple goals are active for a player at some time. In this system, detectors

are either run or not, but no decision is made on how much of the scene to label with

agent goals.

Domain rules intuitive to encode. The temporal structure descriptions are easy to encode.

The components of the descriptions, the visual networks, however, are difficult knowl-

edge engineering challenges. Experience encoding rules on this project suggests that

although rule based systems can be annoying to extend due to hidden dependencies

between rules (see Chapter 4), Bayesian networks are difficult and time consuming to

design as well. The rule-based system problem of inexplicit rule dependency would

appear to be solved by using Bayesian networks, but to make the system possible

to construct, multiple network modularity was required that violates independence

assumptions.

Comparing likelihoods. Each multi-agent network is independent. Therefore, the likeli-

hood values of networks should ideally not be directly compared. However, as with

the visual networks, here the assumption is made that the larger the likelihood dif-

ference output by two networks, the more likely that the likelihood value difference

is significant. There is one implication of this assumption - each of the multi-agent

play networks need to include approximately the same number of attributes of ap-

proximately the same sensitivity. If one network contains two relation attributes that

are easy to detect and another contains 40 relation attributes, each difficult to detect,

comparing the likelihoods is of little value. Therefore, although temporal structure

descriptions can be added in without modifying other descriptions, an effort must be

4The analogy might be if labels were assigned in the CONDOR system [SF91] to regions with probabilistic

boundaries instead of sharp, deterministic boundaries.
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made to keep the descriptions at approximately the same level of descriptive detail to
avoid unwanted biases.

Modularity. Implementing the football-specific detectors without use of smaller, generic
network components that could be inserted as evidence proved impractical. How-
ever, using virtual evidence to insert results of networks into other networks results
in incorrectly modeled independencies among variables. Some of the criteria for se-
lecting Bayesian networks over other methods such as fuzzy logic listed in Chapter 5,
thereby become suspect. This work has investigated two different representations
for knowledge: Bayesian networks and a rule-based system. Both representations
require difficult knowledge engineering and make invalid assumptions about inde-
pendence of variables. Other methods reviewed in Chapter 5, such as fuzzy logic,
also make known, invalid assumptions. When modeling a large real domain, will the
selection of one method for representing uncertainty over another ultimately have a
large impact in the effectiveness of the recognizer? The answer probably depends
upon exactly how the systems are utilized. Most likely, a system for a complex task
can benefit from multiple representations. To integrate evidence in small space-time
windows, Bayesian networks with simple structures (e.g. perhaps TAN networks)
seem appropriate for modeling the interaction between a set of variables. Perhaps
with an appropriate data set, the networks can be estimated automatically, freeing
the knowledge engineer from the difficult task of designing visual networks. An
extensional, rule-based uncertainty metric like fuzzy logic might prove sufficient,
convenient, and more flexible than network models at the level at which the output of
individual goals are integrated and where some traditional search may need to take
place.

Modeling optional actions. As discussed in Section 7.3, the algorithm does not currently
model optional actions well. The reason for this is that the multi-agent networks
are softly-weighting attributes (i.e. evidence) for the class (i.e. the play) in a
voting scheme. Therefore, an optional action that is added as an attribute will
result in a decrease in computed likelihood of the action if the optional action is
not observed. The weighting factor assigned to this optional attribute can be small,
but then the optional attribute may not provide sufficient information to differentiate
two actions in a noisy environment. An exclusive-or action can be more easily
modeled because one attribute must be observed, otherwise the likelihood for the
action should legitimately be reduced. Consider the optional action in Figure 7-5 for
the p52maxpin and p56yunder. Here the actions are only "optional" if the player has
no reason not to perform them. If the player blocks, for example, then the action
would not get performed. In that case, the play with the optional action is not any
less of a p52maxpin, for example, because it does not include the optional action. As
in Chapter 4 with the formation labeling system, here the best description would be
one that considers whether the optional play action is consistent with a description
for a play given the actions of the player who would otherwise perform the action.
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Observing positive evidence. Optional evidence is problematic, in part, because each play
detector is probabilistically summing up positive evidence for some class. The play
is being observed from the starting frame through the current frame. Temporal
relationships like before have no "temporal extent" limitations (e.g. the system
will detect A before B even if A regardless of whether A occurs just before B
or ten hours before B). Therefore, given noisy detectors, if the system were to
observe a long multi-agent action, eventually the detector's likelihood value would
rise as features were randomly observed. Two extensions could be used to alleviate
this problem. First, the temporal descriptions could be augmented with quantifier
descriptions, such as "just" or "long" before and the temporal comparison functions
adjusted accordingly. The second extension is to place a limit on the amount of
data a particular network can observe before it is reset or deactivated. An offensive
play, for example, almost never lasts more than 15 seconds; therefore, a multi-agent
network active for longer than that period of time should no longer integrate evidence
information. External networks for applying the multi-agent network classifiers are
not explored in this work.

Hierarchy and relative importance. The multi-agent networks implicitly encode the rel-
ative importance of the attributes. For example, in Figure 7-6, the relative im-
portance of attribute B:s51 (obj2), which is an agent goal node, and the logical
relationship B:obj3_act5 xor obj4-act4 is determined by the conditional probabil-
ity values that are assigned. Different types of evidence can be weighted differ-
ently using the conditional probability assignments that are automatically inserted
into the multi-agent network structure. For example, P(xorNodelagentGoal) and
P(beforeNodelagentGoal) can be set so that evidence from before nodes is weighted
slightly more in the classification decision than evidence from xor nodes. Currently,
these conditional probabilities are set by the knowledge engineer during system con-
struction as described in Section 6.7.2. Ideally, the relative weights of attributes
should be specified by the domain expert in the temporal structure description by
marking "important," or "necessary"9 actions. The relative weights of these actions
could then be adjusted when the conditional probabilities are entered into the multi-
agent network.

Learning

The multi-agent networks exploit low-order temporal relationships. Although the system
performs well on the current data set, the system would be far more useful if components
could be learned from a labeled data set.

Naive and TAN networks can be learned from large, error-free data sets that span the
space of possible attribute combinations [FGG97]. In this problem domain, such a data set
was not obtainable. As the number of agents in a scene increases, the size of the attribute
space exponentially increases. In addition, temporal attributes have uncertain boundaries,
requiring that substantially more data be obtained from multiple users if probabilistic
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intervals are to be determined.5

Learning could potentially improve the multi-agent recognition algorithm developed
in this work by simplifying the task of knowledge engineering. Each component of the
algorithm where learning might be used is discussed briefly below.

P(E IS) in visual networks. The evidence detection functions are not perfect indicators of
certain states, especially given the noisy data. Therefore, given labeled agent states,
P(EIS) could be estimated. Accurate estimates would improve the performance of
the visual networks.

Link structure of visual networks and multi-agent networks. Learning the
linking structure of a Bayesian network has proven difficult in practice, even with
error-free, complete data [Hec95]. The algorithms use a fully labeled data set com-
bined with an iterative search (typically expectation-maximization) over the link
structure with fixed random variables to maximize the likelihood produced by the
network for positive examples. These methods cannot be applied to the multi-agent
networks, which have far too many variables, and with a relatively small and incom-
plete data sets.

Probability tables in multi-agent network. The probability tables in the multi-agent net-
work could be learned given a complete data set. The values represent the relative
weights of the relationships represented in the network. Obtaining such a data set for
a multi-agent problem with 11 agents would require thousands of hours of tedious
labeling.

Overall, the effort required to obtain a database that is sufficiently large and detailed
was beyond the scope of this project. Unfortunately, this problem is common to other
multi-agent domains, where in general it will be difficult to obtain databases large enough
for learning. These databases will need high-level labels of action (e.g. play names),
mid-level labels of action (e.g. blocking) and low-level labels of evidence (e.g. inContact)
annotated in order to allow the use of most existing learning algorithms. 6

51f multiple users are asked to label the same action, marking start and end points when the action occurs,
an activation distribution will provide probabilistic data indicating the action's fuzzy interval for some
example.

6One attempt has been made to acquire some data to aid in the automatic construction of visual networks.
A java labeling interface is currently running over the Internet. It allows football fans to perform small
labeling tasks, such as indicating when players begin and end "blocking." If enough Internet users can be
found to label small pieces of data, a data set may be acquired of sufficient size to estimate some network
priors from data. So far, only small amounts of data have been collected. The system can be seen at
http://ongar.media.mit.edu/intille/Demo.html.
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7.6 Applying the representation in other domains

The representation has been applied to the football play recognition task, but as described in
Section 2.3, there are some characteristics that are unique to this domain. This section briefly
considers how the algorithm might be applied to the two multi-agent domains introduced
in Chapter 2: a traffic intersection and making oatmeal in the kitchen.

First, consider the traffic scene example described in Chapter 2. Important actions
include waiting (for some other vehicle), moving (with respect to the road or some other
vehicle), turning (with respect to the road), passing by (another vehicle), giving way (to
some other vehicle), stopping, and following. Most of these actions would be described at
the visual network level in the current system because they are generally short interactions
between two objects (e.g. two cars, a car and a road segment, a car and a pedestrian). A
temporal structure description might be created for higher-level actions, however, such as
"stopping for gas." This particular example has been studied by Nagel et al, and therefore, it
is used as an example here [NKHD95, GN98, HN98]. Their system for recognizing events
like "stopping for petrol" that uses situation trees was described briefly in Section 5.5.2.
That method and the system in this work share some characteristics. In both systems,
low-level evidence is "fuzzily" quantized and then sets of evidence features are used to
detect mid-level single-agent actions like "turning" and "stopping." Nagel et al use a fuzzy
metric temporal logic [SN] to integrate uncertain information; here, Bayesian networks are
used.

Longer temporal actions are recognized using different mechanisms. Nagel et al define
a "situation graph" that hierarchically represents ordered sequences of sub-actions. As
evidence is observed, the graph is traversed. The representation in this thesis would
represent an action like "stopping for petrol" as a temporal structure description with one
agent and before and around relationships specified for the goals of that single agent. If some
actions are more critical than others, the knowledge engineer would indicate these actions
in the temporal structure description, and the actions would be weighted appropriately in
the conditional probabilities.

As the action takes place, the multi-agent network (here with one agent) would return
the likelihood of observing the action. The representation developed here may prove to
be somewhat less brittle than the FMTL situation graph framework because uncertainty
propagates over the entire action description. The situation graph, however, explicitly
represents the hierarchical organization of a structured action, and at any time it can indicate
precisely which part of the action has been observed and which part should be observed
next. An interesting possibility for future research is to consider using visual goal networks
as primitives in a situation graph framework and using low-order temporal relationships as
evidence to propagate situation graph reasoning.

The remainder of this section discusses how the multi-agent network representation
would be used to recognize multi-agent action for the cooking oatmeal task described in
Section 2.1.2. A temporal structure description for this action might appear as follows:

(goalTeam oatmeal "Collaborative cooking oatmeal"

155



156 CHAPTER 7. RECOGNITION RESULTS AND EVALUATION

(agentGoal objl (agent (objl (person-1 person-2)))
(goal objl_act1 "open (objl cabinet)")
(goal objl_act2 "getObject (objl bowl)")
(goal objl_act3 "getObject (objl oatmeal)")
(goal objl_act4 "fillObject (objl bowl)")
(goal objl_act5 "moveTo (objl sink)")
(goal obj1_act6 "manipulate (objl faucet)")
(goal objl_act7 "open (objl microwave)")
(goal objl_act8 "putSomethingDown (objl microwave)")
(goal objl_act9 "pickSomethingUp (objl microwave)")
(before objl-actl objlact2)
(before objl-act1 objlact3)

(before objlact2 objlact4)
(before objlact3 objl-act4)
(before obj1_act4 obj1_act5 objlact6 objl_act7 objlact8)

(agentGoal obj2 (agent (obj2 (person-2 personl)))
(goal obj2_act1 "moveTo (obj2 refrigerator)")
(goal obj2_act2 "open (obj2 refrigerator)")
(goal obj2_act3 "getObject (obj2 milk)")
(goal obj2_act4 "putSomethingDown (obj2 counter)")
(goal obj2_act5 "open (obj2 cabinet)")
(goal obj2_act6 "getObject (obj2 bowl)")
(goal obj2_act7 "moveTo (obj2 (closestPerson))")
(goal obj2_act8 "put (milk (closestBowl))")
(goal obj2_act9 "put (milk (2ndClosestBowl))")
(before obj2_actl obj2_act2 obj2_act3 obj2_act4 obj2_act5
obj2_act6 obj2_act7))

(before objl_act8 obj2_act7)
(before obj1_act9 obj2_act8)
(before objlact9 obj2_act9))

Note that in this particular case, there are many ways in which individual agents could
perform the subtask of the action. Therefore, it might be possible to recognize this typical
behavior by simply recognizing that actions happened in the right order (checking for
low-order temporal consistency), regardless of which agent performed them. Therefore, a
description that might work as well and be significantly easier to specify might encode the
group action using visual networks applied to every agent. For example:

(goal
(goal
(goal
(goal

actl
act2
act3
obj4

"moveTo (anyAgent refrigerator)")
"open (anyAgent refrigerator)")
"getObject (anyAgent milk)")
"getObject (anyAgent butter)")

(before actl act2 act3 act4)
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A soft-weighting of the temporal relation components may be sufficient to recognize
the multi-agent behavior because the activity is highly structured in time. This approach
of avoiding agent assignment, however, is only feasible when the number of agents being
monitored for action components in the environment is small and the actions each agent
performs are distinctive. In football, for example, which agent performs which action is
important information that helps discriminate plays.

The temporal structure description designer is required to make many design decisions
(especially when two agents are explicitly modeled). The designer must specify which
primitive actions to use and which temporal relationships are most important. Unfortunately,
the process of doing so here feels much less natural than in the football domain.

The problem is that the cooking oatmeal task is an example of a multi-agent action
that can be performed in a large number of ways because which agent does which tasks is
not necessarily important. Further, many tasks do not need to be performed in a particular
order. Therefore, it is difficult to specify what a "typical" example of coordination will
"look like." The components of the description must be observed if this action takes place,
but the temporal relationships between observations could occur a large number of ways
[Pin99]. This activity is less structured than a football play or a scene at a gas station.

An additional problem with the cooking oatmeal example (and a characteristic not
found in the play recognition football domain as mentioned in Chapter 2) is that there is the
potential for frequent collaborative re-planning on the part of the agents. Therefore, although
a temporal structure description can be created, it requires careful design by a knowledge
engineer who needs to encode as much variability in coordination as possible. This task
could potentially be difficult to recognize without more explicit reasoning about agent
beliefs. How to naturally extend the idea of using low-order relationships to recognition of
action such as the cooking oatmeal example is a subject of future work.

7.7 Summary: results and evaluation

The representation developed in Chapter 6 has been applied to the task of recognition
of American football plays. The algorithm's performance suggests that using low-order
temporal comparisons between agent goal actions is a viable approach for recognizing highly
structured, multi-agent action when evidence from the comparisons are softly-weighted
using Bayesian graphical network structures. This section discussed some problems with
the algorithm and how the algorithm might be applied to other multi-agent recognition
domains. Potential future work is discussed in the next chapter.
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Chapter 8

Contributions and future directions
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CHAPTER 8. CONTRIBUTIONS AND FUTURE DIRECTIONS

8.1 Contributions

The thesis of this work can be stated as follows: multi-agent collaborative actions comprised
of action components can be represented and recognized from noisy perceptual data using
visually grounded, goal-based primitives probabilistically integrated by low-order, temporal
and logical relationships. Each collaborative multi-agent action is "compiled down" to a
description of collaborative activity based on observation of coordinated action detectors
that can recognize "what" but not "why."

The main contributions of this work are summarized below.

e The first contribution is identifying the properties of multi-agent action and exploring
how those properties influence the development of a viable recognition algorithm for
a real-world, multi-agent recognition task. It has been argued that the multi-agent
action recognition task differs from the single-agent action recognition task because
the representation must encode non-geometric spatial and temporal relationships.
There are an exponential number of these relationships, and modeling agent inter-
action using reasoning about "intention" of agents requires intractable modal logic
inference. Further, existing intentional reasoning systems make assumptions (e.g.
clearly defined temporal intervals) that are impractical for domains with noisy, visual
input. These issues were discussed in Chapter 2.

9 Although the football play recognition task is just one multi-agent recognition prob-
lem with some simplifying assumptions, the football domain has been used to identify
general multi-agent recognition issues. In particular, development of a player labeling
task in static imagery in Chapter 4 motivated the idea that a large number of relatively
simple, context-based comparisons between properties of multiple objects can be
used to evaluate an enormously large search space. The same analysis demonstrated
the importance of developing a representation that softly weights uncertain spatial
and temporal evidence.

e An analogy between static object recognition and multi-agent action recognition
introduced in Chapter 5 further motivated the idea that a large set of simple, binary
comparisons can be used to recognize structured objects. This idea has been applied
to the temporal domain in Chapter 6.

* This work has demonstrated that some collaborative, highly structured action can
be "compiled down" into soft (i.e. probabilistically weighted) collections of visual
features detecting spatially and temporally coordinated activity. The proposed rep-
resentation is used to recognize typical collaborative activity for a real task using
real data. The representation, however, does not support reasoning about atypical
instances of action. Essentially, the representation proposed here can be used to
recognize "what coordinated actions look like" not "what collaborative actions are."

* Chapter 6 introduces a representation to recognize multi-agent action motivated by
prior work in static object recognition. The object recognition work suggests that,
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given a complex object, unary and binary matching constraints can be used to search
for an object match in feature data and that higher-order feature comparisons gen-
erally escalate computational cost without resulting in significant performance gains
[Gri90]. This work extends that observation to the temporal domain and demon-
strates a recognition system based on the idea that many low-order temporal matches
between an action model and an observed data sequence typically implies a correct
match has been obtained for a highly structured, multi-agent action.

e This work demonstrates that a multi-agent action description consisting only of tem-
poral and logical relationships between action components, when action components
are individual agent goals, can be used to design a computationally tractable sys-
tem for recognizing some collaborative activity. This shows how modular Bayesian
networks can softly weigh uncertain perceptual evidence to compute likelihood acti-
vation curves for the goals of individual agents. These networks map from low-level,
trajectory features to high-level, semantic concepts used by experts to describe ac-
tion. They are the building blocks for group action recognition. The goal detectors
integrate cues computed within a local space-time region centered on each player and
keep the number of features computed manageable by using deictic (i.e. first-person)
feature references.

e Specially structured Bayesian networks encoding relationships between goals of in-
dividual agents are proposed as a mechanism by which to recognize multi-agent
collaborative action. The networks, which typically consist of several hundred binary
nodes, are constructed automatically from an intuitive description of activity pro-
vided by a domain expert. These networks probabilistically integrate evidence from
detectors computing low-order temporal relationships between the agent goals. The
networks use a hierarchical, naive network structure, where the low-order temporal
dependencies are encoded within nodes instead of between nodes (in links) to achieve
efficient evidence propagation. This structure permits efficient and exact propagation
of uncertainty but still encodes low-order temporal and logical constraints. The test
system and results described in this thesis show the network representation is suffi-
ciently strong to detect collaborative multi-agent action for a difficult task from noisy,
perceptual data.

* Several contributions of this work relate to the practical issues that must be addressed
when developing a recognition system for a complex domain. For example, the
use of modular belief networks is proposed as a necessary approximation to make
knowledge engineering practical. The networks are generally nested, with domain-
independent networks (e.g. relating to object motion and object interactions) used as
components in domain-specific networks.

* The network representation proposed in this work models three types of uncertainty:
uncertainty in the data and sensing, uncertainty in the action component detectors and
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their semantics, and uncertainty in the multi-agent action descriptions themselves,
resulting from variability in action execution.

* The representation proposed here could be used as a pre-processing step to eliminate
some multi-agent action from consideration when a scene is being annotated. The
representation is best at distinguishing actions that differ by more than just a small
set (e.g. 1-2) criterion (see Chapter 7). The likelihoods computed for two similar
plays may be nearly identical due to noise (both in the signal and the scene). The
representation, however, can be used to eliminate other potential plays. The temporal
structure description could then be used to construct networks designed to specifically
differentiate two plays.

The recognition of multi-agent action is a problem that has not yet been actively ex-
plored in the computer vision community. Therefore, the final contribution of this work
is in identifying some areas for future work based on the limitations of the representation
proposed here.

8.2 Directions to explore

Reasoning about uncertainty. In this work, it has been argued that a representation for
multi-agent action must represent uncertainty. Bayesian networks were selected to
represent uncertainty over other competing methods (e.g. fuzzy logic) because they
propagate all information using Bayesian inference. Unlike fuzzy logic propagation,
networks designed with precise conditional probability values and an appropriate
network structure will not produce results inconsistent with first-order logic [RN95].
Unfortunately, to use Bayesian networks in practice, approximations such as overly-
strong independence assumptions (resulting from modularity) are required. Condi-
tional probabilities are often estimated. The structure of the networks are typically
simplified from the "ideal" structure considerably. Modeling real-world situations
without these approximations requires impractically large networks. Consequently,
it is difficult to argue that Bayesian networks as they are applied for most real-world
modeling tasks are necessarily the only appropriate or sufficient mechanism for rep-
resenting uncertainty. It may be that low-order constraints could be represented
adequately in a fuzzy logic framework and that the logical framework would provide
additional benefits (e.g. perhaps allowing better representation of optional actions
(see Chapter 7)). Additional research on the components of a multi-agent represen-
tation will help clarify which properties in the representation of uncertainty are most
critical.

Encoding negative information. The play recognition likelihood curves shown in Chap-
ter 7 are monotonic. Monotonicity occurs because the multi-agent networks have
binary nodes with conditional probabilities that weight positive evidence but do not
weight negative evidence. Weighting negative evidence properly requires nodes with

162



8.2. DIRECTIONS TO EXPLORE

trinary instead of binary states in order to differentiate a negative observation from

a situation when no data has been observed (e.g. the states might be {observed,

notObserved, noEvidence} instead of simply observed and notObserved, as in the

framework described here). In the system proposed in Chapter 6, however, each

node in the multi-agent networks uses all observed data from the start of observa-

tions to the current time. Consequently, detectors more complex than the temporal

analysis functions that have been proposed are required to differentiate notObserved
and noEvidence states. In fact, these detectors will probably need to account for the

amount of evidence observed and possibly relationships between other detectors in

order to make this distinction. Therefore, encoding negative evidence most likely re-

quires a stronger model of the interaction between temporal intervals with ill-defined
boundaries.

Detecting "none of the above" actions. Related to the problem of encoding negative in-

formation is the problem of detecting "none of the the above" when an example
should not match with any of the known action models. The algorithm developed in

this thesis will not reduce the likelihood that a play has been observed as more data

is observed. Therefore, to classify an example as "none," the likelihood value for all

known actions must stay low. In the current system, as described in Chapter 7, this

is not always the case. The problem is that many plays look similar, particularly at

the start of the play, and therefore, a significant percentage of action components in

the temporal structure description will match with many incorrect models. A richer

temporal model using some negative information might permit better differentiation

of plays by eventually reducing the likelihood for a given play if the end of the play

is inconsistent with the model.

Extending the temporal representation. The richness of the temporal representation used

here can be extended in several ways. One straightforward extension would be to

add qualifiers to the temporal structure descriptions (e.g. A just before B or C about

1 second before D). Similarly, the knowledge expert might allow the system to

differentiate two similar plays by indicating the relative importance of particular tem-

poral relationships (e.g. "The most important characteristic of this action is that A is

before B"). Relative weights would then influence the conditional probability values

automatically assigned to the multi-agent network, so that "important" relationships

are weighted more heavily than other relationships. Requiring such detailed temporal

structure descriptions places a larger burden on the knowledge engineer. Further, in

some cases, these distinctions could make the system more brittle if they are too hard

to detect or if the knowledge engineer does not model plays at approximately the

same level of descriptive detail. Exploring these tradeoffs is left for future work. An

alternative extension, which would require substantial modifications to the system

presented here, might use approximate temporal propagation reasoning about inter-

val relationships (e.g. see Pinhanez [Pin99]). Most likely, such an extension would

require substantially more computation but would simplify the extension of this work
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to other domains with less-structured, multi-agent collaboration.

Learning "visual networks." Some mechanism is needed to recognize agent goals using
evidence from local space-time windows centered on agents. In this work, visual
networks are proposed. In other work, state machines using fuzzy metric temporal
logic are used [HN98]. In both cases, the variables, dependencies between variables,
and "uncertainties" (i.e. probabilities or fuzzy measures) are provided manually.
Given the discussion in Section 7.5 on the compromises necessary to apply uncertainty
representations, several mechanisms may be adequate for representing these types of
actions. In fact, given a richly labeled data set, it may be possible to automatically
construct a robust TAN classifier using deictic features or a probabilistic decision tree
classifier. Alternatively, it may be possible to construct a classifier with performance
equivalent to that of a visual goal network, using a supervised learning process where
a user interactively runs the classifier on examples and iteratively specifies which
features are important for recognizing particular goal actions.'

Application to interactive environments. As stated in Chapter 2, the structure of a foot-
ball play somewhat simplifies the problem of recognition of the team action. Other
domains of interest with group activity, however, such as interaction in everyday
environments like the home, do not have a printed playbook of actions. As indi-
cated by the discussion in Section 7.6, developing temporal structure descriptions
can currently require a significant amount of guesswork. In the football domain, the
coach generally knows what's important and what's not. Conversely, when describ-
ing action in an everyday, cluttered environment, this is not so clear. In fact, the
temporal structure will probably need to be weakened somewhat to accommodate
greater variability of the unstructured action. The notion of using low-order temporal
comparisons between actions, however, is likely to still prove useful in this case.
Only the encoding of the description and its conversion to a probabilistic framework
for integrating evidence may need to be changed. Unfortunately, the multi-agent
interactive environment domain suffers from the same shortage of annotated data
problem as the football domain. It may soon prove easier to establish large, shared
annotated object trajectory data sets, however, given an emerging interest in interac-
tive environments that recognize the behavior of occupants (e.g. see [Pro98]) and
sometimes use tagging systems to track objects.

Feature selection. Agent-based (i.e. deictic) features are one way to manage the size of the
feature space in multi-agent domains. Another way is by specifying which agent goals
are relevant in the temporal structure description. Another option is to use feature
structure suggested by linguistic descriptions of high-level action. For instance, "drop
back" is defined in a football dictionary [Foe92] as follows:

'The web interface for labeling actions in football plays over the Internet is one attempt to obtain a data set
that is sufficiently rich to test automatically generated visual networks.
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To back-pedal. As soon as the QB receives the ball from the center on a

passing play, he retreats, looking downfield in the direction of his receivers.
Then he stops, "sets up" and prepares to throw.

Just by performing keyword spotting on this description, several features of impor-

tance can be identified: QB, receives ball, C, pass play, retreats, receivers, throw,
etc. The question is whether these keywords (and possibly one or two-level deep

inference about keywords to determine relative importance given a domain) can be

associated with concepts in the domain and general concepts about motion in or-

der to drive a supervised learning process or automatically weight components of

a description. For example, can a word like "retreat" be linked in some way to

the domain-independent concept of "move away from?" "Move away from" might

have generic feature detection functions implemented. The algorithm could then

identify evidence like moveAwayFrom(QB,C), moveAwayFrom(QB, receivers), and

moveAwayFrom(QB,Ball) as potentially relevant during the learning process without

manual specification.

In summary, future work should focus on extending the idea of low-order temporal

relationships to represent multi-agent action. Some method for integrating uncertain infor-

mation is required, although Bayesian networks alone are probably insufficient; a logical

inference framework may be needed to extend the temporal representation. In addition, to

make the framework practical for many domains, it needs to be improved using learning

methods that operate on sparsely labeled datasets to simplify or eliminate some manual

knowledge engineering.
In conclusion, recognition of multi-agent action offers new challenges to the computer

vision community. Agents are everywhere in the world, and many of the most useful

computer vision tasks will require that recognition systems be capable of identifying multi-

agent coordination and collaboration. Representations for single-agent recognition do not

straightforwardly extend to the multi-agent domain. This work describes one promising
framework for recognition of highly structured, multi-agent action from perceptual data and

will hopefully motivate other researchers to propose new representations that can represent

and identify the interaction of agents in everyday scenes.
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APPENDIX A. AMERICAN FOOTBALL TERMINOLOGY AND ACTIONS

Several online [Int98, Ame98, Arm98] and published [McC98, Tag93] are available that
describe the basic rules and notation used in American football.

The fundamentals of the game that are required to understand this work are described in
this section. Readers familiar with football will only be frustrated by the over-simplifications
in the first few sections and should skip to Section A.5.

A.1 The game

The goal of each team in American football is to throw or carry the ball from one end of
the field to the 10 yard region at the opposite end called the endzone. The defense team
tries to prevent this from happening. The game takes place through a series of plays, which
typically last between six and 15 seconds. At the start of the play, the offensive team
assumes a special configuration, called aformation. When the offense moves the ball, the
play begins and the players run a planned set of coordinated motions that are designed
to confuse or outsmart the defense and to result in forward movement of the ball in the
direction of the endzone. The offense can either pass and then run or just run the ball
downfield. The play ends when an offensive player with the ball is tackled, meaning that
the player's forward motion is stopped or the player is physically thrown to the ground.
The play can also end if the ball is passed but is not caught before touching the ground by
either an offensive or defensive player. The rules about how many plays a team can run and
how the ball switches from the offense to the defense are not relevant to understanding this
work. For the purposes of this work, each play can be considered an independent event.

A.2 The objects

Every football play involves 22 players. Each player has a designated position based upon
how the player is positioned in the starting formation. The starting position, in some cases,
limits which actions an agent can and can't perform. Only certain offensive players, for
example, are permitted to catch a pass.

The following player position abbreviations stand for offensive players in images shown
in this work: C (center), QB (quarterback), LG and RG (left and right guard), LT and RT
(left and right tackle), LTE and RTE (left and right tight end), LFL and RFL (left and
right flanker), LSE and RSE (left and right split end), LWR and RWR (left and right wide
receiver), HB (halfback), FB (fullback), TB (tailback), LWB and RWB (left and right wing
back), LHB and RHB (left and right half back), and LSB and RSB (left and right slot
back). The C, QB, LG, RG, LT, and RT are required to be in every play in a particular
spatial arrangement, shown in Figure A-1. The C, LG, RG, LT, and RT are called linemen
because they make up thefrontline. Sometimes additional players are added to the end of
the frontline, but it always includes at least these five. The QB always starts behind the C,
although sometimes the QB stands back a few yards, and the C always stands next to the
ball.
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Direction of goal endzone

Yar ines DEFReg
LTE LT LG C RG RT RWB LOSLL000 0WB
0H QB 0 OFFReg

03 L14a-- FB - KM - m

Figure A-1: One offensive starting formation formation.

The examples shown here have been kept simple for clarity. The most important players
in the examples are QB (quarterback), C (center), and FB (fullback). The QB typically
throws passes or hands the ball to players who will run the ball. The C starts the play by
handing or tossing the ball back to the QB and then usually blocks for the QB by staying
between a defensive player and the ball. The FB will sometimes block for the QB and
sometimes will receive a handoff or toss from the QB and run the ball upfield.

Also important in the examples are four different offensive players called eligible
receivers because they can catch passes. Usually, they run pre-planned, coordinated trajec-
tories of particular forms to elude nearby defensive agents and then try to catch the ball if
it is thrown to them. The FB is also an eligible receiver and sometimes runs one of these
pass patterns. The receivers in the examples are the LSE and RSE (left and right split end)
and LFL and RFL (left and right flanker). The only difference between the split end and
flanker position is that in the starting formation the split end is allowed to stand a few yards
farther forward than the flanker.

The following player position abbreviations stand for defensive players in examples in
this work: LE, RE, NG, LDT, RDT, LLB, MLB, RLB, LOLB, LILB, RILB, ROLB, LCB,
FS, SS, and RCB. In some data, the positions of the officials have been tracked and these
abbreviations are REF, UMP, SJ, HL, FJ, BJ, and LJ.

The remaining object is the BALL.

A.3 Regions

Figure A-2 shows the dimensions of a football field. The primary unit of measurement is the
yard'. There are two types of regions. Some regions are static, such as the sideline regions.
Other regions, here called relative regions, are defined based on the starting position of the
ball and of the offense and defense players.

The most important relative region is the line of scrimmage (LOS) region, referred to

11 yard ~ .91 meters
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Figure A-2: The dimensions of the football field, from [Tag93].

here as the LOSReg. This is a virtual vertical line that divides the offense and defense at
the start of the play, positioned at the center of the ball. In this work, the region of the field
on the offense's side of the LOS at the start of the play is called the OFFReg. Similarly,
the region of the field on the defense's side of the LOS at the start of the play is called the
DEFReg.

The position of players relative to the LOS is often important in football. For example,
an offensive player can't pass the ball forward if the ball has already moved from the
OFFReg to the DEFReg. Many of the pass patterns (the classes of motion patterns defined
by the coach's play definition) are defined relative to the LOS. For example, a player will
have the goal to run perpendicular to the LOSReg for 10 yards and then cut (i.e. quickly turn
at about 90 degree angle) to one direction and run another 5 yards parallel to the LOSReg.

A.4 Plays

A team prepares a repertoire of about 30 plays before a game. The coach will select a play
based on the team's current situation and notify the team. Action proceeds as follows. The
offensive players get set in their starting positions for a brief moment. The offense must
then remain completely still until the ball is hiked. The ball is hiked by the C player, who
either directly hands it to the QB or throws it backwards a few yards to the QB. Although it
is possible the ball could be hiked to a player other than the QB, this almost never occurs.

There is one exception to the rule that once the offense is set no players are allowed to
move. Up to one offensive team member can move as long as the player's motion is not
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downfield. Typically the movement is parallel to the LOS region. This player is called the
man-in-motion.

Although many players are eligible to throw a pass, in reality it is almost always the
QB. When the QB receives the ball, the offense players start executing the play. The QB
will try to dropback, by holding the ball and backing up a few yards. During this time
some defensive players are trying to tackle the QB in order to prevent the quarterback from
throwing the ball. Some offensive players (e.g. the C) will block for the quarterback by
physically staying between a defender and the ball.

If the play is a running play, the QB will hand the ball to another player (e.g. the FB)
who is running by or the QB will toss the ball to a nearby player. The player will then
run the ball downfield, usually trying to follow a pre-determined path through the defense,
but adjusting the trajectory to avoid defenders and to stay behind offensive players who are
blocking. The play ends when the running player is tackled.

If the play is a pass play, after dropping back the QB will look for an open receiver who
might be able to receive a pass. The receivers are simultaneously trying to run specified
pass patterns. In a coordinated fashion they will change their movement. About this same
time, the QB will try to throw the ball to one receiver. If a receiver catches it, he will try to
continue running the ball downfield until tackled.

At any time, if a defender catches a pass or if a ball is dropped on the ground by a
runner, the defense can pick up the ball and run the ball back the opposite direction.

Plays are specifically designed to look visually similar early in the play to confuse the
defense. Therefore, each type of play can start from several different starting formations,
and receivers are always running pass patterns even when they know they will not be thrown
the ball.

A.5 Actions

The actions used in the examples in this work are briefly described here and labeled using
the notation found throughout this paper.

throwPass (OBJ) This is a detector for the action of some player, OBJ, throwing a pass.
Typically, the OBJ player is the QB, but there is a group of players called "backs"
(in our case, the FB) who can all throw a pass. The pass must be thrown from the
OFFReg side of the LOSReg. A pass is usually thrown between two and five seconds
after the snap but can be thrown earlier or later. The pass is also usually thrown from
the pocket region, which is about 5 yards behind the ball's snap position. When the
ball is thrown, the BALL object leaves OBJ at a high speed. Other contextual cues
that are important are that the play must be in progress (i.e. the ball has been hiked
but nobody has been tackled), OBJ must be a player currently in the scene, it must be
a pass play, the OBJ must not be getting tackled, the OBJ should have the ball, and
the OBJ is not running the ball.
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catchPass (OBJ) This is a detector for the action of some player, OBJ, catching a pass.
The OBJ player must be an eligible receiver (e.g. FB, LSE, RSE, LFL, RFL) or
a defensive player. The passes are usually caught in the DEFReg of the field but
sometimes caught near the LOSReg in the OFFReg of the field. Prior to the catch the
ball should be traveling at high speed and be following a trajectory that will intercept
with the OBJ's trajectory. The BALL then stops suddenly and OBJ is the ballcarrier.
Other contextual cues that are important are that the play must be in progress (i.e. the
ball has been hiked but nobody has been tackled), OBJ must be a player currently in
the scene, the play must be a pass play, and the ball should not have hit the ground.

blockForBC (OBJ) Offensive players block for the ballcarrier (BC) in order to prevent a
defensive player from tackling the player with the ball. When OBJ is blocking there
is usually physical contact with some defender (or anticipated contact with some
defender). The OBJ should be between a defender and the BC or moving between the
defender and BC. The OBJ is typically facing the defender. OBJ should not actually
be the BC. The play should be in progress.

handoffTo (OBJI OBJ2) The ball can be passed between OBJ1 and OBJ2 using a hand-
offTo action. OBJI should be the ballcarrier and then OBJ2 should be the ballcarrier.
OBJI and OBJ2 should at some point be next to each other (i.e. a handoff is not a
toss, which requires the ball travel in the air). Typically OBJ2 is a "back" player (e.g.
the FB), and often the OBJ1 is the QB. HandoffTo actions are common about 1-2
seconds into the play, near the pocketReg. Most often, the OBJ2 has some forward
motion and moves past the OBJI.

passPatStreaking (OBJ distance angle inRegion toRegion distLOSatStart) This action
is the streak pass pattern. The same pattern can be run from different starting positions
and in different ways. The most generic streak pattern is a receiver OBJ running at
least distance yards from the LOS at angle to the LOSReg in a relatively straight line.
This motion is run in a particular region (i.e. InRegion, which is usually DEFReg)
and moving towards a particular region (i.e. toRegion, usually the goal line). Fi-
nally, this motion can be a sub-action of a longer component action and therefore the
distLOSatStart, or distance from the LOS at the start of the streak, can be specified 2

The OBJ should be an eligible receiver (e.g. FB, LSE, RSE, RFL, LFL) and the play
should be in progress. The ball should not have been thrown yet.

passPatCutting (OBJ angle towardsReg locationReg) This action is the cut pass pattern,
where an eligible receiver OBJ makes a sudden change of direction in trajectory
heading. The change in direction should be about angle degrees. The OBJ turns
towards towardsReg while in locationReg, which it typically the DEFReg.

2distLOSatStart makes it possible to specify that this action will be recognized even when the receiver first
moves downfield doing some motion that's not a streak and then somewhere down field starts a streak
pattern.
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passPatParaLOS (OBJ distance inRegion towardsReg distLOSatStart) Pass pattern
segment where eligible receiver offensive OBJ runs parallel to the losReg for at
least distance yards in inRegion heading towards towardsReg and at approximately
distLOSatStart yards from the LOS.

passPatCrossing (OBJ distance distOut) Pass pattern segment where eligible receiver
OBJ is running at least distance yards across the center of the field (as defined by the
horizontal axis where the ball started) at approximately distOut from the LOSReg.

runningBehind (OBJ1 OBJ2) This is the action of OBJI running behind OBJ2 with
respect to the LOSReg.

A.6 Multi-part actions

Some longer-term composite actions can be constructed using the primitives described
above. For example, Figure 2-3 shows typical pass routes used by receivers in football plays3

The "out 10" pass pattern might be described as follows, "run straight out, perpendicular
to the LOS for 10 yards, then make a 90 degree cut to the outside yardline and run a few
more yards parallel to the LOS." This action, called out(OBJ, 10 yards) can be described
by chaining the action primitives above: passPatStreaking (OBJ, 10 yards, 90 degrees,
DEFReg, GOALReg, 0 yards) then passPatCutting (OBJ, 90 degrees, OFFLeftSidelineReg 4,
DEFReg) then passPatParaLOS (OBJ, 2 yards, DEFReg, OFFLeftSidelineReg, 10 yards).
All the other patterns can be described in a similar way using a larger set of primitive
actions.

A.7 Team actions

A football play is a plan that coordinates the movement of 11 people. Typically plays are
written down as diagrams, like the one shown in Figure 2-2 for a play called a p51curl.
The man-in-motion movement is indicated in gray. The primary pass option is noted by the
dotted line. Blocking is noted by a short perpendicular line.

Although the diagram does specify the ideal action when the play is run from one
particular formation, there are usually several formations from which the same play can
be run. The most characteristic action in this particular example (which remains relatively
common between examples) is as follows.

e The P2 player, who is typically a FB, runs forward and blocks to the left or right of
the QB, choosing a direction based on defender threats to the QB. Alternatively, if
there are no defenders to block, P2 runs a check(3) pass pattern.

3Although the concepts they describe are similar, the actual notation used by coaches and football fans varies
widely. Here a particular notational scheme has been selected, which was originally obtained from [Bis97].

4The left sideline for the offensive team
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* The P1 player, some type of receiver, runs a angle(3) pass pattern.

e The P3 player, some type of receiver starting near the RG, runs a shoot(3) pass pattern.

* When P3 crosses with P1, P1 is behind P3 with respect to the LOSreg.

* The P1 and P3 players cut at the same time.

e The QB drops back for five steps.

In some plays, one receiver is designed at primary and will receive the ball if all goes
well. In this play, P4 is primary, P3 is secondary, P1 is third, and a pass to P2 is unlikely but
possible. Once a player catches the ball, the player will run downfield, avoiding defenders,
until tackled.



Appendix B

Intentionality case study: SharedPlans
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Figure B-1: Three snapshots illustrating action of several players during part of a football play.

This Appendix examines one representation of collaborative behavior and evaluates the
representation with respect to visual recognition of multi-agent action. A small example
clip from part of a football play is used for illustration. The representation is the Shared-
Plans mental model proposed by Grosz and Kraus[GK96], which was developed to model
speech-act intentionality during person-to-person discourse. The representation was se-
lected because it is currently one of the most comprehensive, general, and well-developed
computational theories of intentionality that have been proposed. As the model is applied
to the example, the model's representational weaknesses (with respect to its use for visual
recognition of multi-agent action) will be noted.

Figure Figure B-I shows three snapshots of some action during a football play, which
will be used for explanatory purposes. There are three offensive players (O, 02, and 03)
and two defensive players (XI and X 2). 01 carries the ball. 02 and 03 are the blockers.
First 03 blocks X1, shown in Figure B-ib, then 01 slows down and cuts left as 02 moves
past and blocks X2. 01 then runs downfield, having avoided both defenders, as shown in
Figure B-Ic.

B.1 Plans as mental models

The SharedPlans representation of cooperative activity is fundamentally based upon the
observations of Pollack[Pol90b]: we can differentiate a "plan to do some act" from a plan
"recipe-for-action." STRIPS-like [FN93] plan inference systems try to reason directly about
an agent's goal by constructing a recipe-for-action using a library of recipes assumed to be
jointly known by the agent, other agents, and the system. Pollack identifies some problems
with these approaches. Foremost, a plan to perform recipe actions like PLANS (Agent,
recipe-for-action) leaves the "state of mind" of the agent unspecified. Pollack
argues that such systems cannot reason about invalid plans that agents may hold; further,
the systems fail to capture intuitions about the way that beliefs are passed between agents
via plan attribution in conversation.

Motivated by these limitations, Pollack considers a plan to be a collection of beliefs
and intentions. The fundamental observation is as follows, "For me to have a plan to do
S, which consists in the doing of some collection of acts l, it is not necessary that the
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performance of H actually lead to the performance of 3. What is necessary is that I believe

that its performance will do so" [Pol90b]. In other words, a step in a recipe may play a role

in a plan only when the agent believes that by doing the step a goal will be enabled.
Pollack defines "having a [single-agent] plan" as follows: An agent A has a plan to do

3 that consists in doing some set of acts H, provided that

* A believes that it can execute each act in H.

* A believes that executing the acts in H will entail the performance of #.

* A believes that each act in H plays a role in it's plan.

9 A intends to execute each act in H.

* A intends to execute H as a way of doing 3.

* A intends each act in H to play a role in his plan.

In some situations, as Pollack has pointed out (see footnote 8 in [Pol90b]), the second

condition in her definition of "having a plan" is too strong. In a competitive game like

football for example, an agent may try to engage in a recipe for action to a achieve a

goal even when the agent is uncertain that each recipe goal can be accomplished. A typical

example is when a defender chases an opponent about to make a touchdown and the defender

has no realistic hope of catching up and making a tackle. Of course, it is also possible

that the recipe actions can contribute to multiple goals which explain the behavior. Perhaps

the defender keeps running so that the coach doesn't think he is lazy, or perhaps he keeps

running so that he will be on television.
The mental model philosophy impacts visual recognition tasks because Pollack essen-

tially advocates a move from a system-centered representation of plans to an agent-centered

representation of plans and beliefs. This implies a greater role for agent-centered percep-

tion. Take the first condition: A believes that it can execute each act in IH. A acquires

this belief through previously known contextual information and perception of the world.

If A's perceptual model is flawed or incomplete, A may have beliefs that appear irrational

to an omniscient system. Therefore, using the mental model approach to understanding an

agent's behavior requires that a recognition system separately model the perceptual input of

each agent in the worldfrom the perspective of the agent. The implication of this perspective

change will be discussed later.
Cohen and Levesque[CL90] have made some additional observations on intentionality,

based on the writings of Bratman[Bra90], that are instrumental to any system that tries

to use Pollack's belief formulation. Intentionality provides constraints on the reasoning
process:

* Intentions pose problems that agents need to find ways to achieve.

* Intentions provide a filter for adapting other intentions, which must not conflict.

* Agents track the success of intentions and will try again if they are not achieved.
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* Agents believe their intentions are possible.

* Agents do not believe they will not bring about their intentions.

* Under certain circumstances, agents believe they will bring about their intentions.

* Agents need not intend all the expected side effects of their intentions.

As noted by Bratman[Bra87], intentions modeled as "a kind of persistent goal"[CL90]
provide two primary constraints. First, they help to control the computational complexity of
decision making in a resource-bounded agent by encouraging stability of decision making
once an intention is considered and adopted. Second, future commitment to action using
intention makes coordination of future acts possible. A perception system stands to gain
from understanding intentionality therefore, because intentional commitment can be used
to limit the set of most likely actions at any given time.

Mental plans are a natural representation for modeling discourse because, as Grosz and
Sidner[GS86] have argued, discourse streams can be segmented based upon intentional
purpose. Since agents engaged in communication are jointly interested in conveying beliefs
to one another, they structure their conversation their so that every block of discourse has
a coherent intentional focus. Moreover, they insert discourse cues into the conversation
that mark when intentional focus has changed. Hence, "discourses are fundamentally
examples of collaborative behavior" [GS90]. This collaborative communication allows
two powerful assumptions to be made when analyzing discourse that can constrain a
reasoning system: reasoning by agents is restricted to the current intentional focus and
all of the acts of agents must be explained with respect to the current intentional focus.
Lochbaum[Loc94] used these two assumptions in a system that models conversation as
partial plan augmentation between two agents - each discourse utterance is assumed to
serve the purpose of augmenting a partial shared plan between two agents about the task of
current focus.

As Lochbaum points out, however, her assumptions fail to hold in a "keyhole recog-
nition" system where agents are not explicitly using conversational cue mechanisms and
where the perceptual stream is not one dimensional'. In the football example, for instance,
visual input can contain several different interactions occurring simultaneously that need to
be parsed into segments using perceptual features. Unlike a discourse, it is not immediately
apparent which agents are purposefully interacting with which other agents. Further, most
often agents are communicating through the environment, reacting to the visual behavior
that they perceive, not high-level conversational acts. The agents may also be inferring the
intentions of other agents using visual perception. Consequently, as advocated later in this

A speech stream with only one conversation can be thought of as "one dimensional." A speech stream where
multiple conversations are occurring simultaneously and overlaid upon one another is more analogous the
problem of video understanding. In this situation, the conversation must be simultaneously parsed into
conversation streams as it is undergoing discourse analysis. This has the potential to make the intentional
discourse chunking significantly more complex.
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Appendix, there appears to be a need for a perceptually-based model that bridges the gap

between agent perception and an agent's mental model.

B.2 Collective intention

The SharedPlans model discussed in this section extends the plans as mental model approach

to cooperative behavior. The foundation of the method rests on Bratman's[Bra92] three cri-

teria required for "shared cooperative activity" (SCA): mutual responsiveness, commitment

to the joint activity, and commitment to mutual support.
Bratman and others have concluded that single agent plans are not sufficient for mod-

eling collaboration[Sea90, Bra92, GK96]. The argument is as follows: given two agents

"collaborating," where each agent is committed to the act, one agent can prematurely aban-

don a joint goal as soon as it determines the goal is unachievable and it can drop the goal

without notifying the other agent.
For example, assume that in the football example shown in Figure B-la, player 03

and 01 are engaged in a collaborative act of neutralizing the threat from X1. Their plan

is that 03 will block X1 and 01 will run by. The problem is that if 01 and 03 don't

have commitment to mutual support, then 03 can decide the goal of neutralizing X1 is not

possible and abort the plan without notifying 01. 01 will therefore probably get tackled

by X1. Bratman's restrictions, however, ensure that an agent in a collaborative activity

won't drop the activity until it can notify the other agent that it is dropping the activity.

The agents must arrive at mutual belief that the commitment is impossible[HL90]. A

recognition system that knows a priori that an activity is a SCA might be able to use

this constraint to predict what type of communication should take place between the two

agents. The situation in the football example is complicated somewhat, however, by the

fact that 03 is communicating with 01 through the environment. Therefore, by simply

changing direction 03 could be simultaneously aborting his goal and notifying 01 that the

goal has been aborted by assuming that 01 visually perceives the change. This type of

visual communication through the environment is common in everyday activity.

B.3 The SharedPlans mental model

The SharedPlans formalism is currently one of the most complete mental models of collab-

orative behavior, incorporating partial plans and action contracting. Grosz and Kraus adopt
Bratman's SCA criteria. To have a collaborative plan for an action, agents must have:

* mutual belief of a partial recipe

* individual intentions that the actions be done and individual intentions that collaborators

succeed in doing the identified constituent subactions

* individual or collaborative plans for the subactions
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To achieve these constraints, the SharedPlans model formalizes several key properties:

* it uses individual intentions to establish commitment of collaborators to their joint activity

* it establishes an agent's commitments to its collaborating partners' abilities to carry out their
individual actions that contribute to the joint activity

e it accounts for helpful behavior in the context of collaborative activity

* it covers contracting actions and distinguishes contracting from the collaboration

* the need for agents to communicate is derivative, not stipulated, and follows from the general
commitment to the group activity

* the meshing of subplans is ensured; it is also derivative from more general constraints

For the details of the modal logic formalism, the reader is referred to the paper[GK96].
Here only a few of the operators are described, since the example that follows is intended
to highlight issues related to collaborative action recognition, not to demonstrate the full
power of the Grosz and Kraus theory.

The most fundamental modal operators are belief (Bel) and mutual-belief (MB). Three
modal operators that relate agents and actions are Exec, the ability to perform basic level
actions, Commi t, a commitment to basic level actions, and Do, performance of an action.
Plans ultimately reduce down to these primitives, but the primitives are still quite abstract
for a recognition system based on perceptual observation of visual events. Bel and MB,
for instance, can only be inferred by considering the context and how the agents or group
of agents behavior maps to a set of known default or stereotypical behaviors. Do can be
recovered by observation that an action has taken place, but because agents can Do an
action inadvertently, Commit does not directly follow. If an agent is able to Do an act,
though, Exec must have held true at the action instantiation time. Both the use of context
and the knowledge of default models of behavior is critical for inferring these SharedPlan
primitives from visual perceptual input.

The four SharedPlans intentional modal operators must also be inferred using con-
text and behavior models: intention-to (Int . To), intention-that (Int . Th), potential-
intention-to (Pot. Int . To), and potential-intention-that (Pot. Int . Th). Plans can be
individual or shared and partial or complete. Shared plans are used to represent collabora-
tive activity. Int . To is the basic level action, specifying that an agent is committed to an
action and believes that it can perform the action; it is used in the definition of individual
and shared plans. Int . Th applies only to shared plan situations where one agent does not
require a complete recipe for sub actions of another agent but does require that subplans
which are known must "mesh." For example, take the football example in Figure B-1. If 02
and 03 are blocking for 01 and 02 Int . Th 03 will block X1, 02 doesn't need to know the
recipe-for-action that 03 will use; however, 02 must satisfy Bratman's constraints on SCA
with respect to 03 blocking X1 . For example, 02 won't knowingly conflict with any part of
03's recipe that is known (say by getting in 03's path) and 02 believes 03 will succeed.
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Finally, Pot. Int . To and Pot. Int . Th are intentions an agent would like to adopt
(by changing to Int . To or Int . Th) but that require deliberation using a reasoning
system to ensure the intentions do not violate existing intentions and constraints. Using the
same football example, if 03 Int . To block X 1, then 03 could also Pot. Int . To block
X2 . However, once a constraint reasoning system determines that given current contextual
information 03 can't block X1 and have time to block X2 , the Pot. Int . To would be
dropped due to a pre-existing, conflicting intention.

The next section contains a partial application of the SharedPlans model to the football
example. Again, for details of the formalism the reader is referred to the Grosz and Kraus
paper[GK96]. The goal of this example is to give the reader a feel for the representation
and to raise some recognition-based issues.

B.4 Applying SharedPlans to a football play

The example begins with some definitions. The temporal component of the definitions,
which includes the time of the action and the time of the plan adoption, have been omitted
for clarity.

* The offense (TEAM = {01, 02, 03}), the defense {XI, X2})

* advance = action: advancing upfield

* play = action: the offensive play

* Cptay = context for the play. Consists of an intentional component representing the intentional
context in which TEAM is doing play,

01: Int .Th (01, advance(TEAM, BALL), CadvanceOi)

02: Int .Th (02, advance(TEAM, BALL), Cadvance02)

03: Int . Th (03, advance(TEAM, BALL), CadvanceO3 )

plus other constraints on the performance of play. Note that Cadvance is another context
which contains the constraints required for an advance action.

9 blk-x1 = action: blocking X1 player for 01 (c-blkx1 = constraints required to blkx1).

* blkx2 = action: blocking X2 player for 01 (c-blk.x2 = constraints required to blk-x2).

* rball = action: running ball downfield (c-rball = constraints required to rball).

* Recipe for the selected play, chosen by the coach before the play. The recipe calls for a block
of X1 at time 1, a block of X2 at time 2, and a runball action during the entire play.

Rs, = {{blkxl(Ti, c-blk-xl), blks2(T2, cblk-x2), rball(Tpiay, c-rball)}, CRsp}
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e CRsp = Context in which the recipe for the selected play (Rs,) is valid. Includes constraints
and intentional context. For instance, a kickoff play recipe-for-action is only valid at certain
times.

The SharedPlans formalism is versatile, dealing with full (complete) shared plans
(FSPs), where all recipes are fully instantiated, and partial shared plans (PSPs). Co-
operative planning that must deal with "hostile" agents like people, broken microwaves,
defenders, etc. in a dynamic world requires partial shared plans. Otherwise, the agents
will engage in so much mental state replanning that Bratman's goal of using intentional
commitment to restrict computational complexity will be lost. In the football example,
and probably in most realistic cooperative problems, nearly all plans will be partial. Most
low-level actions cannot be planned until just prior to their execution. The tradeoff, of
course, is that partial plans provide less constraint for predicting agent behavior based on
intention and belief because much plan reasoning is left undone.

For this example, the assumption is made that a shared plan is established just before
the play when the position of the defense is unknown, so the offense TEAM must have a
partial shared plan for the play action, represented by:

PSP(P, TEAM, play, Cplay) (B.1)

This is the top-level representation of the plan for the entire offensive TEAM "play"
action. The PSP is named P. As shown in the initial definitions above, Cplay has extensive
list of constraints and intentional motivations. The SharedPlans model propagates these
constraints throughout the expansion of definitions, but it does not specify how a system
might use these constraints to do means-ends analysis. In a situation such as the football
play, the number of constraints at each step in the plan is large.

The SharedPlans formalism can be used to expand the definition of a partial shared plan.
Expression B. 1 breaks down into three conditions.

[PSP cond. 0] The first condition is that the TEAM has mutual belief (MB) that all members
are committed to the success of the offensive play action. constr(Cplay) are the
constraints from the Cpiay context.

MB(TEAM, (VGj E TEAM) (Int . Th (Gj, Do (TEAM, play, constr(Cplay)), Cplay))

This mutual belief is established in the huddle before the play. This type of constraint
is difficult for a recognition system to infer from visual evidence. To do so would
require that so much visual evidence of a SCA be acquired by observing player
behavior that the only consistent interpretation is that this condition must hold. Most
likely a recognition system would be initialized with a default rule stating that the
players are all committed to performing the play unless it perceives significant cues
to the contrary.
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[PSP cond. 1] The second constraint is that the TEAM mutually believe that there is a
(partial) recipe-for-action for the play, Rpiay. Recipes(play) is the library of potential
play recipes, designed by the coach.

MB(TEAM, (Rplay E Recipes(play))), where Rplay is partial.

Each player's action depends both upon the selected recipe and the actions of the
hostile defense agents; hence, some parts of the plan recipe are partial until more
information is known. This condition only requires that team members mutually
believe there is a recipe, not that they know each action in the recipe. Like PSP
condition 0, this condition of mutual belief is established in the huddle before the
play. A recognition system would need to assume that football players have an agreed
upon recipe unless visual evidence suggests otherwise, since incontrovertible, direct
evidence that this mutual belief is established is unlikely.2

This mutual belief in a partial recipe restriction is too strong in some situations, like
when a play completely falls apart due to some unforeseen circumstance. In such
a situation, individual team agents switch from a team-based recipe to individual
recipes. These recipes may sometimes conflict, but for the most part if every agent
acts reasonably locally, globally effective team-like behavior can result. The players
are not explicitly collaborating with well-established mutual belief, but someone
viewing the entire scene will often interpret the "emergent" collective behavior as
collaboration.

[Expansion of PSP cond. 1] Since TEAM only has a partial recipe, the previous
expression expands to the following:

FSP(P,,, TEAM, SelectRecGR(TEAM, play, [partial actions & constraints Rplay]),

Rsr, Csr/play)

In other words, there is a recipe (R,,) for finding the full appropriate recipe
for the play action given the partial recipe and current constraints. Further, the
TEAM has a full-shared-plan (FSP) for finding the full recipe. The FSP is valid
in the context of the recipe for selecting a recipe and the context of the play
(Csr/pay). Note that the operator select recipe group (SelectRecGR) requires
reasoning about complex constraints to generate a viable recipe extension con-
sistent with the current context. The backtracking reasoning process used by

20ccasionally, a football team will fail to establish a recipe for a play due to time pressures. In these
situations it sometimes appears to the spectator that the team is "confused." Viewers rely upon perceptual
cues suggesting that especially uncoordinated behavior is occurring and therefore that the team has not
agreed upon a plan. Usually some additional evidence like a quick huddle is required before viewers will
feel comfortable with this interpretation, however. Often, unorganized behavior is caused by the defense
agents, not lack of plan agreement.
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such a procedure would be similar to the processes required by a recognition
system that must perceive features and then reason about contextual constraints
trying to construct feasible recipes that are most consistent with the current
context.

Every subaction added to a partial recipe must be one that the TEAM mutually
believes it can perform 3. Each action can be brought about by an individual
or a subgroup. For instance, in the football example there is mutual belief that
blk-x 1 can be brought about by a subgroup (GCBA) of the TEAM under the
constraints from the context of the play constr(Cplay) and the constraints from
the blkx 1 action. Therefore, blkx 1 could be added to a partial recipe. It is not
necessary to commit to which of {02, 03} will actually perform the eventual
block, only that the two players can make the block happen. Similarly, there is
mutual belief that action blkx2 can be brought about by a subgroup of TEAM
and therefore added to the partial recipe.

Finally, there is mutual belief that action rball can be brought about (CBA) by
individual agent 01. In this case, no matter what the defense does, the plan
specifies that 01 will perform the action. Of course, implicit in this belief is the
assumption that 02 and 03 can do their actions unhindered by "hostile" agents.
If that turns out not to be the case, replanning will be necessary.

constr(Csr/play) 2
MB(TEAM, GCBA({0 2,0 3}, blkaxl, Rblk , 1, constr(Cplay) U c-blkx 1))
MB(TEAM, GCBA({02,0 3}, blkx2, Rblek2, constr(Cplay) U c-blkx2))
MB(TEAM, CBA(0 1, rball, Rrball, constr(Cplay) U c-rball)) ]

As suggested by the example so far, a recognition system that hopes to use a
mental model of plans will need ways to infer mutual belief, where contextual
constraint will play the critical role. For instance, in the SharedPlans model,
resource allocation issues are bundled with the rest of the contextual constraints.
Since agents don't need details on the recipes used by other agents for actions
done by other agents, there is the possibility that the agent will not recognize
some resource conflicts. This problem can't be entirely avoided unless agents
compute all possible ways that resources could be used, which is computation-
ally prohibitive, or agents communicate everything about what they are doing,
which is also an unreasonable expectation. Visually, however, resource alloca-
tion is a robust contextual cue. If one object is being used by some agent, we
often know for certain it is not being used by another distant agent. A hope is
that the resource constraints could be encoded in the representation of collabo-
rative activity in such a way so that when resource allocation can be determined

3Another possible option is that the TEAM believes it can contract out the subaction. Contracting is not
used in this example, although it is a powerful feature of the SharedPlans formalization.
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visually it can drive the recipe system to a restrictive set of interpretations.

The third and final condition of the original PSP, Expression B. 1, applies for each
subaction in Rpia. The intend operators require that actions be broken into an action
taxonomy of basic-level actions and complex actions (which are constructed of complex
and basic-level actions). For many tasks, how such a taxonomy is constructed is an
open question. Sometimes, for example, action definitions themselves seem to rely upon
intentionality. Take a "point" action. How do we define this action based upon visual
perception? Part of the definition could be observation of visual features characteristic of
an extended human arm. The problem is that in random daily movement people make
pointing-like gestures frequently. Context is required to robustly identify a pointing action.
One constraint is that pointing generally requires an object of interest. People usually point
at something. Still, it is possible to randomly make a "point" gesture toward an insignificant
object. Hence, the observer agent must infer that the pointing agent intended to point using
the context of the situation. A "fake" action in football, where a player moves one way
to trick an opponent then moves the other way, is another "intentional" action. The visual
features of a fake are ambiguous because they can happen in several types of situations.
The observer agent must infer that the agent intended to fake in order to assign that action
label.

The problem, then, with forming an action taxonomy and using mental models is that
we need to recognize actions like point and fake to use SharedPlans to represent intentional
relationships, but intentionality seems required to recognize these actions to begin with.
The system needs a way to bootstrap itself from visually-basic, non-intentional actions
like move-forward, turn-left, and contact-object. The action definition situation is further
complicated by the difficulty of determining precise action boundaries in most realistic
situations. For example, when observing a football play, when does the quarterback stop
moving backwards and start throwing? In the football example in Figure B-1, exactly when
does 03 start "blocking?" When will other agents perceive that 03 is blocking? Finally, how
are the boundaries drawn between an individual action and a collaborative action? Is the act
of the quarterback throwing the ball an individual act or a joint act or both, and when can
this categorization be determined? These types of questions are indicative of fundamental
issues that arise in recognition systems. These systems will need to decompose their visual
input into useful primitives prior to performing much mental model plan reasoning.

Now, continuing with the last condition of the expansion of Expression B. 1, the first the
condition for the blockx 1 action is shown below.

[PSP cond. 2 (block_xl subaction)] Since at the time the play action is adopted it is
unknown whether 02 or 03 will blockx 1, it is a multi-agent partial subaction with
subgroup {02, 03}. This is a multi-agent plan, not an unreconciled plan, because it
is agreed that one of the two agents will perform the action but it is not known which
one until the defense can be surveyed. The two agents will need to coordinate with
one another. The following conditions must hold.
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[PSP cond. 2 part 1 (block_x1)] The subgroup has a SharedPlan (S P), named Pblk_,!
for the subaction. This condition will be expanded shortly.

SP(Pblkrxl, {02, 03}, blkJ(1, Cblkr1/play) (B.2)

[PSP cond. 2 part 2 (blockx1)] The TEAM mutually believe that the subgroup has
a SharedPlan to do the subaction. Note that the context includes Cblk-x1 and
Cpiay since context constraints are carried through all expansions.

MB(TEAM, SP(Pblkl, {02, 03}, b1kx1, Cblk_1/play))

[PSP cond. 2 part 3 (block_x1)] The TEAM mutually believe the subgroup can
bring about (CBAG) the subaction.

MB(TEAM, CBAG({0 2, 03}, blk-x, Rblk _x, constr(Cplay) U cblkx))

This condition is strong, requiring all members of the TEAM to believe that the
subgroup can bring about the action. Suppose, for instance, that some members
of the team may actually be uncertain the group can bring about its action. As
long as these skeptical members have recipes for action completely independent
of the subgroup and there is no possibility that they will plan any action hindering
the subgroup their belief will not affect the collaborative behavior. Such a
break into independent subgroups might help simplify a recognition system by
reducing the complexity of inter-agent intentional relationships that must be
understood. If the player catching the ball and the player blocking are unlikely
to influence each other's actions, there is no need to reason about their mutual
belief.

[PSP cond. 2 part 4 (block_x1)] Finally, the TEAM mutually believe that all of its
members are committed to the success of { 02, 03}.

MB(TEAM, (VGj E TEAM) Int . Th( Gj, CBAG({0 2, 03}, blk-xl, Rblkpx1,

constr(Cplay) U c-blk-x), Ccba/qblkx I/play))

If all agents have perfect perception, this condition prevents constraint violations
since agents won't intend actions that create conflict if they are committed to the
success of a subgroup. The problem is that perception isn't perfect, especially
in a frenetic, dynamic world like a football play. Some agents may think they
are committed to the subgroup action and not plan activities that interfere, but
their planning is based upon perception. The agents can make errors which
cause them to accidentally interfere with the subgroup. A recognition system,
then, cannot assume that an action that looks like interference implies lack of
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commitment. In fact, given that football players are nearly always committed
to the actions of subgroups of team members, especially strong contextual
information should be required to justify such an interpretation. Inferring the
level of commitment the TEAM has to all subgroup actions from visual data is
difficult and sometimes impossible. The information would probably need to
be explicitly provided to the system.

There is an condition for the block-x2 subaction which is omitted here because it is
analogous to the PSP condition 2 case just shown. There is also another slightly different
case for the rball single-agent action, outlined below.

[PSP cond. 2 part 1 (rball subaction)] 01 will try to perform the rball action, a single-
agent subaction, but due to defensive unknowns, 01 only has a partial plan.

Int . To (01, rball, Crball/play)

Further, TEAM mutually believe that 01 intends to rball.

MB(TEAM,Int . To(0 1 , rball, Crball/play))

[PSP cond. 2 part 2 (rball)] TEAM mutually believe that 01 can bring about the action.

MB(TEAM, CBA(0 1, rball, Rrball, constr(Cplay) U Crball U c-rball))

[PSP cond. 2 part 3 (rball)] The TEAM mutually believe that all its members are com-
mitted to 0 1's success. BLOCKERS = {02, 03}.

MB(TEAM, (Gj e BLOCKERS) Int . Th(Gj, CBA(0 1 , rball, Rrball, constr(Cplay) U pj),

Ccba/rball/play ))

A general problem with the SharedPlans formalism when studied from the perspective
of recognition is its lack of a perceptually based model. It does not provide constraint
on how agent's perception is used or how a system's perception limits inference ability.
While it is true that a football team will establish some mutual belief and some partial
recipe in the huddle, realistically once action begins, each agent will need to extend or
modify recipes based upon the environment. It is impossible to plan for all circumstances
in advance, and at some point agents need to adopt recipe changes on their own based
only upon what they can perceive. The only confirmation agents have of other agent's
current recipes are through perception and communication during the action. How then,
is certainty of mutual belief tied to perception? This question is critical for two reasons.
First, it can be used to infer when an agent will infer mutual belief. More importantly, if
perceptual/contextual descriptions of "collaborative activity" can be outlined, a perceptual
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system can look for these key features to bootstrap a scene interpretation without having to
reason about higher-level intentionality at the outset.

Continuing with the example, the SP (Expression B.2) from the PSP cond. 2 part 2
(blockxl action) is expanded. This is an example of an unreconciled shared plan - the
group does not know which of the agents will ultimately perform the subaction.

The group has a partial shared plan as well as a full shared plan to complete the partial
shared plan.

3 Pblk _r2, Polk _r,1-Elab, Rbik _x1_Elab )

PSP(Pblk _I, BLOCKERS, blk.xl, Cblikr) A (B.3)
FSP(Pblk-x1_Elab, BLOCKERS, E1aborateGroup(Pblkl1,BLOCKERS, blk-x1, Cblk,I),

Rbik x_r Elab, Cbik x_r E ab~bik _x1)

Now, given Rblk-1I = {{ hitX1_sameside.OI (TI, clhitX1-samesideOl)}, CRb kI},
expand Expression B.3. BLOCKERS have mutual belief that all members are committed to
the success of the group. The BLOCKERS believe that there is a recipe for blkx 1, but the
recipe may be partial. They have a FSP to complete their partial recipe. For each subaction
in Rblk-xl, the following must hold.

[Unreconciled case PSP expansion] BLOCKERS have not deliberated about the subac-
tion; no decision has been made about which agent(s) will do it. BLOCKERS
consider one of its members or a subgroup will do the action.

[Single agent subaction] The BLOCKERS mutually believe that there is a member
of the group that can perform the action (CBA).

MB(BLOCKERS, (3Gj E BLOCKERS)CBA(Gj, hitX1_samesideO1,
RhitJX1_sameside-oi,constr(Cblkl) U c-hitX1_sameside_01))

The BLOCKERS mutually believe that all its members are considering being
committed to the performance of the subaction of that agent.

MB(BLOCKERS, (VGj e BLOCKERS) Pot. Int .Th (Gj,
(3Gk E BLOCKERS Do(Gk, hitX1_sameside_01,
constr(hit_X 1 sameside_0 1) U c-hit-X 1 -sameside0 1),

CdohitX I -samesideO /blik _1)

Agents in the football example communicate during the play primarily through
perception of their world. Once the action begins, agents rapidly act based upon
the high-level goals established in the huddle and local behavior. When events
don't go "according to planned" the agents fall back on individual routines
which lead to "emergent" collaborative behavior. For example, if 02 for some
reason can't communicate with 03 at some point, 02 may decide to block X2
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Figure B-2: Movement of several players during a portion of a football play.

using a rule that says "when in doubt, block the closest player." 03 may then see

02 heading towards X1 and follow it's own individual rule saying, "block the

closest player who doesn't appear to be blocked or about to be blocked." The

resulting behavior will appear collaborative to an outside observer, although

from the point of view of the agents, they have just followed a set of simple
rules without explicitly agreeing to collaborate. Coordination was built into the

action patterns of the players but not explicitly reasoned about during the play,
and all communication occurred via observation of the environment by each

agent.

If such action rules are shared between agents (i.e. one agent can predict what

another agent perceives and which action rules the agent will use), then an agent

has the capability to predict what another agent will do in a situation when there

is no explicit prior collaborative plan.

B.5 The recognition task

Observation of visual features that are usually linked with collaborative behavior does not

necessarily provide strong evidence that agents have established mutual belief of a SCA.

Take the clip from a football play, shown in Figure B-2. Suppose two defenders, X and X2

are observed to be running toward one offensive player, 03. The system needs to identify if

the defenders are collaborating to double-team the offensive player 03. Assume the system

has no prior knowledge about the plans of the two defensive players. Given the situation as

shown, one reasonable interpretation is that X2 is covering 02, 02 just cut back, and X2 has

not yet turned in that direction. In this case, there is no collaborative double-team of 03.
However, another interpretation is that X2 just happened to be near 02 and is not covering

02 but moving towards 03. Without prior knowledge of player intentions, the recognition

system has no way of knowing which interpretation correctly captures the intent of X2. The

intent is ambiguous.
One option for the system is to wait for more data. If the system observes that X2

turns to follow 02 then it can rule out a "double-coverage" interpretation. However, if X2

continues to run in the direction of 03 while Xi also runs in that direction, the system still
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needs more information to confirm that X2 and X, are engaged in a SCA. It could be that the
play has completely fallen apart and both defensive players have reverted to a simple rule,
"follow the defender you consider to be the greatest threat." If there is another defender
at position P, then X2 might move towards 03 regardless of what Xi does. This situation,
however, will look identical to the case where there is a pre-established plan for Xi and X2
to jointly cover 03.

If the system is forced to make an inference, it should select the interpretation that is the
most consistent with known information. It might see that X, and X2 are moving towards
03 and find some evidence of a possible SCA, but if Xi cuts off X2 a more consistent
interpretation is that there is no mutual belief of double coverage. Only if the system
sees evidence of SCA and no evidence that an agent is acting atypically should it infer
collaborative mental state information about X, and X2.

In most domains (not just football) it is possible to construct individual rules for agent
action that lead to behavior that will appear collaborative to an observer. Consider the
cooking example described in Chapter 1. Imagine that two chefs are working in a community
kitchen (e.g. a dorm). They don't know each other and don't communicate with one another
directly at all while they cook. Further, they have not informed each other of their tasks and
established any mutual belief. Assume they are both busy cooking and talking to friends,
paying no attention to what each other do. They can both see the same counter-top, where
all utensils are stored. Each cook begins making different recipes, and there are limited
resources so they need to share equipment. Each cook can see when a utensil is available
on the countertop and can take it. If a utensil is not available, the cook will work on some
other part of his task until the desired utensil shows up. Or, if the cook has nothing else
to do, the cook will just wait a few minutes. For the most part the cooks will naturally,
albeit possibly slowly, work around resource conflicts. Now assume a visual recognition
system is observing this scenario. Are the agents collaborating? The agents have not
established any mutual belief (other than perhaps mutual belief in common courtesy), yet,
to the recognition system the visual evidence suggests some task is getting completed in a
collaborative fashion. Only if one agent gets stuck without a utensil for an long period of time
with nothing else to do will the system be able to infer that collaboration is not taking place.
In this case a sophisticated visual detector might notice (using some model of cooking
behavior) that one agent is not cooking "optimally;" that is, the agent is doing nothing
when the model of cooking and the current context suggest that the agent should be doing
something. Recognizing collaborative activity requires recognizing activity; therefore, non-
intentional models of action are needed to "bootstrap" the recognition of intentional action.
These non-intentional action models might recognize coordination.

Computational models for intentional reasoning like the SharedPlans model were devel-
oped primarily with the goal of modeling high-level discourse between two human agents
where conversants are purposefully providing intentional cues during dialogue [GS86].
Systems that recognize intentional action from video must typically do so without the
intentional markers common in dialogue. Therefore, coordinated and collaborative behav-
iors will often be indistinguishable without prior knowledge of the SCAs. Usually that
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information is not available.

B.5.1 Summary

This case study of applying the SharedPlans model to a simple example from the football
domain raised the following issues:

Model of expected communication If a system detects a collaborative key feature, how
might it confirm that collaboration has occurred? One way is by having a model
of expected communication given known collaboration. The SharedPlans formalism
could be used to predict when and how communication is needed to maintain the
potential SCA. For example, agents working together tend to become less certain
of a collaborator's plan as time passes, increasing the likelihood of communication.
Imagine the play in Figure B-2 represents players in a basketball game and X, and
X2 are thought to be engaged in the SCA of covering 03. In this case, the recognition
system knows that in order for one agent to drop the covering goal, it must notify
the other agent either through speech or through gesture. One gesture might be arm
movements. Xi might decided to end the SCA by pointing at 02 to indicate to X2 that
the joint coverage goal is over and that X2 should go cover 02. The SCA constraints
explain why Xi gestures to X2 at all instead of simply abandoning the covering goal
and moving to cover 02 himself. Visual features detectors could look for evidence
of this communication as conclusive support for the potential SCA. In this work,
however, the trajectory data described in Chapter 3 is too coarse to recognize subtle
communicative gesture such as hand waves and head glances.

Inter-agent communication Modeling intentionality in multi-agent domains from visual
sensor input is difficult in part because agents sometimes explicitly communicate
information about their plans. Two agents that are collaboratively interacting, for
example, may communicate plan information verbally (as studied in the discourse
community [GS86]) or visually. The problem is that to reason about visual communi-
cation requires that a system reason about the visual perceptual abilities of individual
agents. For example, in the football domain, the QB may have the goal to throw the
ball to a player, the LSE, who runs downfield ten yards. However, the QB will adjust
his plan if he observes that the LSE has slipped and fallen after running three yards.
Interpreting the QB's actions may require making assumptions that the QB observed
that the LSE had fallen. Even from the original video signal, and especially from the
data trajectories described in the next chapter and used in the work described here,
these inferences can be difficult for a person, let alone a computer system, to make
with high confidence.

Explanation of "why" vs. recognition of "what" The analysis of the shared plans for-
malism suggests that explaining how even an apparently "simple" multi-agent inter-
action was generated requires reasoning about the intentional processes and commu-
nications that occur between agents. However, reasoning about intentionality may
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not be required, in some cases, to recognize what has been observed. In Figure B-2,
explaining why X2 decides to cover 03 requires reasoning about X2 's changing mental
state and perceptual ability as well as the other options the agent considered and why
each one was not chosen. However, the visual observation of X2 position over time
with respect to 03 considered simultaneously with additional temporal and spatial
contextual constraints, may permit an inference that covering has been observed with
a relatively high likelihood without explicit intentional reasoning. Even though the
processes by which two players collaborate in a football game can involve different
degrees of "intentional" reasoning and communication, a recognition system that
does not need to explain how the coordination developed may be able to model the
visual situations in similar ways.

Agent-centered representation The shared-plans representation uses an agent-centered
representation that allows modeling of situations in which an agent has an incorrect
belief about another agent. In the football example, in order to understand what
one agent does it is necessary use perceptual knowledge about the world as that
agent is thought to perceive it. The recognition system described in Chapter 6 uses
agent-based visual features to recognize collaborative activity.

Modeling collaborative "key features" A recognition system should have "collaborative
key features" that indicate a high likelihood of "collaborative" activity directly from
visual observation of agents and context. Such key features are small sets of other
visual features that are highly unlikely to occur without some type of coordination.
For example, in Figure B-lb, the system would detect a "potential-block" action
between 03 and X, and just a split second afterwards a "potential-cut" action by
0 at nearly the exact same physical location. While this temporal and physical
adjacency is not conclusive evidence that 01 and 03 are coordinating their actions,
combined with other contextual information (e.g. temporal information connecting
the behavior of different agents), it might lead to a reliable indicator of collaborative
activity. These key features are likely to consist of temporal relationships between
the actions of individual agents.

The observations made when applying the SharedPlans model to the football exam-
ple in this Appendix have, in part, motivated the development of the multi-agent action
representation presented in Chapter 6.
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Figure C-1: (a) p51curl and (b) p52maxpin play diagrams
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Figure C-5: (a) p63up and (b) p54maxcross play diagrams

C12I

Figure C-6: (a) p63upa and (b) s35 play diagrams
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(ISA (rectified-candidate ob-candidate db-candidate los-candidate
isolated-blob-candidate multiple-blob-candidate ball-candidate
person-candidate)

label-candidate)

(ISA (offense-candidate defense-candidate)
person-candidate)

(ISA clineman-candidate

lineman-candidate)

(ISA (lineman-candidate back-candidate)
offense-candidate)

(ISA (c-candidate guard-candidate tackle-candidate)
clineman-candidate)

(ISA (lg-candidate rg-candidate)
guard-candidate)

(ISA (lt-candidate rt-candidate)
tackle-candidate)

(ISA (te-candidate se-candidate)
lineman-candidate)

(ISA (fb-candidate hb-candidate tb-candidate
wb-candidate sb-candidate fl-candidate qb-candidate)
back-candidate)

(ISA (fs-candidate ss-candidate le-candidate re-candidate ldt-candidate
rdt-candidate mlb-candidate lolb-candidate lilb-candidate
rilb-candidate rolb-candidate)

defense-candidate)

Figure D-1: Example object classification hierarchy used by the formation labeling algorithm.

This appendix contains supplementary examples of the hierarchy rules (Figure D-1), hy-
pothesis generation rules (Figure D-2), ranking rules (Figure D-3), and consistency rules
(Figure D-4). The algorithm using these rules is described in Chapter 4.
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Candidate: lg-candidate
Constraints: Clique: los-candidate

Object: ob-candidate
Funcs: (and (on-los OBJ los-candidate)

(flanked-both-para-los OBJ los-candidate
ob-candidate))

Candidate: rg-candidate
Constraints: Clique: c-candidate los-candidate

Object: ob-candidate
Funcs: (and (on-los-p OBJ los-candidate)

(same-side-los-p OBJ los-candidate
ob-candidate)

(right-of-p OBJ c-candidate los-candidate))
Candidate: rg-candidate
Constraints: Clique: los-candidate

Object: ob-candidate
Funcs: (and (on-los-p OBJ los-candidate)

(flanked-both-para-los OBJ los-candidate
ob-candidate))

Candidate: rt-candidate
Constraints: Clique: rg-candidate los-candidate

Object: ob-candidate
Funcs: (and (on-los-p OBJ los-candidate)

(flanked-left-p OBJ los-candidate
rg-candidate))

Candidate: lt-candidate
Constraints: Clique: lg-candidate los-candidate

Object: ob-candidate
Funcs: (and (on-los-p OBJ los-candidate)

(flanked-right-p OBJ los-candidate
lg-candidate))

Candidate: te-candidate
Constraints: Clique: lt-candidate rt-candidate los-candidate

Object: ob-candidate
Funcs: (and (on-los-p OBJ los-candidate)

(flanked-right-p OBJ los-candidate
lt-candidate))

Candidate: te-candidate
Constraints: Clique: rt-candidate lt-candidate los-candidate

Object: ob-candidate
Funcs: (and (on-los-p OBJ los-candidate)

(flanked-left-p OBJ los-candidate
rt-candidate))

Candidate: qb-candidate
Constraints: Clique: c-candidate los-candidate

Object: ob-candidate
Funcs: (and (behind-p OBJ c-candidate los-candidate)

(same-side-los-p OBJ los-candidate c-candidate)
(flanked-by-x-perp-p OBJ los-candidate

ob-candidate))
Candidate: qb-candidate
Constraints: Clique: los-candidate

Object: ob-candidate
Funcs: (qb-objs-los)
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; C: Prefer between QB and LOS
Candidate: c-candidate
Constraints: Clique: qb-candidate los-candidate

Object: nil
Funcs: (between-cs OBJ qb-candidate los-candidate)

C: Prefer to left of RG
Candidate: c-candidate
Constraints: Clique: rg-candidate los-candidate

Object: nil
Funcs: (quantify (left-of-p OBJ rg-candidate los-candidate))

C: Prefer to right of LG
Candidate: c-candidate
Constraints: Clique: lg-candidate los-candidate

Object: nil
Funcs: (quantify (right-of-p OBJ lg-candidate los-candidate))

QB: Prefer QBs somewhere near center of mass of offense blobs
Candidate: qb-candidate

Constraints: Clique: nil

Object: ob-candidate
Funcs: (near-center-mass-cs OBJ ob-candidate)

Figure D-3: More example ranking rules.
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No duplicates can be entered for center linemen candidates

Candidate: clineman-candidate

Constraints: Clique: nil

Object: nil

Funcs: (no-duplicates-p)

No duplicates can be entered for the LOS

Candidate: los-candidate

Constraints: Clique: nil

Object: nil

Funcs: (no-duplicates-p)

Each low-level blob can have only one player name assignment

Candidate: offense-candidate defense-candidate

Constraints: Clique: nil

object: nil

Funcs: (no-identical-blob-p)

No offsides players permitted

Candidate: offense-candidate

Constraints: Clique: los-candidate defense-candidate

Object: nil

Funcs: (no-offsides-p)

Linemen must be on LOS

Candidate: lineman-candidate

Constraints: Clique: los-candidate

Object: nil

Funcs: (on-los-p OBJ los-candidate)

Linemen limited to 7 on LOS

Candidate: lineman-candidate

Constraints: Clique: los-candidate

Object: nil

Funcs: (six-or-less-on-line-p)

;C needs to be left of RT (wrt LOS)

Candidate: c-candidate

Constraints: Clique: rt-candidate los-candidate

Object: nil

Funcs: (left-of-p OBJ rt-candidate los-candidate)

;C needs to be lined up with FB (wrt LOS)

Candidate: c-candidate

Constraints: Clique: fb-candidate los-candidate

Object: nil

Funcs: (flanked-by-x-perp-p OBJ los-candidate

fb-candidate :x 1)

;QB needs to be a reasonable distance from the LOS

Candidate: qb-candidate

Constraints: Clique: los-candidate

Object: nil

Funcs: (qb-reasonable-dist-los-p OBJ los-candidate)

Figure D-4: More consistency rule examples.
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APPENDIX E. COMPLEXITY OF BAYESIAN NETWORKS

This appendix briefly describes Bayesian networks and issues related to their computational
complexity (for more detailed information, see [Jen96, Lau96, Cha91]).

E.1 Basic notation

Let G notate a graph representing a given world of interest, consisting of vertices (V) and
edges (E). Let V {S , S2, ... , SN} represent an set of nodes. Let e(St, S3) represent an
ordered, or directed, edge in G connecting parent node S' to child node S1. If all edges in
G are directed, G is a directed graph. e(Sz, S3) indicates an undirected edge between S'
and S3, which is equivalent to G containing both e(S', Si) and e(S-, Si). If all edges in G
are undirected, G is a undirected graph. If G contains both directed and undirected links,
the G is a mixed graph.

A path exists for a given list of N nodes, (SI, S2 
***, SN) when an edge exists between

each pair of nodes in the list, e(Si, Si+1) 1 <= i < N. A path is a cycle when an edge exists
between the first and last pair of nodes in the list, e(SN, g'). When a directed graph, G,
has no cycles, it is called a directed acyclic graph, or DAG. Nodes St and S' are adjacent if
the graph contains e(SZ, Si) or e(S3, Si). A cycle is a chordless cycle if only the successive
pairs of node in the cycle are adjacent. A graph is triangulated if and only if the only
chordless cycles in the graph contain no more than three nodes. The cliques of a graph are
the largest subgraphs of the graph that are complete, where a complete graph is one where
there are edges between all pairs of nodes. A graph is singly-connected if only one path
between any pair of nodes exits.

E.2 Probabilistic graph interpretation

A graph, G can represent a probabilistic distribution. Assume each node, S', corresponds
to a random variable (or vector of random variables) in the world. Each S' (1 <= i <= N)
consists of M states, {s1, IS2, ... , 5 iM}, where sik indicates the kth state of Si. Each directed
edge, e(S2, Si) in G represents the conditional dependence of variable Si on St. At each
node St, with parent nodes pa(St) = (Si, Sk S), a conditional probability table is
defined, p(S3pa(S')). For each node without parent nodes, a prior, p(Si), is specified.

The structure of G then defines a joint distribution of the world variables, denoted
as p(G) - (SI , ... SN). The probability of a particular set of states is denoted by
p(w) = (s, s2 ... iN).

Each node S models some random variable in the environment. A recognition system,
however, must also consider observations of states. Let E' represent the evidence for
random variable S, where each E' (1 <= i <= N) consists of M states, {eZ, C 2 , ... , e6
where eik indicates the kth state of Ei. Although computationally Si and E' are treated
identically, when analyzing the representational power of different graph structures for
visual recognition it is useful to differentiate states of the world from observations of the
world.
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Examples of networks can be found in Section 5.2.1

E.3 Quantized and continuous states

In this work, node variable S' is assumed to be discrete unless otherwise noted. Any
continuous distribution (e.g. distances, angles, size measures) can be approximated with a
finite number of discrete states at an additional (albeit sometimes intractable) computational
cost.

Here the evidence nodes, El, are assumed to be discrete. As described in the main
text of Chapter 5, evidence can be entered into a network by instantiating a particular
state in the evidence node or by entering likelihood information into the node as "virtual
evidence" [Pea88]. Continuous information can be entered into a discrete network using a
fuzzy quantization. For example, if Ei = {e, e2, C3}, overlapping membership functions
are defined for each state, e. These are typically Gaussian functions or piecewise linear
functions. An observation is then compared against each function and a membership value
for each state is returned. This memberships value defines a likelihood that is entered in
the network as virtual evidence. Using this methods permits continuous observations to
be entered into a discrete network. The discussion below remains unchanged regardless of
which evidence instantiation method is used.

E.4 The complexity of exact solutions of graphical models

General algorithms exists for propagating the joint probability in any directed graphical
model [Lau96, Jen96] and some mixed graphs [Whi90]. The most general algorithm for a
DAG is commonly referred to as the clique-tree algorithm [Jen96]. Some graphical propa-
gation algorithms (e.g. forwards-backwards algorithm for hidden Markov models [RJ93a])
have been demonstrated equivalent to the more general clique-tree approach [SHJ96]. The
general algorithms are particularly useful because they permit the computational complex-
ity of an arbitrarily-structured graphical model to be evaluated. The detailed discussion and
proof of the fundamental concepts is not repeated here (see [Lau96]), but the procedure for
determining complexity is briefly described.

Exact propagation in belief networks is NP-hard [Coo90]. Put most simply, the clique-
tree algorithm transforms a graph such that all computation can computed locally in the
graph and then propagated, without repetition, to other parts of the graph. The structure
of the transformed graph sets a lower-bound on the complexity of the propagation. To

1In those graphs, unless otherwise indicated, a node representing a particular random variable is valid for all
time. S represents the random variable node S' at time t and s- _ represents the state of St_ I at time t - 1.
Hierarchical dependencies between random variables can be made explicit using the following notation.

S ik represents the node and random variable Si' k at time t, where Sj is a component of S' and S'j k is a
component of S'Z.
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(c) (d)

Figure E-1: (a) A directed, acyclic graph G, (b) the moralization of G, (c) the triangulation of the
moralized G, and (d) largest clique.

determine the complexity of belief propagation in directed graph G, the graph is first
moralized by connecting any unconnected parents of each node. For example, if pa(Si)
{ S3, Sk, S } and no edge exists between SJ and Si then undirected edge e, (Si, Si) is added.
An example graph and the moralized graph is shown in Figure E-la and Figure E-lb,
respectively, where the links added for moralization are shown in gray. Once all nodes have
been moralized, the directed edges are changed to undirected edges. The new undirected
graph, Gs, is now triangulated by adding by adding edges until the only chordless cycles
that exist in the graph have only three nodes. Multiple triangulations of the same graph are
possible, but triangulation should be performed so as to minimize the size of the largest
clique in G.

Although this optimal triangulation is NP-hard, effective greedy heuristic procedures
exist for graphs on the order of several hundred nodes[Jen96]. One greedy procedure is
as follows. A node is S' is eliminated by filling-in (i.e. adding) links so that all of the
node's neighbors are pairwise connected and then removing Si and all of its links. If S'
can be eliminated without adding links, then the node cannot be part of a chordless cycle
with greater than three nodes. Further, a graph is triangulated if and only if all of its
nodes can be eliminated one by one without any fill-ins [Jen96]. The greedy algorithm to
minimize the size of the largest clique is to repeatedly eliminate a node that does not require
fill-ins; alternatively, eliminate a node that yields the smallest conditional probability table
connected nodes after its fill-ins [Jen96]. Figure E-1c shows the triangulated graph for
Figure E-lb, where the links added for triangulation are shown in gray. The size of the
largest clique in the moralized, triangulated graph sets a lower-bound on the complexity of
belief propagation. Figure E-Id shows one of the largest cliques in the example, which has
four nodes. The largest clique can be determined during the triangulation process.

Given the maximal clique size, the complexity of the graph can be approximated as
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O(NMc), where N is the number of nodes 2, M is the maximum number of states in any

node, and C is the number of nodes in the largest clique.
Approximate methods (e.g. Gibbs sampling) are available for solving large networks

when exact methods are prohibitively expensive [GTS94]. Although some graph struc-

tures permit approximate solutions in polynomial time, approximate inference for general

networks is NP-hard [DL93]. Fortunately, in practice, the exact solution methods are fast

for small networks of around 100 nodes and for much larger singly-connected networks
[RN95].

E.5 Relative importance of variable selection, structure,
and priors

In addition to specifying the graph structure and the state values, representing a proba-

bilistic distribution graphically requires that each node have a corresponding conditional
probability table or prior distribution. Although for some domains these numbers can

be estimated automatically from data sets using learning procedures [Hec95], for many

real-world domains the knowledge engineers must empirically estimate the values. A com-

mon criticism of Bayesian methods is that these estimates are inaccurate and unjustifiably
precise. However, several studies have found that it is the structure of a network, not

the prior and conditional probabilities, that most affects its representational performance

[HPF+96, NA9 1]. Most well-designed networks exhibit a "flat maximum" property, where

small changes to probability changes do not lead to change decisions unless those proba-

bilities are near 0 or 1, which represent "absolute certainty" [NA9 1]. Further, simplifying
from quaternary to binary node states has been shown to have little effect on network per-

formance, suggesting that in some instances binary representations may provide adequate

representational power [HPF+96]. These observations - that the structure, not the numbers,
provide the representational power - motivate the comparison of graphical representations
found in Section 5.2.

E.6 Knowledge engineering

The structure of a Bayesian network controls the network's complexity. Although the

structure is, in some cases, dictated by the domain, the knowledge engineer plays a large

role in (1) determining which states of the world to represent, (2) determining the linking

structure (i.e. which states are causally related to each other), and (3) specifying the prior

and conditional probabilities. Knowledge engineers use modeling tricks (e.g. noisy-or and

divorcing [Jen96]) to achieve efficient graphical structures. In practice, Bayesian networks

are much easier to computationally solve than they are to construct!

2To be precise, S is not the number of nodes but the width of a structure called the clique tree. For the

purposes of this paper, however, assuming N is the number of nodes is a reasonable approximation.
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APPENDIX F VISUAL NETWORK DESCRIPTIONS

This appendix includes brief descriptions of visual networks used by the recognition system,
which are broken into generic action detectors that could easily be applied to other domains
and football-specific detectors. The top-node for all the networks is binary.

F.1 Generic action detectors

Many of these networks integrate information from a small window of time. They are often
used as evidence nodes in other networks.

stopped (obj) Look at a small window of time to determine if an obj is stopped.

running (obj) Look at a small window of time to determine if an obj is running.

movingBackwards (obj) Obj is moving in direction opposite of facing direction.

movingBackwardsReg (obj region) Obj is moving in direction opposite of shortest di-
rection to region.

possession (objI obj2) Obj 1 possesses obj2, where obj2 is a possessable object.

inContact (objI obj2) Obj 1 is in contact with obj2.

stayingBetween (obj1 obj2 obj3) Obj 1 is staying between obj2 and obj3, where obj3 is
trying to get to obj2.

stayingBetweenClose (obji obj2 obj3) Obj 1 is staying between obj2 and obj3, where
obj3 is trying to get to obj2 and obj 1 is either close to obj2 or obj2 is headed towards
obj3.

changeMotionDir (obj dtl dt2 dt3 dangle) Obj abruptly changes motion direction after
heading in one direction for some time.

changingMotionDir (obj) Obj curling for some time.

changeMotionStop (obj) Obj abruptly changes motion direction and stops after heading
in one direction for some time.

changeFacingDir (obj dtl dt2 dt3 dangle) Obj abruptly changes motion direction after
heading in one direction for some time.

runningStraight (obj distance) Obj is running fairly straight for at least distance.

runningStraightTime (obj frames) Obj is running fairly straight for at least frames.

runningAngled (obj distance angle referenceReg) Obj is running at approximately the
given angle with respect the reference region for at least distance.
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runningAngledTime (obj frames angle referenceReg) Obj is running at approximately
the given angle with respect the reference region for at least frames.

runningCurved (obj distance) Obj is running in an approximately curved motion for at
least distance.

runningCurvedTime (obj frames) Obj is running in an approximately curved motion for
at least frames.

runningToward (obji obj2) Obj2 is running toward obj2.

runningAwayFrom (obji obj2) Obj2 is running away from obj2.

runningTowardReg (obj region) Obj is running toward region.

runningAwayFromReg (obj region) Obj is running away from region.

turnClockwise (obj) Obj is turning clockwise.

turnCounterClockwise (obj) Obj is turning counter clockwise.

turnTowards (obj1 obj2) Obj l is turning toward obj2.

passBy (obj1 obj2) Obj 1 is passing by obj2.

following (obji obj2 time) Obj 1 is following obj2 for at least time.

F.2 Football-specific action detectors

Some of these detectors set special variable values when the detector reaches a threshold
criteria for the first time. The threshold criteria is typically observing a certainty above
some threshold for a specified amount of time. Many of these are actually called from
within the networks in the next section.

ballCarrier (obj) Determine if in local time window, obj is the ballcarrier.

ballRunAcrossLine () The BALL object has been run, not thrown, across LOS in recent
time window.

block (obj region) Obj is blocking near region.

blockForBC (obj) Obj is blocking for the ballcarrier.

BlockQBPass (obj) Obj is pass blocking for the QB.

catchPass (obj) Obj is trying to catch a pass.
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cutDownField (obj) Obj is suddenly cutting downfield after running a man-in-motion
pattern.

dropBack (obj d) Obj, who must be the QB, is dropping back d yards.

fakeHandoff (obj 1 obj2) Over short time window, Obj 1 is in a position to fake a handoff
to obj2.

interceptDefender (obj) Obj is intercepting a nearby defender.

manInMotion (obj) Obj is running a man-in-motion movement.

pullLeft (obj) Obj is pulling left out of the formation.

pullRight (obj) Obj is pulling right out the formation.

receiveBaliSnap (obj) Obj is receiving the snap.

receiveToss (obj) Obj 1 is receiving a toss from obj2.

runBehind (objI obj2) Obj 1 is running behind (with respect to the LOS) obj2.

runInFront (obj1 obj2) Obj 1 is running in front (with respect to the LOS) obj2.

setlnPosition (obj posReg) Obj is set, motionless, in posReg before the play begins wait-
ing for the hike.

snapToQB (obj) Obj is snapping the ball to the QB.

snappingBall () The ball is Sets snapTime variable.

throwPass (obj) Obj is throwing the ball for a pass.

throwingBall () Sets throwTime variable.

playInProgress () The ball has been hiked and is still in play.

elligToRec (obj) Obj is eligible to receive the ball for a pass.

losBaliCrossing () The ball is crossing the LOS. Sets losCrossTime variable.

passPatstartingBack (obj) Visual cues characteristic of pass patterns that start from the
offensive back positions.

passPatStartingWides (obj) Visual cues characteristic of pass patterns that start from the
offensive back positions for some sweeps.

passPatStartingEnd (obj) Visual cues characteristic of pass patterns that start from the
tight end or WB positions.
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passPatStreaking (obj distance angle inRegion toRegion distLOSatStart) Pass pattern
segment where eligible receiver offensive obj runs approximately straight at least dis-
tance yards at an angle of approximately angle with respect to the losReg (where

0 is parallel and 90 is perpendicular). This occurs while in region inRegion and
when the obj is headed towards region toRegion. Finally, distLOSatStart specifies
the approximate distance from the losReg that the motion starts.

passPatStreakingThroughLine (obj distance distOut) Pass pattern segment where eli-
gible receiver offensive obj runs straight through the offensive linemen shortly after
snap for at least distance yards to approximately distOut yards from the losReg.

passPatParaLOS (obj distance inRegion towardsReg distLOSatStart) Pass pattern seg-
ment where eligible receiver offensive obj runs parallel to the losReg for at least
distance yards in inRegion heading towards towardsReg and at approximately dist-
LOSatStart yards from the LOS.

passPatParaLOSAway (obj distance inRegion towardsReg distLOSatStart awayReg)
passPatParaLos where obj is moving away from from awayReg.

passPatParaLOSCenter (obj distance inRegion towardsReg distLOSatStart) Pass pat-
tern segment where eligible receiver offensive obj runs parallel to the losReg for at
least distance yards while in inRegion moving towards towardsReg at approximately
distLOSatStart yards from the losReg at the start.

passPatCutting (obj angle towardsReg locationReg) Pass pattern segment where run-

ning eligible receiver offensive obj makes a sharp (e.g. about angle degrees) change
in motion in direction heading to towardsReg around locationReg.

passPatCurling (obj towardsReg locationReg) Pass pattern segment where running eli-
gible receiver offensive obj makes a gradual change in motion in direction heading
to towardsReg around locationReg.

passPatCuttingStop (obj angle towardsReg locationReg) Pass pattern segment where
running eligible receiver offensive obj performs passPatHooking and then stops
abruptly.

passPatCurling (obj towardsRegionStart towardsRegionEnd locationReg distanceLOSat-
Start) Pass pattern segment where eligible receiver offensive obj runs towards to-

wardsRegionStart and then curves towards towardsRegionEnd near locationReg and

approximately distancLOSatStart yards from the losReg.
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This appendix describes the heuristic functions used to compute the temporal functions
given goal likelihood curves.

G.1 ObservedNow

Instantaneous value indicating certainty that some goal is being observed at the given time.
Assume:

e Current time, t

e Goal, g

* Likelihood value of goal at t, 1,(t), where 1,(t) = 0 when g(t) = NULL.

* Evidence function minimal width threshold, w.

* Sum, S = TE' lg(r)

* ObservedNow(g)t = S
Wg

G.2 Observed

The maximum value for ObservedNow for frames 0 - t.

e Observed(g)t = argmax(ObservedNow(g)o,...,ObservedNow(g)t)

G.3 BeforeNow

Instantaneous value indicating certainty that some goal, gI is observed as before some other
goal, g2 at the given time.

e Current time, t

e Goall, g l

e Goal2, g2

* Minimum before-gap-width, w = min(wg i, Wg2)

e Difference between goal observed values at t, Dt = max(0, g2 - g l)

* Maximum difference between two goal values at anytime, Dmax =argmax(Do,. . .,D),
where tmax indicates the time frame of Dma.



G.4. BEFORE

* Scaling factor, based on width of temporal interval from current time to time indicating

the maximum difference between two goals, s = t-tax

* BeforeNow(g)t = s * min(Dt, Dmax)

G.4 Before

The maximum value for BeforeNow for frames 0 - t.

e BeforeNow(g)t = argmax(BeforeNow(g)o,.. .,BeforeNow(g)t)

G.5 AroundNow

Instantaneous value indicating certainty that some goal, g l is observed as around some

other goal, g2 at the given time.

* Current time, t

e Goall, g l

* Goal2, g2

* Minimum overlap width, w = min(wgi, Wg2)

* S = 1 _ (ObservedNow(gl), * ObservedNow(g2),)

9 AroundNow(g)t =
w

G.6 Around

The maximum value for AroundNow for frames 0 - t.

* AroundNow(g)t = argmax(AroundNow(g)o,... ,AroundNow(g)t)
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This work is dedicated to anyone who actually read this far..

237


