32 research outputs found

    No-reference Image Denoising Quality Assessment

    Get PDF
    A wide variety of image denoising methods are available now. However, the performance of a denoising algorithm often depends on individual input noisy images as well as its parameter setting. In this paper, we present a no-reference image denoising quality assessment method that can be used to select for an input noisy image the right denoising algorithm with the optimal parameter setting. This is a challenging task as no ground truth is available. This paper presents a data-driven approach to learn to predict image denoising quality. Our method is based on the observation that while individual existing quality metrics and denoising models alone cannot robustly rank denoising results, they often complement each other. We accordingly design denoising quality features based on these existing metrics and models and then use Random Forests Regression to aggregate them into a more powerful unified metric. Our experiments on images with various types and levels of noise show that our no-reference denoising quality assessment method significantly outperforms the state-of-the-art quality metrics. This paper also provides a method that leverages our quality assessment method to automatically tune the parameter settings of a denoising algorithm for an input noisy image to produce an optimal denoising result.Comment: 17 pages, 41 figures, accepted by Computer Vision Conference (CVC) 201

    Learning to Predict Image-based Rendering Artifacts with Respect to a Hidden Reference Image

    Full text link
    Image metrics predict the perceived per-pixel difference between a reference image and its degraded (e. g., re-rendered) version. In several important applications, the reference image is not available and image metrics cannot be applied. We devise a neural network architecture and training procedure that allows predicting the MSE, SSIM or VGG16 image difference from the distorted image alone while the reference is not observed. This is enabled by two insights: The first is to inject sufficiently many un-distorted natural image patches, which can be found in arbitrary amounts and are known to have no perceivable difference to themselves. This avoids false positives. The second is to balance the learning, where it is carefully made sure that all image errors are equally likely, avoiding false negatives. Surprisingly, we observe, that the resulting no-reference metric, subjectively, can even perform better than the reference-based one, as it had to become robust against mis-alignments. We evaluate the effectiveness of our approach in an image-based rendering context, both quantitatively and qualitatively. Finally, we demonstrate two applications which reduce light field capture time and provide guidance for interactive depth adjustment.Comment: 13 pages, 11 figure

    Using the Natural Scenes’ Edges for Assessing Image Quality Blindly and Efficiently

    Get PDF
    Two real blind/no-reference (NR) image quality assessment (IQA) algorithms in the spatial domain are developed. To measure image quality, the introduced approach uses an unprecedented concept for gathering a set of novel features based on edges of natural scenes. The enhanced sensitivity of the human eye to the information carried by edge and contour of an image supports this claim. The effectiveness of the proposed technique in quantifying image quality has been studied. The gathered features are formed using both Weibull distribution statistics and two sharpness functions to devise two separate NR IQA algorithms. The presented algorithms do not need training on databases of human judgments or even prior knowledge about expected distortions, so they are real NR IQA algorithms. In contrast to the most general no-reference IQA, the model used for this study is generic and has been created in such a way that it is not specified to any particular distortion type. When testing the proposed algorithms on LIVE database, experiments show that they correlate well with subjective opinion scores. They also show that the introduced methods significantly outperform the popular full-reference peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) methods. Besides they outperform the recently developed NR natural image quality evaluator (NIQE) model

    Improved Extreme Learning Machine and Its Application in Image Quality Assessment

    Get PDF
    Extreme learning machine (ELM) is a new class of single-hidden layer feedforward neural network (SLFN), which is simple in theory and fast in implementation. Zong et al. propose a weighted extreme learning machine for learning data with imbalanced class distribution, which maintains the advantages from original ELM. However, the current reported ELM and its improved version are only based on the empirical risk minimization principle, which may suffer from overfitting. To solve the overfitting troubles, in this paper, we incorporate the structural risk minimization principle into the (weighted) ELM, and propose a modified (weighted) extreme learning machine (M-ELM and M-WELM). Experimental results show that our proposed M-WELM outperforms the current reported extreme learning machine algorithm in image quality assessment

    Deep CNN Model for Non-Screen Content and Screen Content Image Quality Assessment

    Get PDF
    In the current world, user experience in various platforms matters a lot for different organizations. But providing a better experience can be challenging if the multimedia content on online platforms is having different kinds of distortions which impact the overall experience of the user. There can be various reasons behind distortions such as compression or minimal lighting condition while taking photos. In this work, a deep CNN-based Non-Screen Content and Screen Content NR-IQA framework is proposed which solves this issue in a more effective way. The framework is known as DNSSCIQ. Two different architectures are proposed based upon the input image type whether the input is a screen content or non-screen content image. This work attempts to solve this by evaluating the quality of such image
    corecore