57,614 research outputs found

    Sparse Variation Dictionary Learning for Face Recognition with a Single Training Sample per Person

    Full text link
    Face recognition (FR) with a single training sample per person (STSPP) is a very challenging problem due to the lack of information to predict the variations in the query sample. Sparse representation based classification has shown interesting results in robust FR, however, its performance will deteriorate much for FR with STSPP. To address this issue, in this paper we learn a sparse variation dictionary from a generic training set to improve the query sample representation by STSPP. Instead of learning from the generic training set independently w.r.t. the gallery set, the proposed sparse variation dictionary learning (SVDL) method is adaptive to the gallery set by jointly learning a projection to connect the generic training set with the gallery set. The learnt sparse variation dictionary can be easily integrated into the framework of sparse representation based classification so that various variations in face images, including illumination, expression, occlusion, pose, etc., can be better handled. Experiments on the large-scale CMU Multi-PIE, FRGC and LFW databases demonstrate the promising performance of SVDL on FR with STSPP.Department of ComputingRefereed conference pape

    Sparse Methods for Robust and Efficient Visual Recognition

    Get PDF
    Visual recognition has been a subject of extensive research in computer vision. A vast literature exists on feature extraction and learning methods for recognition. However, due to large variations in visual data, robust visual recognition is still an open problem. In recent years, sparse representation-based methods have become popular for visual recognition. By learning a compact dictionary of data and exploiting the notion of sparsity, start-of-the-art results have been obtained on many recognition tasks. However, existing data-driven sparse model techniques may not be optimal for some challenging recognition problems. In this dissertation, we consider some of these recognition tasks and present approaches based on sparse coding for robust and efficient recognition in such cases. First we study the problem of low-resolution face recognition. This is a challenging problem, and methods have been proposed using super-resolution and machine learning based techniques. However, these methods cannot handle variations like illumination changes which can happen at low resolutions, and degrade the performance. We propose a generative approach for classifying low resolution faces, by exploiting 3D face models. Further, we propose a joint sparse coding framework for robust classification at low resolutions. The effectiveness of the method is demonstrated on different face datasets. In the second part, we study a robust feature-level fusion method for multimodal biometric recognition. Although score-level and decision-level fusion methods exist in biometric literature, feature-level fusion is challenging due to different output formats of biometric modalities. In this work, we propose a novel sparse representation-based method for multimodal fusion, and present experimental results for a large multimodal dataset. Robustness to noise and occlusion are demonstrated. In the third part, we consider the problem of domain adaptation, where we want to learn effective classifiers for cases where the test images come from a different distribution than the training data. Typically, due to high cost of human annotation, very few labeled samples are available for images in the test domain. Specifically, we study the problem of adapting sparse dictionary-based classification methods for such cases. We describe a technique which jointly learns projections of data in the two domains, and a latent dictionary which can succinctly represent both domains in the projected low dimensional space. The proposed method is efficient and performs on par or better than many competing state-of-the-art methods. Lastly, we study an emerging analysis framework of sparse coding for image classification. We show that the analysis sparse coding can give similar performance as the typical synthesis sparse coding methods, while being much faster at sparse encoding. In the end, we conclude the dissertation with discussions and possible future directions

    Joint optimization of manifold learning and sparse representations for face and gesture analysis

    Get PDF
    Face and gesture understanding algorithms are powerful enablers in intelligent vision systems for surveillance, security, entertainment, and smart spaces. In the future, complex networks of sensors and cameras may disperse directions to lost tourists, perform directory lookups in the office lobby, or contact the proper authorities in case of an emergency. To be effective, these systems will need to embrace human subtleties while interacting with people in their natural conditions. Computer vision and machine learning techniques have recently become adept at solving face and gesture tasks using posed datasets in controlled conditions. However, spontaneous human behavior under unconstrained conditions, or in the wild, is more complex and is subject to considerable variability from one person to the next. Uncontrolled conditions such as lighting, resolution, noise, occlusions, pose, and temporal variations complicate the matter further. This thesis advances the field of face and gesture analysis by introducing a new machine learning framework based upon dimensionality reduction and sparse representations that is shown to be robust in posed as well as natural conditions. Dimensionality reduction methods take complex objects, such as facial images, and attempt to learn lower dimensional representations embedded in the higher dimensional data. These alternate feature spaces are computationally more efficient and often more discriminative. The performance of various dimensionality reduction methods on geometric and appearance based facial attributes are studied leading to robust facial pose and expression recognition models. The parsimonious nature of sparse representations (SR) has successfully been exploited for the development of highly accurate classifiers for various applications. Despite the successes of SR techniques, large dictionaries and high dimensional data can make these classifiers computationally demanding. Further, sparse classifiers are subject to the adverse effects of a phenomenon known as coefficient contamination, where for example variations in pose may affect identity and expression recognition. This thesis analyzes the interaction between dimensionality reduction and sparse representations to present a unified sparse representation classification framework that addresses both issues of computational complexity and coefficient contamination. Semi-supervised dimensionality reduction is shown to mitigate the coefficient contamination problems associated with SR classifiers. The combination of semi-supervised dimensionality reduction with SR systems forms the cornerstone for a new face and gesture framework called Manifold based Sparse Representations (MSR). MSR is shown to deliver state-of-the-art facial understanding capabilities. To demonstrate the applicability of MSR to new domains, MSR is expanded to include temporal dynamics. The joint optimization of dimensionality reduction and SRs for classification purposes is a relatively new field. The combination of both concepts into a single objective function produce a relation that is neither convex, nor directly solvable. This thesis studies this problem to introduce a new jointly optimized framework. This framework, termed LGE-KSVD, utilizes variants of Linear extension of Graph Embedding (LGE) along with modified K-SVD dictionary learning to jointly learn the dimensionality reduction matrix, sparse representation dictionary, sparse coefficients, and sparsity-based classifier. By injecting LGE concepts directly into the K-SVD learning procedure, this research removes the support constraints K-SVD imparts on dictionary element discovery. Results are shown for facial recognition, facial expression recognition, human activity analysis, and with the addition of a concept called active difference signatures, delivers robust gesture recognition from Kinect or similar depth cameras

    Sparse and Deep Representations for Face Recognition and Object Detection

    Get PDF
    Face recognition and object detection are two very fundamental visual recognition applications in computer vision. How to learn “good” feature representations using machine learning has become the cornerstone of perception-based systems. A good feature representation is often the one that is robust and discriminative to multiple instances of the same category. Starting from features such as intensity, histogram etc. in the image, followed by hand-crafted features, to the most recent sophisticated deep feature representations, we have witnessed the remarkable improvement in the ability of a feature learning algorithm to perform pattern recognition tasks such as face recognition and object detection. One of the conventional feature learning methods, dictionary learning has been proposed to learn discriminative and sparse representations for visual recognition. These dictionary learning methods can learn both representative and discriminative dictionaries, and the associated sparse representations are effective for vision tasks such as face recognition. More recently, deep features have been widely adopted by the computer vision community owing to the powerful deep neural network, which is capable of distilling information from high dimensional input spaces to a low dimensional semantic space. The research problems which comprise this dissertation lie at the cross section of conventional feature and deep feature learning approaches. Thus, in this dissertation, we study both sparse and deep representations for face recognition and object detection. First, we begin by studying the topic of spare representations. We present a simple thresholded feature learning algorithm under sparse support recovery. We show that under certain conditions, the thresholded feature exactly recovers the nonzero support of the sparse code. Secondly, based on the theoretical guarantees, we derive the model and algorithm named Dictionary Learning for Thresholded Features (DLTF), to learn the dictionary that is optimized for the thresholded feature. The DLTF dictionaries are specifically designed for using the thresholded feature at inference, which prioritize simplicity, efficiency, general usability and theoretical guarantees. Both synthetic simulations and real-data experiments (i.e. image clustering and unsupervised hashing) verify the competitive quantitative results and remarkable efficiency of applying thresholded features with DLTF dictionaries. Continuing our focus on investigating the sparse representation and its application to computer vision tasks, we address the sparse representations for unconstrained face verification/recognition problem. In the first part, we address the video-based face recognition problem since it brings more challenges due to the fact that the videos are often acquired under significant variations in poses, expressions, lighting conditions and backgrounds. In order to extract representations that are robust to these variations, we propose a structured dictionary learning framework. Specifically, we employ dictionary learning and low-rank approximation methods to preserve the invariant structure of face images in videos. The learned structured dictionary is both discriminative and reconstructive. We demonstrate the effectiveness of our approach through extensive experiments on three video-based face recognition datasets. Recently, template-based face verification has gained more popularity. Unlike traditional verification tasks, which evaluate on image-to-image or video-to-video pairs, template-based face verification/recognition methods can exploit training and/or gallery data containing a mixture of both images or videos from the person of interest. In the second part, we propose a regularized sparse coding approach for template-based face verification. First, we construct a reference dictionary, which represents the training set. Then we learn the discriminative sparse codes of the templates for verification through the proposed template regularized sparse coding approach. Finally, we measure the similarity between templates. However, in real world scenarios, training and test data are sampled from different distributions. Therefore, we also extend the dictionary learning techniques to tackle the domain adaptation problem, where the data from the training set (source domain) and test set (target domain) have different underlying distributions (domain shift). We propose a domain-adaptive dictionary learning framework to model the domain shift by generating a set of intermediate domains. These intermediate domains bridge the gap between the source and target domains. Specifically, we not only learn a common dictionary to encode the domain-shared features but also learn a set of domain specific dictionaries to model the domain shift. This separation enables us to learn more compact and reconstructive dictionaries for domain adaptation. The domain-adaptive features for recognition are finally derived by aligning all the recovered feature representations of both source and target along the domain path. We evaluate our approach on both cross-domain face recognition and object classification tasks. Finally, we study another fundamental problem in computer vision: generic object detection. Object detection has become one of the most valuable pattern recognition tasks, with great benefits in scene understanding, face recognition, action recognition, robotics and self-driving vehicles, etc. We propose a novel object detector named "Deep Regionlets" by blending deep learning and the traditional regionlet method. The proposed framework "Deep Regionlets" is able to address the limitations of traditional regionlet methods, leading to significant precision improvement by exploiting the power of deep convolutional neural networks. Furthermore, we conduct a detailed analysis of our approach to understand its merits and properties. Extensive experiments on two detection benchmark datasets show that the proposed deep regionlet approach outperforms several state-of-the-art competitors
    corecore