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Face recognition and object detection are two very fundamental visual recog-

nition applications in computer vision. How to learn good feature representations

using machine learning has become the cornerstone of perception-based systems. A

good feature representation is often the one that is robust and discriminative to

multiple instances of the same category. Starting from features such as intensity,

histogram etc. in the image, followed by hand-crafted features, to the most recent so-

phisticated deep feature representations, we have witnessed the remarkable improve-

ment in the ability of a feature learning algorithm to perform pattern recognition

tasks such as face recognition and object detection. One of the conventional feature

learning methods, dictionary learning has been proposed to learn discriminative and

sparse representations for visual recognition. These dictionary learning methods can

learn both representative and discriminative dictionaries, and the associated sparse

representations are effective for vision tasks such as face recognition. More recently,

deep features have been widely adopted by the computer vision community owing



to the powerful deep neural network, which is capable of distilling information from

high dimensional input spaces to a low dimensional semantic space. The research

problems which comprise this dissertation lie at the cross section of conventional

feature and deep feature learning approaches. Thus, in this dissertation, we study

both sparse and deep representations for face recognition and object detection.

First, we begin by studying the topic of spare representations. We present a

simple thresholded feature learning algorithm under sparse support recovery. We

show that under certain conditions, the thresholded feature exactly recovers the

nonzero support of the sparse code. Secondly, based on the theoretical guarantees,

we derive the model and algorithm named Dictionary Learning for Thresholded Fea-

tures (DLTF), to learn the dictionary that is optimized for the thresholded feature.

The DLTF dictionaries are specifically designed for using the thresholded feature

at inference, which prioritize simplicity, efficiency, general usability and theoretical

guarantees. Both synthetic simulations and real-data experiments (i.e. image clus-

tering and unsupervised hashing) verify the competitive quantitative results and

remarkable efficiency of applying thresholded features with DLTF dictionaries.

Continuing our focus on investigating the sparse representation and its ap-

plication to computer vision tasks, we address the sparse representations for un-

constrained face verification/recognition problem. In the first part, we address the

video-based face recognition problem since it brings more challenges due to the fact

that the videos are often acquired under significant variations in poses, expressions,

lighting conditions and backgrounds. In order to extract representations that are

robust to these variations, we propose a structured dictionary learning framework.



Specifically, we employ dictionary learning and low-rank approximation methods to

preserve the invariant structure of face images in videos. The learned structured dic-

tionary is both discriminative and reconstructive. We demonstrate the effectiveness

of our approach through extensive experiments on three video-based face recognition

datasets.

Recently, template-based face verification has gained more popularity. Unlike

traditional verification tasks, which evaluate on image-to-image or video-to-video

pairs, template-based face verification/recognition methods can exploit training

and/or gallery data containing a mixture of both images or videos from the per-

son of interest. In the second part, we propose a regularized sparse coding approach

for template-based face verification. First, we construct a reference dictionary, which

represents the training set. Then we learn the discriminative sparse codes of the

templates for verification through the proposed template regularized sparse coding

approach. Finally, we measure the similarity between templates.

However, in real world scenarios, training and test data are sampled from dif-

ferent distributions. Therefore, we also extend the dictionary learning techniques to

tackle the domain adaptation problem, where the data from the training set (source

domain) and test set (target domain) have different underlying distributions (do-

main shift). We propose a domain-adaptive dictionary learning framework to model

the domain shift by generating a set of intermediate domains. These intermediate

domains bridge the gap between the source and target domains. Specifically, we

not only learn a common dictionary to encode the domain-shared features but also

learn a set of domain specific dictionaries to model the domain shift. This separation



enables us to learn more compact and reconstructive dictionaries for domain adap-

tation. The domain-adaptive features for recognition are finally derived by aligning

all the recovered feature representations of both source and target along the domain

path. We evaluate our approach on both cross-domain face recognition and object

classification tasks.

Finally, we study another fundamental problem in computer vision: generic

object detection. Object detection has become one of the most valuable pattern

recognition tasks, with great benefits in scene understanding, face recognition, ac-

tion recognition, robotics and self-driving vehicles, etc. We propose a novel object

detector named ”Deep Regionlets” by blending deep learning and the traditional re-

gionlet method. The proposed framework ”Deep Regionlets” is able to address the

limitations of traditional regionlet methods, leading to significant precision improve-

ment by exploiting the power of deep convolutional neural networks. Furthermore,

we conduct a detailed analysis of our approach to understand its merits and prop-

erties. Extensive experiments on two detection benchmark datasets show that the

proposed deep regionlet approach outperforms several state-of-the-art competitors.
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Chapter 1: Introduction

1.1 Motivation

Face recognition and object detection are two very fundamental visual recog-

nition applications in computer vision. How to learn good feature representations

using machine learning, has become the cornerstone of perception-based systems.

A good feature representation is often the one that is robust and discriminative to

multiple instances of the same category. Starting from primitive features such as

pixel intensities or histograms, followed by hand-crafted features such as Histogram

of Gradients (HOG) [45], Scale Invariant Feature Transform (SIFT) [126, 127] and

Speeded-Up Robust Features (SURP) [13], to the sophisticated deep feature repre-

sentations, we have witnessed remarkable performance improvements in tasks such

as face recognition and object detection.

Motivated by sparse coding theory, dictionary learning has been proposed to

learn discriminative and sparse representations for visual recognition [1, 156, 212].

These dictionary learning methods can learn both representative and discriminative

dictionaries, and the associated sparse representations have been deployed for tasks

such as face recognition. More recently, deep features have been widely adopted by

the computer vision community owing to the powerful deep neural network, which
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is capable of distilling information from high dimensional input spaces to a low

dimensional semantic space.

The research problems which comprise this dissertation lie at the cross section

of conventional feature learning and deep feature learning. Thus, in this disserta-

tion, we study both sparse and deep representations for face recognition and object

detection.

1.2 Proposed Approaches and Contributions

In this section, we briefly describe the problem addressed in this dissertation

along with robust solutions to address them.

1.2.1 Learning Simple Thresholded Features with Sparse Support

Recovery

We begin this dissertation by studying the topic of spare representations in

Chapter 2. We present a simple thresholded feature learning algorithm under sparse

support recovery. First, we show that under certain conditions, the thresholded fea-

ture exactly recovers the nonzero support of the sparse code. The support recovery

is a core problem in sparse signal recovery: if the nonzero support set is correctly

identified, sparse representation can be obtained using least squares method. More-

over, the support itself makes a useful feature in certain scenarios, such as quan-

tization and hashing. Second, based on the theoretical guarantees, we derive an

algorithm named Dictionary Learning for Thresholded Features (DLTF), to learn

2



the dictionary that is optimized for the thresholded feature. The DLTF dictionaries

are specifically designed for using the thresholded feature at inference, which pri-

oritize simplicity, efficiency, general usability and theoretical guarantees. Last but

not least, we derive a novel efficient O(m logm) algorithm for the (k, 2) norm prox-

imal subproblem. Both synthetic simulations and real-data experiments (i.e. image

clustering and unsupervised hashing) verify the competitive quantitative results and

remarkable efficiency of applying thresholded features with DLTF dictionaries.

1.2.2 Sparse Representations for Face Recognition

Continuing our focus on investigating the sparse representation and its applica-

tion to computer vision, we consider the sparse representations for the unconstrained

face verification/recognition problem. In the first part of Chapter 3, we consider the

video-based face recognition problem. Given a video sequence, we aim to recognize

the subject in the video. While video provides more samples from frames contain-

ing the person of interest, it brings more challenges as different video sequences

of the same subject may contain great variations in resolution, illumination, pose

and facial expressions. Therefore, it is important to represent and model the same

subject against these intra-person variations. To address this, we propose a struc-

tured dictionary learning framework for video-based face recognition. The learned

dictionary has the following advantages. We employ dictionary learning and low-

rank approximation methods to preserve the invariant structure of face images in

videos. The learned dictionary is both discriminative and reconstructive. Thus, we
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not only minimize the reconstruction error of all the face images but also encourage

a sub-dictionary to represent the corresponding subject from different videos. More-

over, by introducing the low-rank approximation, the proposed method is able to

discover invariant structured information from different videos of the same subject.

To this end, an efficient alternating algorithm is employed to learn the structured

dictionary. Experimental results on the three benchmark video-based face recogni-

tion datasets show that the proposed framework yields favorable performance over

state-of-the-art methods.

In the second part of Chapter 3, we study the template-based face verification

problem. Recently, template-based face recognition has gained more popularity in

computer vision community. A template is a mixture of different media data such

as a single image or an image set or video clips containing the person of interest.

The notion of a template is useful in real world applications because it provides

more flexibility and longitudinal access control of data from subjects. Different

from the traditional face verification scenario which verifies whether two images

or videos in a pair belong to the same subject as in Labeled Face in the Wild

dataset [91] or YouTube Face dataset [193], template-based face verification evalu-

ates the pair over templates as introduced in [103]. It is noted that the performance

may deteriorate if we treat a template as the image set containing the indepen-

dent samples and apply existing dictionary-based methods [81]. To overcome such

limitations, we propose a regularized sparse coding approach for template-based un-

constrained face verification. The proposed approach adapts to training and gallery

data using three steps. First, we construct a reference dictionary, which represents
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the training set efficiently. Then we learn the discriminative sparse codes of the

templates for verification using the template regularized sparse coding approach.

Finally, we measure the similarity between templates by computing the reference

score and template adaptive scores. An efficient algorithm is also employed to learn

the template regularized sparse codes. Extensive experiments on template-based

verification benchmark dataset JANUS IJB-A [103] demonstrate that the proposed

approach outperforms several recent literatures.

1.2.3 Cross-domain Visual Recognition via Domain Adaptive Dictio-

nary Learning

In Chapter 4, we consider scenarios in which the training data (source do-

main) and test data (target domain) are sampled from different underlying dis-

tribution. For instance, training and testing images may be acquired under dif-

ferent environments, viewpoints and illumination conditions in application such as

face recognition, object classification, human detection and video concept detection.

This is known as the domain adaptation problem. Furthermore, we focus on the

more challenging unsupervised settings where the samples in the target domain are

unlabeled. It would be also highly desirable for recognition systems to automatically

adapt to a different domain without any additional labeling efforts.

We propose a novel domain-adaptive dictionary learning approach to gener-

ate a set of intermediate domains which bridge the gap between source and target

domains. Our approach learns two types of dictionaries: a common dictionary
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and a domain-specific dictionary. The common dictionary shared by all domains

is used to extract domain-shared features, whereas the domain-specific dictionary

which is incoherent to the common dictionary models the domain shift. The sep-

aration of the common dictionary from domain-specific dictionary enables us to

learn more compact and reconstructive dictionaries for deriving domain-adaptive

features. Meanwhile, our approach gradually recovers the feature representations

of both source and target data along the domain path. Final domain adaptive fea-

tures are derived by aligning all the recovered domain data. Extensive experiments

on cross-domain face recognition and object classification show that the proposed

approach significantly outperforms state-of-the-art methods.

1.2.4 Deep Regionlets: Blended Representation and Deep Learning

for Generic Object Detection

Finally in Chapter 5, we study another fundamental problem in computer

vision: generic object detection. Object detection has become one of the most

valuable pattern recognition tasks, with applications in scene understanding, face

recognition, action recognition, robotics and self-driving vehicles, etc. In this chap-

ter, we propose a novel object detector named ”Deep Regionlets” by blending

deep learning and the traditional regionlet method [185,226]. The proposed frame-

work ”Deep Regionlets” is able to address the limitations of traditional regionlet

methods, leading to significant precision improvement by exploiting the power of

deep convolutional neural networks. More specifically, we design a region selection
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network, which first performs non-rectangular regions selection within the detec-

tion bounding box generated from a detection window proposal. It provides more

flexibility in modeling objects with variable shapes and deformable parts. We also

propose a deep regionlet learning module, including feature transformation and a

gating network. The gating network serves as a soft regionlet selector and lets the

network focus on features that benefit detection performance. Furthermore, we con-

duct a detailed analysis of our approach to understand its merits and properties.

Extensive experiments on two detection benchmark datasets, PASCAL VOC [58]

and Microsoft COCO [118] show that the proposed deep regionlet approach outper-

forms several state-of-the-art competitors.

1.3 Organization

The rest of the dissertation is organized as follows. In Chapter 2, we present

a simple thresholded feature learning algorithm under spare support recovery. In

the first part of Chapter 3, we present a structured dictionary learning method for

video-based face recognition. In the second part, we present a template regularized

sparse coding framework to address the template-based face verification problem. In

Chapter 4, we consider the domain adaption problem where data from the training

set and test set have different underlying distributions. We propose a domain adap-

tive dictionary learning method to bridge the domain shift. We address the generic

object detection problem in Chapter 5 and propose a novel object detector which

blends deep learning and the traditional regionlet method. Finally, in Chapter 6,
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we conclude the dissertation and discuss possible future research directions.
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Chapter 2: Learning Simple Thresholded Features with Sparse Sup-

port Recovery

2.1 Introduction

Let Ωk = {z ∈ Rm : ||z||0 ≤ k}. For a data sample x ∈ Rn, the sparse

coding technique [1] aims to find the sparse code z ∈ Ωk to represent x compactly,

i.e., x ≈ Wz, using a dictionary W ∈ Rn×m = [w1,w2, ...,wm], where each atom

wi ∈ Rn is assumed to have unit `2-norm, i = 1, ...,m, to avoid scale ambiguity.

With a properly designed or learned W , sparse coding is known to be powerful in

numerous reconstruction or discriminative tasks such as signal sensing, classification

and clustering [12, 37, 94, 148, 172, 189, 200, 201, 214, 216] . One crucial drawback of

sparse coding lies in its prohibitive cost of computing the sparse code at test time,

which calls for iterative greedy or convex optimization algorithms [17, 57]. This

drawback limits the applicability of sparse codes in large-scale, high-dimensional

problems, or when nearly real-time processing is desired.

Among a few fast sparse coding approximations, the simplest choice is arguably

the thresholded feature [31, 49,59,136,171]:

z̄ := maxk(W
>x), (2.1)
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where maxk retains the k largest-magnitude entries while setting others to zero1.

The threshold feature z̄ also belongs to Ωk, and is extremely efficient and easy to

implement as it involves only a matrix-vector multiplication and a maxk opera-

tion. [38,39] showed that such a simple encoding displays remarkable discriminative

ability, and can often achieve comparable results to standard sparse coding, provided

that the number of labeled samples and the dictionary size are large enough. [59]

pointed out that the thresholded feature corresponds to an inexact approximation of

sparse coding, where only one iteration of proximal gradient algorithm is unfolded.

One may also notice the interesting resemblance of (2.1) to a standard linear fully

connected layer plus neurons in deep learning [107], on which we will discuss more

later.

While dictionary learning [10,59,133,139,148,154,155,157,200,201] has been

well developed for standard sparse coding [1], the choice of W remains relatively

unexplored for the thresholded feature. [49] used standard dictionaries, leading to a

fairly rough approximation to the exact iterative solution, with sub-optimal results.

[59] relied on supervised joint training to learn W , which is similar to learning a

single-layer neural network classifier and does not generalize to unsupervised feature

learning. Moreover, it is unclear how “roughly” z̄ approximates z, and in what

sense the former can be treated as a reliable substitute for the latter, leaving the

effectiveness and robustness of threshold features under question.

This chapter answers the above questions. Firstly, we show that under certain

conditions, the thresholded feature z̄ exactly recovers the nonzero support of the

1 [59] exploited a “soft” version of the thresholded feature, which can be analyzed similarly.
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sparse code z. The support recovery is a core problem in sparse signal recovery [210]:

if the nonzero support set is correctly identified, z can be obtained using the least

squares method. Moreover, the support itself makes a useful feature in certain

scenarios, such as quantization and hashing [37].

Secondly, based on the theoretical guarantees, we derive the model and algo-

rithm for Dictionary Learning for Thresholded Features (DLTF), to learn the dic-

tionary that is optimized for the thresholded feature. It is important to note that

DLTF is not “yet another” way of standard dictionary learning, whose inference

relies on iterative sparse solvers. Instead, it is a new type of dictionary learning,

specifically designed for using the thresholded feature (2.1) at inference, which pri-

oritize (extreme) simplicity, efficiency, general usability and theoretical guarantees.

Last but not least, in particular, we derive a novel efficient O(m logm) al-

gorithm for the (k, 2) norm proximal subproblem. Both synthetic simulations and

real-data experiments (i.e. image clustering and unsupervised hashing) verify the

competitive quantitative results and demonstrate the remarkable efficiency of ap-

plying thresholded features with DLTF dictionaries.

2.2 Support Recovery Guarantees for Thresholded Features

We present two support recovery guarantees, called the weak and the strong

recovery guarantees respectively. The weak recovery guarantee depends on mutual

incoherence [51], and the strong recovery guarantee takes advantage of the Restricted

Isometry Property (RIP) [22]. The two guarantees are called “weak” and “strong”
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respectively because of different sample complexity requirements: based on the re-

sults of [214], to uniformly recover z ∈ Ωk, the former requires O(k2 lnm) samples,

while the latter gives rise to the lower sample complexity of O(k lnm).

The two guarantees can be derived using classical techniques underlying the

compressive sensing theory [63] and iterative thresholding algorithm [17, 69, 73].

Full proof is detailed in appendices A and B. It is noted that our goal here is not to

provide a tighter bound than what is now available in the literature (i.e., Theorem

5.16 of [63]), but rather to illustrate what factors or quantities will affect the support

recovery in the special case of thresholded features. We will further discuss how these

guarantees motivate the proposed DLTF model in the next section.

2.2.1 The Weak Recovery Guarantee

For a simple “noiseless” model: x = Wz, without loss of generality, we assume

that the non-zero entries of z are sorted by absolute magnitude in a decreasing

order: |z1| ≥ |z2|... ≥ |zk|. We denote by supp(z) ∈ Bm the sparse support of z,

i.e., its i-th entry is 1 if zi is nonzero. We define the mutual incoherence [51] of W :

µW = max
i 6=j
|〈wi,wj〉|.

Theorem 1. If the sufficient condition kµW ≤ |zk|
2|z1| holds, then supp(z) = supp(z̄),

where z̄ := maxk(W
>x), .

A special case when z ∈ {0, 1}k follows immediately (the sgn indicator function

is defined to yield output 1 when the input is nonzero, and 0 elsewhere):

Corollary 1.1 Assume x = Wz, z ∈ Bm and ||z||0 ≤ k. If µW ≤ 1
2k

, then z

12



= sgn(z̄).

Theorem 1 can be further (loosely) extended to noisy case, when x is corrupted

by the noise e: x = Wz + e. Denote the mutual coherence between the dictionary

and the noise: µe = max
i
|〈wi, e〉|, e may follow any statistical distribution only if

µe can be properly bounded.

Corollary 1.2 Assume x = Wz + e. If kµW ≤ |zk|
2|z1| −

µe
|z1| , then supp(z) =

supp(z̄).

The noisy-case upper bound on kµW turns out to be close to the noiseless

bound, if the magnitudes of all nonzero entries in z increase proportionally, so that

|zk|
2|z1| remains unchanged but µe

|z1| vanishes. This is equivalent to improving the signal-

to-noise ratio (SNR) of the input signal.

2.2.2 The Strong Recovery Guarantee

Recall that the RIP [22] condition assumes:

Assumption 1. For ∀z ∈ Ωk, there exists δW ∈ (0, 1) s.t. (1 − δW ) ≤ ||Wz||2
||z||2 ≤

(1 + δW ).

We further introduce the stronger guarantee form:

Theorem 2. Assume x = Wz + e, z̄ = maxk(W
>x), z ∈ Ωk. If δW ∈ (0, 1 −

√
3

2
), then supp(z) = supp(z̄), given that the smallest nonzero element in z is large

enough:

|zk| ≥ 2
√

2δW − δ2
W ||z||2 + 2

∥∥max2k(W>e)
∥∥ . (2.2)
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When condition (2.2) holds, a lower bound for ||z|| can also be derived as:

||z|| ≥ 2
√
k

1− 2
√
k(2δW − δ2

W )

∥∥max2k(W>e)
∥∥ . (2.3)

To ensure 1− 2
√
k(2δW − δ2

W ) > 0, k must be less than 1
4(2δW−δ2W )

. Consistent with

the weak guarantee case, (2.2) and (2.3) also encourage small δW and k, uncorrelated

small noise and high SNR. Different from Theorem 1, Theorem 2 enforces no extra

requirement on the absolute magnitudes of the nonzero entries in z except for a

lower bound. It is also noted that Theorem 2 is stricter than original RIP [22]

constraint.

2.3 DLTF: A Dictionary Learning Model for Thresholded Features

2.3.1 Model Formulation

As illustrated by Theorems 1 and 2, in order to achieve perfect support re-

covery in the simple thresholded feature, two crucial points are (at least) required

in addition to the sparsity of z: 1) W has small µW and/or δW ; 2) the residual

e is small and nearly uncorrelated with W . Taking them into account, we design

the Dictionary Learning model for Thresholded Features. Specifically, we follow [55]

to encourage the Gram matrix of W to be close to the identity by minimizing

||W>W − I||2, which enforces W to have small µW or δW . Moreover, Theorem 2

suggests to minimize
∥∥max2k(W>e)

∥∥. It is noted that ||maxk(.)|| is a convex, sub-

differentiable vector norm, under the name of (k, 2) symmetric gauge norm [15], or

(k, 2) norm for short [174]. Thus we re-write ||max2k(W>e)||2 as ||W>e||22k,2 in what
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follows.

Let X ∈ Rn×N = {xi} be the training set, and Z ∈ Rm×N = {zi} be the

corresponding sparse codes. The proposed DLTF approach is to learn W with the

following properties: (1) X can be well approximated by WZ; (2) ∀i, supp(zi) and

supp(maxk(W
>xi)) are as close as possible, which is achieved through Theorems 1,

2 by minimizing ||W>W − I||2 and ||W>e||22k,2. In order to achieve the above goal,

we formulate the objective function as follows:

min
W,Q,Z

λ

2

N∑
i=1

||qi||22k,2 + ||W>W − I||2 +
θ

2
‖X −WZ‖2

s.t. Q = W>(X −WZ);

||zi||0 ≤ k, , i = 1, 2, ..., N ;

||wj|| = 1, j = 1, ...,m.

(2.4)

where Q = W>(X −WZ) ∈ Rm×N and qi(i = 1, ..., N) is the i-th column. λ, θ

are two scalars. We introduce Q to reduce the complexity of W since W is in-

volved in both the non-smooth (2k, 2) norm term and the diagonal penalty term

simultaneously.

2.3.2 Algorithm Development

We apply the optimization framework of Alternating Direction Method of

Multipliers (ADMM). The augmented Lagrangian function of (2.4) is:
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Algorithm 1: Algorithm to solve proximal mapping (2.8) for ordered and positive

vector.
Input: Vector c ∈ Rm, c ≥ 0 and c is in increasing order, parameter γ ≥ 0.

Result: Problem solution p∗.

u1:m−k = c1:m−k′ ,um−k′+1:m = 1
1+γ
cm−k′+1:m;

t1:m−k′ = 1, tm−k′+1:m = 1 + γ;

p∗ = Reduce(u, t, 1);

Reduce(u, t, j)

Let J be the dimension of u;

while j ≤ J do

if uj > uj+1 then

u′ = [u1:j−1,
tjuj+tj+1uj+1

tj+tj+1
,uj+2:end] ; // Remove uj+1

t′ = [t1:j−1, tj + tj+1, tj+2:end]; // Remove tj+1

x = Reduce(u′, t′,max(1, j − 1)) ; // Recursively invoke Reduce

return [x1:j,xj,xj+1:end] ; // Duplicate xj since xj = xj+1

end

j = j + 1;

end

return u
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λ

2

N∑
i=1

||qi||22k,2 + ||W>W − I||2 +
θ

2
‖X −WZ‖2

+ 〈Y,Q−W>(X −WZ)〉+
β

2
||Q−W>(X −WZ)||2

s.t. ||zi||0 ≤ k, , i = 1, 2, ..., N ;

||wj|| = 1, j = 1, 2, ...,m.

(2.5)

where Y ∈ Rm×N is the Lagrange multiplier and β is a positive constant. We then

sequentially solve the three subproblems at the t-th iteration (t = 0, 1, ...).

2.3.2.1 Z-subproblem

Solving Z is a standard sparse decomposition problem, which can be solved

separately for each zi using the iterative algorithm [17]:

Zt+1 = arg min
Z

θ

2
‖X −WtZ‖2 + 〈Yt,W>

t WtZ〉

+
β

2
||W>

t WtZ −W>
t X +Qt||2

s.t. ||zi||0 ≤ k, , i = 1, 2, ..., N.

(2.6)

2.3.2.2 Q-subproblem

The Q update could also be solved separately for each qi:

Qt+1 = arg min
Q

N∑
i=1

||qi||22k,2

+
β

λ
||Q− (W>

t X −W>
t WtZt+1 −

Yt
β

)||2
(2.7)

Let γ ≥ 0, and q, c ∈ Rm. Define the proximal mapping of the (k′, 2) norm for q:
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proxk
′,2
γ (c) = arg min

q
γ||q||2k′,2 + ||q − c||2 (2.8)

Problem (2.7) is converted to solving the proximal mapping (2.8) with γ = λ
β

and

k′ = 2k. To our best knowledge, only the basic subgradient method [174] was

exploited for the optimization of (k,2) norm in literature. We present an efficient

O(m logm) solution for (2.7) as described in next section.

2.3.2.3 W -subproblem

The W update solves the following manifold constrained problem:

Wt+1 = arg min
W
||W>W − I||2 +

θ

2
‖X −WZt+1‖2

− 〈Y,W>(X −WZt+1)〉

+
β

2
||Qt+1 −W>(X −WZt+1)||2

s.t. ||wj|| = 1, j = 1, 2, ...,m.

(2.9)

We apply the curvilinear search algorithm in [192] to solve (2.9) as it lies in

the spherical constraint.

Furthermore, Y is updated as: Yt+1 = Yt+β(Qt+1−W>
t+1X+W>

t+1Wt+1Zt+1).

2.4 Efficient O(m logm) Proximal Mapping of (k, 2) Norm

It is noted that solving (2.8) with subgradient descent is yet inefficient. There-

fore, we propose an efficient proximal algorithm for the (k, 2) norm.
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Theorem 3. The proximal mapping (2.8) is solved by Algorithm 1 in O(m logm)

time complexity.

Proof sketch: To prove Theorem 3, we first establish:

Lemma 4. For the problem (2.8) with c ≥ 0, the order of coordinates in optimal

solution q∗ is the same as the order of the corresponding coordinates in c.

Lemma 4 shows that the proximal mapping (2.8) will not change the sign of

c, i.e., for all i, sign(proxk
′,2
γ (c)i) = sign(ci). Then we only need to consider the

magnitude of entries in c. We can sort the entries of c (in magnitude). Therefore,

with additional time complexity O(m logm) for sorting, we can convert (2.8) with

any vector c ∈ Rm to the proximal mapping for ordered and positive vector.

We then introduce the following lemma:

Lemma 5. Optimization problem

min
x∈RJ

J∑
j=1

tj(xj − uj)
2 (2.10)

s. t. x1 ≤ x2 ≤ ... ≤ xJ (2.11)

can be solved by invoking the subroutine “Reduce(u, t, 1)” in Algorithm 1.

To solve (2.10), the key step is applying Lemma 6 stated below to iteratively

merge neighbor variables to obtain a reduced problem. When the reduced problem

has input u′ containing monotonically increasing elements, the solution x′ = u′.

Lemma 6. If uj > uj+1, then the optimal solution x∗ to (2.10) should satisfy

x∗j = x∗j+1.

We present the detailed proofs of Lemmas 4, 5, and 6 in the appendix.
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2.5 Experiments

The main purpose of this section is to demonstrate that DLTF possesses the

capability to learn the dictionary, that reliably recovers the sparse support (see

synthetic experiments) and benefits the practical utilization of thresholded features

most (see real data experiments). It is important to note that DLTF is a new type

of dictionary learning, specifically designed for using the thresholded feature (2.1)

at inference, which prioritize (extreme) simplicity, efficiency, general usability and

theoretical guarantees. Despite not being optimized for any specific task, DLTF

shows competitive performance for a variety of real-data tasks with minimal time

costs.

We compare DLTF with standard dictionary learning algorithms, and choose

the popular KSVD [1] as a representative of the latter in most experiments. In a

few real-data experiments (e.g, clustering), we compare the dictionaries computed

by DLTF and KSVD, and use them to compute both thresholded features, and

canonical sparse codes (via iterative algorithms). To avoid confusion, such a

comparison is intended as an “ablation study” (altering training and testing compo-

nents) to show that: (1) DLTF dictionary is much better suited for the thresholded

feature than conventional dictionaries; (2) the results of applying thresholded feature

solved with DLTF dictionary are superior to or comparable with applying sparse

features solved with more expensive iterative algorithms. It does not contradict

our default pipeline of training DLTF dictionary and computing the thresholded

features at inference.
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k = 4 k = 6 k = 8 k = 10 k = 12

original 0.354 0.778 1.241 1.746 2.293

random 3.876 5.721 7.499 9.204 10.895

KSVD 0.724 1.988 3.897 6.110 7.430

DLTF 0.495 1.119 1.879 2.753 3.759

Table 2.1: The support recovery performance comparison, at different sparsity levels

k, measured by ave dif. The DLTF results are reported with λ = 0.05, θ = 0.01.

2.5.1 Support Recovery in Thresholded Features: Synthetic Simula-

tions

We first evaluate the performance of the support recovery on synthetic data.

We generate an over-complete i.i.d. random Gaussian matrix as the dictionary W0 ∈

Rn×m, and the sparse codes Z ∈ Rm×N = {zi}, where each zi has only k nonzero

entries with the value 1 and random locations. We then synthesize X ∈ Rn×N =

{xi} by: X = W0Z + E, where each entry of the noise matrix E is i.i.d. sampled

from N (0, 0.01). By default, we fix n = 64, m = 128, and N = 10, 000 for the

training set. A testing set of 10, 000 samples are generated separately.

In order to compute the thresholded features z̄i = maxk(W
>xi), we compare

DLTF with three baselines: two are intentionally chosen to roughly indicate the em-

pirical performance “upper bound” and “lower bound”, as well as directly employing

the conventional KSVD dictionary:

• Original baseline: W = W0. Note that the random Gaussian W0 itself has
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very small mutual incoherence/RIP constant, and it is known that X can be

sparsely represented over W0. Therefore, we expect W0 to be nearly an optimal

solution to (2.4), and this original baseline’s results will be likely close to the

best attainable support recovery performance.

• Random baseline: W = Wr which is another independent random Gaussian

matrix.

• KSVD baseline: W = WK is learned from X by KSVD and then applied to

thresholded features.

For DLTF, we denote W = WDLTF as solved from (2.4), using random initial-

izations. It is noted that the original baseline is an “ideal” case that exists only

in simulations. Except for a handful of cases such as compressive sensing [11], it

is unlikely to have such a pre-known dictionary in practice, over which the target

signals can be accurately represented, and whose mutual coherence/RIP constant is

as small as the random bases.

To evaluate the accuracy of the recovered support, we define the following

metric that calculates the averaged per-sample support differences between z̄i and

zi:

ave dif =
1

N

N∑
i=1

|supp(z̄i)⊕ supp, (zi)|1
2

(2.12)

where ⊕ denotes the element-wise XOR operation. The value of ave dif ranges

between [0, k].

We first vary the sparsity level k ∈ [4, 6, 8, 10, 12], and compare the support

recovery results in Table 2.1. It can be seen that DLTF achieves overall compa-
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Figure 2.1: The support recovery performance comparison by varying: (a) the DLTF

hyper-parameter λ; (b) the DLTF hyper-parameter θ; (c) the observed data dimen-

sion n. More comparison by varying λ for the following values: (d) k = 4; (e) k =

10; (f) k = 12.
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rable results to the original baseline, especially when k is small. The performance

gap slightly increases as k grows up. Compared to the original baseline with know-

ing W0 as a prior, DLTF achieves competitive performance by only observing X.

KSVD dictionaries perform poorly when applied to computing thresholded features,

although the random baseline performs the worst. The above result clearly supports

the necessity of DLTF.

2.5.2 Ablation Study

Next, we investigate the effects of varying several (hyper-)parameters in Fig-

ure 4.5(a)(b), all of which further verify the effectiveness and robustness of DLTF.

It can be seen that DLTF maintains stable performance over a wide range of (λ, θ)

values. When λ turns either too small or too large, the DLTF performance will

be degraded a bit, which manifests the trade-off between the regularization effects

of the first term (uncorrelated small noise) and the second term (small mutual co-

herence/RIP constant of W ) in (2.4). Moreover, we further present the support

recovery performance comparison plots by varying λ, at k = 4, 10 and 12, respec-

tively in Figure 4.5 (d)(e)(f). The observations and conclusions are similar to k =

6 and k = 8 plots in Figure 4.5 (a)(b). We omit the same plots for θ, as we find

the DLTF performance to be insensitive to varying θ at all k values. We choose λ

= 0.5, θ = 0.01 as default values hereinafter.

It is also noted that Figure 4.5(c) varies n ∈ [32, 48, 64, 80, 108], when m = 128

is fixed. Both the original baseline and DLTF benefit from increasing n/m ratio,
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and their performance difference seems to vanish as n/m→ 1.

Finally, we compute the mutual coherence of W0 and WDLTF, at m = 128, n =

64, which are approximately 0.49 and 0.56, respectively2, respectively. It indicates

that DLTF indeed finds a solution W with low mutual coherence. Besides, Corollary

1.1 suggests a sufficient recovery condition of µW ≤ 1
2k

, which cannot be met in this

case for ∀k > 1. While the condition is not necessary, it implies that our simulation

settings are challenging.

2.5.3 Complexity and Running Time Analysis

The time complexity of computing the thresholded feature by (2.1) for N

samples is O(N(mn + m + k logm)), which is roughly equal to the complexity of

running iterative sparse solvers e.g., orthogonal matching pursuit (OMP) as used in

[1], for only one iteration. In practice, implementation differences, hyper-parameter

choices and stop conditions3 can dramatically affect the efficiency of iterative sparse

solvers. However, it is self-evident that the efficiency advantage of (2.1) over iterative

solvers is independent of implementations.

In all our experiments, we generally obverse the running time of thresholded

features to be one or even two orders of magnitudes less than iterative comparison

methods, e.g., KSVD (using OMP for testing). Our default testing environment is

2Results possess certain randomness. We did not compute the RIP constant as its calculation

is NP-hard.
3Iterative algorithms may be stopped by measuring residual fitting errors, maximum sparsity,

or iteration numbers, etc.
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Training DLTF DLTF KSVD KSVD

Testing Exact TF Exact TF

k = 5
ACC 0.532 0.545 0.524 0.517

NMI 0.525 0.532 0.526 0.521

k = 10
ACC 0.584 0.557 0.529 0.524

NMI 0.552 0.525 0.520 0.517

k = 30
ACC 0.585 0.594 0.596 0.586

NMI 0.545 0.550 0.561 0.533

k = 40
ACC 0.572 0.567 0.599 0.591

NMI 0.534 0.531 0.585 0.536

Testing Time (s) 3.639 0.394 2.851 0.409

Table 2.2: The ACC and NMI comparison between DLTF and KSVD methods w.r.t.

different k values, and the total testing time (in seconds) comparison, of different

approaches.
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Matlab 2016b on a Macbook Pro with 2.7GHz Intel Core i5 CPUs. For example, in

the synthetic experiment of k = 8, computing thresholded feature for N = 10,000

samples only costs 0.25s. In comparison, solving OMP for the same N = 10,000

samples takes 3.69s.

2.5.4 Experiments on Image Clustering

Clustering is an unsupervised task for which sparse codes are known to be ef-

fective features [221]. We conduct our clustering experiments on a publicly available

subset of MNIST4, where the first 10, 000 training images of the original MNIST

benchmark constitute the training set. A separate set of 10, 000 images is used as

the testing set to evaluate the generalization performance. We reshape each 28 ×

28 image into a vector, constructing X ∈ Rn×N where n = 784, N = 10, 000.

Method DLTF TF KM AE-1 AE-2 DEC

ACC 0.594 0.484 0.507 0.571 0.762

NMI 0.550 0.483 0.501 0.531 0.738

Time (s) 0.387 0.241 0.414 0.767 1.727

Table 2.3: The ACC, NMI and testing time comparison between DLTF TF (k =

30) and several other approaches.

We choose m = 400, and first design four methods for comparison, by altering

ways of training (i.e., learning dictionary via DLTF or KSVD) and testing (i.e.,

computing sparse codes iteratively or thresholded features):

4http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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• DLTF Exact: we apply DLTF to learn WDLTF ∈ Rn×m from the training set

X, and then exactly solve sparse code features of testing images w.r.t. WDLTF

to global optima, using the iterative algorithm [17]. K-Means clustering is

applied to cluster the sparse codes features.

• DLTF TF: we apply DLTF to learn WDLTF from the training set X, and then

compute the threshold features of the testing images via (2.1), w.r.t. WDLTF.

K-Means clustering is applied to cluster the thresholded features.

• KSVD Exact: replacing DLTF with KSVD [1] in the DLTF Exact approach.

• KSVD TF: replacing DLTF with KSVD in DLTF TF.

In order to validate the effectiveness and efficiency of thresholded features and

DLTF, two “exact” baselines are further compared. Two standard clustering met-

rics, the accuracy (ACC) and normalized mutual information(NMI) are used [221].

Larger ACC and NMI indicate better clustering performance.

We vary k ∈ [5, 10, 30, 40] and report results in Table 2.2. We first compare two

“TF” methods. DLTF TF is observed to outperform KSVD TF at most k values,

and achieves the best ACC/NMI among all TF results at k = 30. Second, taking two

“Exact” baselines into account, it is encouraging to see that DLTF TF consistently

achieves similar performance to both, sometimes even superior. Interestingly, we

find DLTF TF to usually perform comparably to, or even better than DLTF Exact

(k = 10, 30). In contrast, KSVD TF always obtains inferior performance than KSVD

Exact. The observation demonstrates that WDLTF is better suited for thresholded

features.
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DLTF TF achieves its best performance at k = 30. In comparison, the two

KSVD methods seem to favor larger k = 40. To understand why DLTF TF may

prefer smaller k, the reason may be that the support recovery is more reliable with

higher sparsity, based on Theorems 1, 2. On the other hand, small k may cause

information loss in sparse codes. A “medium” k of 30 seems to best balance the

trade-off here.

Moreover, the efficiency of DLTF/thresholded features is further evidenced

by the total running time (averaged over different k cases) on the 10, 000-sample

testing set. The running times of the thresholded feature (both DLTF TF and

KSVD TF) are one order of magnitude faster than their exact counterparts. DLTF

hence possesses the most competitive performance-efficiency trade-off among the

four.

We next compare DLTF TF (with the best k = 30) with other types of clus-

tering models, from the simplest/fastest K-Means to sophisticated neural network

(NN) clustering models that typically involve very high complexity:

• KM: we first obtain a PCA matrix ∈ Rm×n from X, and apply it to reduce the

dimension of each testing image to Rm. K-Means clustering is then applied.

• AE-1: an auto-encoder (AE) with one hidden layer ∈ Rm. ReLU is used.

K-Means clustering is applied to the hidden activations of the testing images.

• AE-2: an AE with two hidden layers, both ∈ Rm. K-Means clustering is

applied to cluster the activations of the second hidden layer.

• Deep Embedded Clustering (DEC): a latest deep network clustering model that
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simultaneously learns feature representations and cluster assignments [194].

We used their original MNIST model structure. Note that DEC is much more

heavily parametrized than DLTF and other baselines5.

To ensure a fair comparison with non-NN models, all NN models are first trained,

and then tested in CPU mode using the Matlab Neural Network Toolbox.

From Table 2.3, DLTF TF largely surpasses AE-1 in term of both ACC and

NMI, especially considering the fact that the two have the identical amount of pa-

rameters and that ReLU is also known to introduce sparsity. It is further interesting

to find that DLTF TF even achieves more favorable clustering quality than AE-2,

with lower complexity and half running time in practice. Those results demonstrates

that DLTF TF is both efficient and effective for clustering.

The state-of-the-art deep clustering model DEC achieves better ACC/NMI

results than DLTF TF and else. However, it involves many more parameters and

higher complexity: the testing time of DEC is thus five times that of DLTF TF.

Moreover, DEC is the only approach here that is specifically optimized for clustering,

while DLTF and others all lead to general-purpose unsupervised features. As a

minimal-complexity and general-purpose feature extraction way, DLTF TF provides

a complementary effort to dedicated and highly-complex deep clustering models.

We also recognize that, to obtain stronger clustering performance, DLTF can be

easily integrated with other regularizations, e.g. graph Laplacian [221], as well

5DEC was originally trained and evaluated on the full MNIST set of 70,000 samples. For fair

comparison with others, we re-train DEC on the given 10,000-sample training set and test on the

10,000-sample testing set.
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as can be further optimized in a (clustering) task-driven way, e.g., using bi-level

optimization [133].

2.5.5 Experiments on Unsupervised Hashing

Methods LSH SH SpH SparseH DLTF

m = 32 0.166 0.089 0.145 0.149 0.148

m = 64 0.159 0.121 0.189 0.234 0.223

m = 128 0.268 0.165 0.232 0.312 0.296

m = 256 0.332 0.201 0.255 0.386 0.355

Table 2.4: The mAP comparison on the CIFAR-10 dataset for unsupervised hashing,

at different code lengths m.

Hashing is one of the popular solutions for approximate nearest neighbor search

because of its low storage cost and fast retrieval speed. Many methods have been

proposed to learn effective hash function. Hash codes of the same cluster are similar

to each other while the hash codes in different clusters are dissimilar. In this section,

we evaluate the proposed DLTF approach for the task of unsupervised hashing, in-

spired by the previous success of sparse hashing [224], as well as the nonzero support

itself serving as a natural binary feature. It is also more challenging as unsuper-

vised hashing relies on only unlabeled data to generate binary hashing codes. We

choose local sensitive hashing (LSH) [25], spectral hashing (SH) [191], and spherical

hashing (SpH) [88] as three classical baselines, following their default settings. We

also implement a sparse coding-based hashing (SparseH) approach, that follows the
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pipeline of [224]: a dictionary is learned on the training set, which is then used

to solve sparse codes of the query images iteratively; sparse codes are binarized by

encoding non-zero entries to ones and zeros elsewhere. Finally, DLTF is adapted for

hashing by solving the dictionary W from (2.4), computing z̄ via (2.1), and using

sgn(z̄) as binary codes. We choose k = m
2

6at each code length m. λ = 0.1 and

θ = 0.01 are fixed.

We test on the CIFAR-10 [106] benchmark, which has been widely used to

evaluate both supervised and unsupervised hashing methods. We use GIST de-

scriptors ∈ R512 to represent each image, and discard the label. A query set is

formed by randomly choosing 1,000 samples, and a non-overlapping training set is

constructed using the rest. We vary the hashing code length m from 32 bits to 256

bits, to evaluate the performance of all methods on compact codes and relatively

long codes. The mean average precision (mAP) is evaluated at different numbers of

bits. As seen from Table 2.4, while SparseH maintains the best performance among

all in most cases (except being outperformed by LSH at m = 32), DLTF produces

comparable mAPs and usually ranks only next to SparseH. Notice that the mAP

difference between SparseH and DLTF is minimal at small m = 32 or 64.

Moreover, hashing applications emphasize high query efficiency and low la-

tency. SparseH inevitably suffers from the heavy computational overhead of iterative

sparse coding inference. DLTF achieves comparable results with one to two orders

6k = m/2 is chosen to meet the {0,1} bit balance, a desirable property for code efficiency.

While the sufficient recovery conditions may not be satisfied for the large k, DLTF achieves good

empirical performance.
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of magnitude less testing time (similar to the previous time comparison between

DLTF and KSVD baselines).

2.6 Concluding Remarks

In this chapter, motivated by support recovery theoretical guarantees, we pro-

posed a novel approach to learn a dictionary which is optimized for applying the

thresholded feature. The competitive performance and superior efficiency of the pro-

posed approach are extensively studied in both synthetic simulations and real-data

experiments. In future work, we seek more elaborating formulations of DLTF. For

example, [120] suggested that minimizing ||W>W − I||∞ could suppress µW better,

although minimizing the former term is also accompanied with higher complexity.
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Chapter 3: Sparse Representations for Face Recognition

3.1 Introduction

Face identification and verification are two main tasks in face-based biometrics.

Face identification aims to recognize a person from a set of gallery (images or videos)

and match the closest one to the probe, while verification determines whether a given

pair of images or videos is from the same subject or not. In this chapter, we address

the unconstrained face verification/recognition problem where the face images have

been acquired under significant variations in pose, expressions, lighting conditions

and background.

Compared with single image-based face recognition, a video provides more

samples from frames containing the person of interest. However, it brings more

challenges as videos are often acquired in unconstrained environments, under signif-

icant variations in poses, expressions, lighting conditions and backgrounds. These

variations result in large intra-personal variations within a video sequence. There-

fore, it is important to represent and model the same subject against these variations

in videos. Video-based face recognition has become a very popular topic of research

in recent years [32,33,84,93,100,180,181,193,211]. Given a video sequence, the ob-

jective is to recognize the person in the video. It is often interchanged with image-set
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based face recognition [24,30,42,90,102,129,130,182,183,208], when the image sets

are sampled from videos.

Numerous methods have been proposed to exploit useful information contained

in videos. Early approaches [6, 100, 102, 113, 161] addressed this problem through

learning probabilistic models. This was then followed by computing the similarity

between two videos to perform recognition. Later, more sophisticated statistical

model-based approaches [24,90,93,130,180–183] were proposed to learn discrimina-

tive and compact representations for each subject.

Dictionary-based methods have been shown to achieve impressive performance

in various tasks, such as image-based face recognition, object and action recogni-

tion [1, 48, 80, 98, 131, 198, 202, 207, 212, 215, 220]. This is under the assumption

that images could be well represented by an approximately learned dictionary and

related sparse codes. However, there are only a few reported efforts that use dic-

tionaries for video-based face recognition [32, 128, 211]. Recently, [32] proposed to

partition videos into several clusters and learned a separate sub-dictionary for each

cluster. One limitation of this method is that the number of clusters needs to be pre-

defined. [128] jointly learned a global projection matrix and a set of sub-dictionaries

to encode the new features with discriminative sparse coefficients. However, this

method suffers from high computational complexity. In addition, information useful

for dictionary learning may be lost after projecting all the samples onto the same

subspace. [211] learned a sub-dictionary along with a low-rank representation for

each subject. However, the sub-dictionaries were independently learned and are not

discriminative enough for classification.
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video-based face recognition
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In order to overcome the challenges discussed above, we propose a structured

dictionary learning approach for video-based face recognition. The learned dictio-

nary has the following three properties. First, it is reconstructive. We minimize the

errors of all the face images when reconstructed from the dictionary, which encour-

ages the learned dictionary to be reconstructive. Second, it is discriminative. For

face images from each subject, we not only enforce the corresponding sub-dictionary

to represent them well, but also enforce other sub-dictionaries not to be used for re-

construction. This will encourage different sub-dictionaries to encode features from

different subjects. Third, it is capable of discovering structured information from

different videos of the same subject. This is achieved by minimizing the rank of the

representation matrix of face images from each subject. It is known that face images

from one subject in different videos share some similar characteristics (i.e. consecu-

tive pose change or similar facial appearance), which could be exploited to derive a

low-dimensional subspace representation. Motivated by this underlying feature, we

regularize the representation matrix of face images from the same subject in videos

to produce a matrix of lower rank compared to the original data matrix. Figure 3.1

shows the overview of our approach.

Next, we study the other main task in the face-based biometrics: face ver-

ification, under even more challenging and unconstrained conditions. It is called

template-based face verification problem. The problem of traditional face veri-

fication is to verify whether two images or videos in a pair belong to the same

subject over image-to-image pairs as in Labeled Face in the Wild dataset [91], or

over video-to-video pairs as in the Youtube Faces database [193], whereas template-
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based face verification performs verification over templates, introduced in [103].

In this context, a template is a mixture of different media data such as images or

frames sampled from multiple image sets or video clips containing the person of

interest. Template representation is important in real world as it provides more

flexibility and longitudinal access control of data from subjects.

Numerous methods have been proposed for improving the performance of face

verification systems. To summarize, most existing approaches can be categorized

into feature-based and metric learning-based methods. The first category, which

includes LBP [3], SIFT [127], Fisher vector faces [167] and most recently the deep

features [173], aims to derive robust and discriminative descriptors to represent face

images. The common objective of the second category is to learn a good metric from

the training data [19,41,47]. Some representative methods include cosine similarity

metric learning [140], pairwise constrained component analysis [137] and logistic

discriminant metric learning [79]. While dictionary learning techniques have shown

impressive performance for face recognition [131,199,202,211,212], there are only a

few reported works based on dictionaries for the face verification problem [52,80,81].

In this chapter, we tackle the problem of template-based face verification by

taking advantage of dictionary learning techniques. This is due to the fact that

image or video samples could be represented well by a learned dictionary and corre-

sponding sparse codes. Yet dictionary learning methods have not been exploited for

template-based face verification. Two issues arise when existing dictionary-based

methods such as [81] are used for template-based face verification. First, the dic-

tionary learned by random sampling of the training data is not able to adequately
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represent the training set of face templates when several hundreds subjects are in-

volved. Second, the sparse codes of all the samples from the same template are

independently calculated, even though these samples are from the same subject.

This may degrade the performance, especially when each template has significantly

varying number of samples acquired from unconstrained environments. It is better

to exploit this intra-class relationship among samples from the same template.

In order to overcome the limitations discussed above, we propose a novel tem-

plate regularized sparse coding framework for template-based unconstrained face

verification. The proposed approach consists of three steps. First, we construct

a reference dictionary to adequately represent the training set. Then we exploit

the intra-class relationship of the template by regularizing the sparse codes of the

samples in one template to be similar, which results in more discriminative sparse

codes. Finally, we measure the similarity between templates.

We make the following contributions on both video-based face recognition and

template-based face verification problems:

• For the video-based face recognition problem, we present a dictionary learning

approach with both discriminative and reconstructive properties. The learned

dictionary reveals that the structural information from video face images could

be used for recognition directly. Our method learns a low-rank representa-

tion for video face images of the same subject, using an efficient alternating

optimization algorithm. Furthermore, we demonstrate that the proposed al-

gorithm achieves state-of-the-art methods on three benchmark databases for
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video-based face recognition.

• We propose a dictionary learning framework for template-based face verifi-

cation problem. Our method learns a reference dictionary, which adequately

represents the training set. Furthermore, we construct two template adaptive

dictionaries to adapt the pair of templates. In addition, we propose a novel

template regularized sparse coding method, which is able to capture the in-

formation in the samples in one template. An efficient algorithm is employed

to learn discriminative sparse codes. Finally, we demonstrate that the pro-

posed framework outperforms several state-of-the-art methods on benchmark

datesets for template-based face verification.

The rest of the chapter is organized as follows: In Section 3.2, we review dic-

tionary learning methods and several state-of-the-art methods for both video-based

face recognition and template-based face verification. In Section 3.3, we present

the structured dictionary learning approach followed by an efficient optimization

algorithm. We also evaluate the proposed method for video-based face recognition

on three benchmark databases in Section 3.3. In Section 3.4, we present the tem-

plate regularized sparse coding approach. We then evaluate the proposed method

for face verification on the benchmark template-based dataset [103] in Section 3.4.

Section 3.5 concludes the chapter with a brief summary.
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3.2 Related Work

Dictionary Learning: Dictionary learning [1,48,80,98,104,131,199,202,207,

211,212,215,220] has attracted great interest in subspace modeling for classification

purpose. It overcomes the limitation of PCA subspaces by using non-orthogonal

atoms (columns) in the dictionary to provide more flexibility to model the data.

K-SVD [1] is one of the most commonly used techniques to learn a dictionary.

Several algorithms have been developed to make the dictionary more discrimina-

tive [98,131,207,212,215]. [98] proposed a Label Consistent K-SVD to learn a com-

pact dictionary by incorporating the training labels. [215] presented a structured

low-rank representation based on a dictionary to boost the classification perfor-

mance. [207] integrated the Fisher discrimination criterion with dictionary learning,

which resulted in a more discriminative dictionary and sparse codes.

However, only a few works have been reported for the face verification prob-

lem [52,80,81]. One of the first methods [81] which adopted dictionary learning for

face verification measured the similarity between the pair of images over the sparse

codes using a reference dictionary. Subsequently, this work was extended by learn-

ing the local sparse codes from the patches of the face images. Although effective,

learning patch-based sparse codes is sensitive to local perturbations. [80] general-

ized the dictionary learning framework to verification problems by adding a pairwise

constraint. However, it suffers from high computational complexity. Furthermore,

all these methods addressed the verification problem in image-to-image settings and

are not directly applicable to template-based face verification [103].
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Video-based Face Recognition: Existing video-based face recognition ap-

proaches [24,29,90,93,100,102,113,130,180–183] can be categorized into two classes:

parametric and non-parametric. Early approaches [100,102,113] computed the sim-

ilarity between the query video and training videos based on probabilistic models.

Such methods were based on the assumption that a strong statistical correlation

existed between the training and testing videos. To overcome the drawback of

the probabilistic approaches, non-parametric approaches [24, 90, 93, 130, 180–183]

represented the face images from videos as subspaces or manifolds. Linear/affine

subspace-based methods [24,28,30,90,102,206] modeled the video face images as a

linear or affine subspace. Among them, [24, 30, 90, 206] used convex geometry to

represent videos from one subject, yielding improved performance over parametric

approaches. However, to address the limitation of linear subspace models, more so-

phisticated nonlinear models have been extensively studied [29,83,93,180,182,183].

To preserve the nonlinear structure, [83,93,180,182] employed the concept of Grass-

mann manifolds, which is a special type of Riemannian manifold. [183] proposed

more general discriminative analysis on Riemannian Manifold, which achieved en-

couraging results. A multi-kernel method combined with order statistics to perform

classification was presented in [130]. Finally, deep learning approaches [84,129] have

achieved state-of-the-art performance.

Template-based Face Verification: Several state-of-the-art methods for

template-based face verification are briefly reviewed [27, 40, 159]. [27] addressed

the template-based face verification problem through Joint Bayesian Metric Learn-

ing [23, 26] of deep CNN features. The triplet similarity embedding method [159]
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learned an embedding matrix, which projects the original feature to a low-dimensional

space. Template adaptation [40] learned two linear SVM classifiers, where each of

them is designed using the positive features from one template in the pair to the large

negative features from the training set. Then the final similarity score is calculated

by fusing the two SVM margins evaluated on other mated template.

3.3 Learning Structured Dictionary for Video-based Face Recogni-

tion

In this section, we detail the proposed structured dictionary learning frame-

work. The dictionary learned by our method is both discriminative and reconstruc-

tive for video-based face recognition.

3.3.1 Problem Formulation

Assume that we have videos from P different subjects, and each video contains

a sequence of face images. Let the data matrix X = [X1, ..., XP ] ∈ Rd×N denote face

images from P different subjects from the given videos, where N is the total number

of images. Each Xi = [xi1, xi2, ..., xiNi
] ∈ Rd×Ni , 1 ≤ i ≤ P be the features of face

images from i-th subject identity, and each column is the feature vector extracted

from one frame.

We learn a dictionary D ∈ Rd×n with both discriminative and reconstructive

powers. The dictionary can be further decomposed into a set of sub-dictionaries

as D = [D1, ..., DP ], where n is the number of atoms (columns) in the dictionary;
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and Di ∈ Rd×ni is the i-th sub-dictionary corresponding to the i-th subject. We

reconstruct the features of face images from each subject Xi using the dictionary

D, and obtain the corresponding encoding coefficients Zi ∈ Rn×Ni . We can write

the coefficient matrix Zi over the dictionary D as Zi = [Z1
i , Z

2
i , ..., Z

P
i ]T , where Zj

i

denotes the coefficients of Xi over the sub-dictionary Dj.

We propose to learn a structured dictionary with following attributes: First, D

should have small reconstruction errors for the training samples from all subjects.

Second, each sub-dictionary Di should represent face images only from the i-th

subject, while different sub-dictionaries should be exclusive to each other. In order

to achieve the above goal, the objective function for learning the dictionary D and

representation coefficients Z is formulated as:

min
D,Z,E1,E2

P∑
i=1

(‖Zi‖∗ + λ1‖E1
i ‖1 + λ2‖E2

i ‖1)

s.t. Xi = DZi + E1
i ,

Xi = DiZ
i
i + E2

i , ∀ i, 1 ≤ i ≤ P

(3.1)

where E1
i ∈ Rd×Ni and E2

i ∈ Rd×Ni are the reconstruction errors of Xi using the

dictionary D and sub-dictionary Di respectively. The parameters λ1 and λ2 balance

two types of reconstruction error terms. The objective function in (3.1) leads to a

dictionary D with both discriminative and reconstructive powers at the same time,

and has three terms:

1. The first term denotes the nuclear norm of Zi, which is the low-rank approxi-

mation of representation Zi. Minimization of this term enforces the represen-

tation Zi of samples from the i-th subject to lie on the same low-dimensional
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subspace.

2. The second term E1
i is the l1 norm of the reconstruction error of Xi with

respect to dictionary D. We encourage D to be reconstructive, by minimizing

the reconstruction errors for samples from all different subjects.

3. The third term is the l1 norm of the reconstruction error of Xi with respect

to the i-th sub-dictionary Di. By minimizing this reconstruction error term,

we encourage the i-th sub-dictionary Di to represent the samples from its

own class, while discouraging the usage of sub-dictionaries Dj(j 6= i) from

other classes for reconstruction. This regularization will make the dictionary

discriminative.

3.3.2 Optimization

In this section, we present an efficient algorithm to solve the optimization

problem in (3.1). The proposed algorithm uses the inexact Augmented Lagrange

Multiplier (ALM) method to take advantage of its properties such as efficiency and

convergence, for solving low-rank related problems [21,119].

In order to make the objective function separable, we first introduce auxiliary

variables Wi to replace Zi (1 ≤ i ≤ P ). Denote W = {W1, ...,WP}, then the

45



function in (3.1) could be rewritten as:

min
D,Z,E1,E2,W

P∑
i=1

(‖Wi‖∗ + λ1‖E1
i ‖1 + λ2‖E2

i ‖1)

s.t. Xi = DZi + E1
i ,

Xi = DiZ
i
i + E2

i

Zi = Wi, ∀ i, 1 ≤ i ≤ P

(3.2)

The augmented Lagrangian function L of (3.2) is:

L(D,Z,E1, E2,W, Y 1, Y 2, Y 3, µ)

=
P∑
i=1

(‖Wi‖∗ + λ1‖E1
i ‖1 + λ2‖E2

i ‖1)

+
P∑
i=1

(〈Y 1
i , Xi −DZi − E1

i 〉+ 〈Y 2
i , Xi −DiZ

i
i − E2

i 〉+ 〈Y 3
i , Zi −Wi〉)

+
µ

2

P∑
i=1

(‖Xi −DZi − E1
i ‖2

F + ‖Xi −DiZ
i
i − E2

i ‖2
F + ‖Zi −Wi‖2

F )

(3.3)

where Y 1 = {Y 1
1 , ..., Y

1
P }, Y 2 = {Y 2

1 , ..., Y
2
P }, Y 3 = {Y 3

1 , ..., Y
3
P } are all the multipli-

ers, 〈A,B〉 = trace(ATB) and µ is a positive scalar.

The optimization problem in (3.3) can be decomposed into two sub-problems

and solved using the alternating method as in [215]. In the first sub-problem, the

dictionary D is fixed and the optimal Zi, E
1
i and E2

i (1 ≤ i ≤ P ) are computed. In

the second sub-problem, Zi, E
1
i and E2

i (1 ≤ i ≤ P ) are fixed, and the dictionary D

is updated. We alternate these steps until convergence.

3.3.3 Computing Representation Z

Given dictionary D, the augmented Lagrangian function of (3.3) could be

decomposed as the summation of P different sub-functions, where each sub-function
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is only associated with one class label i (1 ≤ i ≤ P ). Therefore, all the variables Zi,

E1
i , E

2
i and Wi (1 ≤ i ≤ P ) in the sub-functions could be updated in a class by class

fashion. When updating class i, variables Zi, E
1
i , E

2
i and Wi could be obtained as

follows:

E1
i = arg min

E1
i

λ1‖E1
i ‖1 + 〈Y 1

i , Xi −DZi − E1
i 〉+

µ

2
‖Xi −DZi − E1

i ‖2
F

= arg min
E1

i

‖E1
i ‖1 +

µ

2λ1

‖(Xi −DZi +
Y 1
i

µ
)− E1

i ‖2
F

(3.4)

Similar to E1
i , E

2
i is updated as:

E2
i = arg min

E2
i

λ2‖E2
i ‖1 + 〈Y 2

i , Xi −DZi − E2
i 〉+

µ

2
‖Xi −DZi − E2

i ‖2
F

= arg min
E2

i

‖E2
i ‖1 +

µ

2λ2

‖(Xi −DZi +
Y 2
i

µ
)− E2

i ‖2
F

(3.5)

Wi is updated as:

Wi = arg min
Wi

‖Wi‖∗ + 〈Y 3
i , Zi −Wi〉+

µ

2
‖Zi −Wi‖2

F

= arg min
Wi

‖Wi‖∗ +
µ

2
‖(Zi +

Y 3
i

µ
)−Wi‖2

F

(3.6)

Specifically, (3.4), (3.5) and (3.6) can be solved by singular value thresholding op-

eration as in [119].

Note that when updating Zi with other variables fixed, Zi
i is also the corre-

sponding component in Zi with respect to the i-th sub-dictionary Di. Here, we con-

struct a matrix M such that DiZ
i
i = DMiZi, Mi = diag(0, ..., 0, In0 , 0, ..., 0) ∈ Rn×n;

where In0 ∈ Rn0×n0 located between index n0(i − 1) + 1 and n0i. Then we could

rewrite (3.3) as:

Zi = arg min
Zi

〈Y 1
i , Xi −DZi − E1

i 〉+ 〈Y 2
i , Xi −DMiZi − E2

i 〉

+ 〈Y 3
i , Zi −Wi〉+

µ

2
(‖Xi −DZi − E1

i ‖2
F

+ ‖Xi −DMiZi − E2
i ‖2

F + ‖Zi −Wi‖2
F )

(3.7)
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The optimization problem in (3.7) is a quadratic form in Zi. Consequently, we can

derive the optimal Zi by setting the first-order derivative with respect to Zi to be

zero. The optimal solution is obtained as:

Zi =
[
DTD + (DMi)

T (DMi) + I
]−1

[DT (Xi − E1
i ) + (DMi)

T (Xi − E2
i )

+Wi +
1

µ
(DTY 1

i + (DMi)
TY 2

i − Y 3
i )]

(3.8)

The optimization procedure of the first sub-problem is summarized in Algo-

rithm 2.

3.3.4 Updating Dictionary D

With a fixed Zi, E
1
i and E2

i (1 ≤ i ≤ P ), D is the only variable in (3.3). Denote

Ai = MiZi, then we could rewrite DiZ
i
i = DAi, for Ai = [A1

i , A
2
i , ..., A

P
i ]T ∈ Rn×Ni ;

where its component Aii corresponding to Di is equal to Zi
i , and other components

Aji (j 6= i) are all zeros. Then the optimization function of D is

min
D

P∑
i=1

(〈Y 1
i , Xi −DZi − E1

i 〉+ 〈Y 2
i , Xi −DAi − E2

i 〉)

+
µ

2

P∑
i=1

(‖Xi −DZi − E1
i ‖2

F + ‖Xi −DAi − E2
i ‖2

F )

(3.9)

The function in (3.9) is a quadratic form in variable D and the optimal solution is

obtained as

D =

[
1

µ
(Y 1
i Z

T
i + Y 2

i A
T
i ) + (Xi − E1

i )ZTi + (Xi − E2
i )ATi

]
×

[
P∑
i=1

(ZiZ
T
i +AiA

T
i )

]−1

(3.10)

The overall approach is summarized in Algorithm 3.
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Algorithm 2: First Sub-problem Optimization via Inexact ALM

1: Input: Training data X = [X1, ..., XP ], Dictionary D, parameter λ1, λ2

2: Output: Zi, E
1
i , E2

i , Y 1
i , Y 2

i , Y 3
i (1 ≤ i ≤ P )

3: Initialize: ∀i = 1, ..., P , Zi = Wi = Y 3
i = 0, E1

i = E2
i = Y 1

i = Y 2
i = 0, µ = 10−6, µmax = 107,

ρ = 1.25

4: for class i = 1, ..., P do

5: Update Zi,Wi,E
1
i and E2

i

6: while not converged do

7: Fix the others and update Wi according to (3.6)

8: Fix the others and update E1
i according to (3.4)

9: Fix the others and update E2
i according to (3.5)

10: Fix the others and update Zi by

Zi =
[
DTD + (DMi)

T (DMi) + I
]−1

[DT (Xi−E1
i )+(DMi)

T (Xi−E2
i )+Wi+

1
µ (DTY 1

i +

(DMi)
TY 2

i − Y 3
i )]

11: Update Multipliers

Y 1
i = Y 1

i + µ(Xi −DZi − E1
i )

Y 2
i = Y 2

i + µ(Xi −DiZ
i
i − E2

i )

Y 3
i = Y 3

i + µ(Zi −Wi)

12: Update µ by

µ = min(ρµ, µmax).

13: Check the convergence condition:

Xi −DZi − E1
i → 0

Xi −DiZ
i
i − E2

i → 0

Zi −Wi → 0

14: end while

15: end for
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Algorithm 3: Overall Learning Framework

Input: Training data X = [X1, ..., XP ] ∈ Rd×N , dictionary size n0, parameter

λ1, λ2

Initialize: Sub-dictionary Di (1 ≤ i ≤ P ) by using k-SVD [1] algorithm, fix

εd = 10−4

while not converged do

Update Zi,Wi,E
1
i E

2
i (1 ≤ i ≤ P ) class by class using Algorithm 2.

Update Dictionary D according to (3.10)

Check the convergence conditions:

‖Dnew −Dold‖2
F < εd

end while

Output: Structured dictionary D and representation Z

3.3.5 Video-based Recognition

Once the discriminative and reconstructive dictionary D is learned, we predict

the label of a given query video Y by computing the following terms:

Z = arg min
Z
‖Z‖∗ + λ1‖E‖1 s.t. Y = DZ + E (3.11)

where Y = [y1, ..., yNy ] ∈ Rd×Ny , Ny is the total number of face images. Note that

during the training stage, D is learned such that each sub-dictionary Di represents

the i-th class, while different sub-dictionaries are exclusive to each other. Therefore,
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we assign the label p∗ with the smallest reconstruction error as:

p∗ = arg min
p∈1,...,P

Ny∑
k=1

‖yk −Dpz
p
k‖2 (3.12)

where yk is the k-th face image vector in the query video and zpk is the sparse

coefficient of yk corresponding to the p-th sub-dictionary Dp.

3.3.6 Experiments

In this section, we present experimental results for video-based face recognition

on three benchmark database, Honda/UCSD [113], CMU Mobo [76] and YouTube

Celebrities [100] databases. We will first introduce these databases and their exper-

imental settings. This is then followed by a discussion of the proposed approach.

Honda/UCSD [113]: There are in total 59 video sequences of 20 different

subjects, where each subject has 2 or 3 video sequences. The video is acquired

under large variations in expressions and head poses. Following the protocol in [113,

128,129,181], we select one sequence from each subject for training and test on the

remaining sequences. We also evaluate our method with different lengths of training

frames as in [32, 90, 208] by selecting 50 and 100 frames from each training video.

The face detector presented in [178] was used to detect the faces. Faces were resized

to 20× 20 after histogram equalization to remove moderate illumination effect.

CMU Mobo [76]: It contains 96 video sequences of 24 subjects. Each subject

has 4 video sequences captured in different walking situations. Face images are

encoded using Local Binary Pattern (LBP) feature as in [90]. Following the standard

protocol as in [24,102], we randomly select one video from each subject to train while
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Figure 3.2: Examples of YouTube Celebrities (YTC) database [100]

testing on the rest of all video sequences. This was repeated ten times.

Youtube Celebrities [100]: Youtube Celebrities Video is a widely used chal-

lenging database, which contains 1910 video clips of 47 subjects collected from

YouTube. Some exemplar video frames are given in Figure 3.2. Each face is resized

to 20 × 20 after using the face detector in [178] and pre-processed by histogram

equalization as in [128, 130, 180, 181]. Intensity features are extracted for each face

image. We conduct ten-fold cross validation experiments. For each subject, we ran-

domly select 3 video clips for training and 6 for testing in each of the 10 folds. This

setting ensures that both training and test data covered the whole video clips of

each subject, which is the same with the protocol in [42,93,180,181,183] and similar

to [129,130].

We set all the sub-dictionaries to have the same number of atoms (columns),

i.e. ni = n0. For Honda/UCSD and CMU Mobo databases, we run ten different

trails under the standard settings and report the average recognition rate. The

parameters λ1,λ2 have been empirically set to be 0.1 and 1 respectively. For a

fair comparison with other dictionary learning approaches, the dictionary size n0 is
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set at 10 for the Honda/UCSD database and at 20 for the CMU Mobo database.

For the YTC databese, we employ ten-fold cross validation and report the average

recognition rate. Our rates are reported by settings n0 = 40, λ1 = 0.02 and λ2 = 0.1.

3.3.7 Results and Analysis

Comparison with State-of-the-art Methods: In this section, we com-

pare our results with several state-of-the-art listed next: Discriminant Canonical

Correlation analysis (DCC) [102], Manifold-to-Manifold Distance (MMD) [182],

Manifold Discriminative Analysis (MDA) [180], Covariance Discriminative Learning

(CDL) [181], the linear version of Affine Hull-based Image Set Distance (AHISD) [24],

Convex Hull-based Image Set Distance (CHISD) [24] and Sparse Approximated

Nearest Points (SANP) [90], Joint Regularized Nearest Points (JRNP) [206], Dictionary-

based Face Recognition from Video (DFRV) [32], Joint Dictionary and Subspace

Learning (JDSSL) [211]. All the competing methods are implemented using the

code provided by the authors except for JDSSL and JRNP. The parameters are

tuned based on the settings reported in their papers. We implement the JDSSL

following the algorithm in [211] and cite the results directly reported in JRNP [206]

as a fair comparison for the Honda/UCSD database1.

Honda/UCSD: The average recognition rates using 50, 100 and full length

of training frames on Honda/UCSD are reported in Table 3.1. It is seen that most

state-of-the-art methods achieve 100% rank-1 accuracy using full length of frames

1Results of JRNP [206] on CMU Mobo [76] and YTC [100] databases have not been reported

because the experimental settings we used are different from the ones in [206].
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Methods DCC [102] MMD [182] MDA [180] AHISD [24] CHISD [24] SANP [90]

50 Frames 76.9 69.3 74.4 87.2 82.1 84.6

100 Frames 84.6 87.2 94.8 84.6 84.6 92.3

Full Length 94.9 97.1 97.4 89.7 92.3 94.8

Year 2006 2008 2009 2010 2010 2011

Methods DFRV [32] CDL [181] RNP [208] JDSSL [211] JRNP [206] Ours

50 Frames 89.7 87.2 87.2 87.2 92.3 93.6

100 Frames 97.4 94.3 94.9 97.4 100.0 100.0

Full Length 97.4 100.0 100.0 100.0 100.0 100.0

Year 2012 2012 2013 2014 2015

Table 3.1: Video-based face recognition results for the Honda/UCSD database [113]

using different number of frames in each image set for training. Rank-1 recognition

accuracy results are presented.

for training. When the number of training frames is reduced to 50 and 100, the

performance of other methods degrade. However, when the frame length is 100, our

method could still achieve 100% accuracy as reported in [206], which demonstrates

that our dictionary is able to preserve the subspace structure even with a small

number of training samples. In particular, our method consistently outperforms all

other dictionary-based approaches [32, 211]. This is because the learned dictionary

by the proposed method is not only reconstructive and discriminative, but also can

encourage the discriminative coefficients to be of low rank. Overall, our method

achieves the best performance under all three settings.

CMU Mobo: We repeat ten trials by different randomly selected training
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Methods DCC [102] MMD [182] MDA [180] AHISD [24] CHISD [24]

Accuracy 88.9 92.5 94.4 92.9 96.5

Methods SANP [90] DFRV [32] CDL [181] JDSSL [211] Ours

Accuracy 96.1 95.2 94.1 96.3 98.2

Table 3.2: Video-based face recognition results for the CMU Mobo database [76].

Rank-1 recognition accuracy results are presented.

Methods DCC [102] MMD [182] MDA [180] AHISD [24] CHISD [24] SANP [90]

Accuracy 66.8 65.3 67.0 63.7 66.5 65.0

Methods CDL [181] JDSSL [211] PML [93] DARG [183] Ours

Accuracy 70.1 70.1 70.4 72.5 72.8

Table 3.3: Video-based face recognition results for the YTC database [100]. Rank-1

recognition accuracy results are presented.

and testing image sets. The average recognition rates of the proposed method along

with other methods are reported in Table 3.2. As shown in Table 3.2, our method

achieves very high performance of 98.2% and outperforms all other methods.

YouTube Celebrities: We used the cropped face samples of size 20× 20 for

consistency with Honda/UCSD database and reported results using 10-fold valida-

tion. These are the proposed settings used in [42, 180, 181]. We also compare with

other state-of-the-art methods in [93] and [183]. Table 3.3 summarizes the average

recognition rates of different methods.

It is noted that the performance of all the methods on YTC degenerates sig-

nificantly compared with Honda/UCSD and CMU Mobo. This is due to the large
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diversity and variations in appearance of each subject. Moreover, the high com-

pression ratio, which result in low quality and resolution of the images, makes the

recognition problem more difficult. It can be seen that our method outperforms

the dictionary-based approach [211] by 2.7%, which demonstrates the effectiveness

of the dictionary. In addition, our method achieves state-of-the-art performance

compared to [93,183]2.

Comparison with Different Dictionary Learning Approach: We fur-

ther compare the proposed method with two different dictionary leaning strategies

to further illustrate the effectiveness of our method.

1. Subject-specific Dictionary Learning (Subject DL): Instead of learning a global

structured dictionary, we simply learn each sub-dictionary Di, i = {1, ..., P}

independently by setting λ1 = 0. Then we concatenate all the sub-dictionaries

Di together to construct D.

2. Non-structured Dictionary Learning (Non-structured DL): We only consider

two terms of reconstruction errors using D and Di and remove the nuclear

term ‖Zi‖∗ in (3.1) without encouraging the representations to be low-rank.

Then we perform recognition directly using (3.12).

Table 3.5 shows the average recognition rates of three different dictionary

learning strategies. Our method consistently outperforms Subject DL and Non-

structured DL on all three databases. Compared to Subject DL, the dictionary

2Note that results from recent approaches [84, 128, 129, 206] have not been reported here since

they employed different protocols from the settings in this dissertation.
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Methods Honda/UCSD [113] CMU Mobo [76] YouTube Celebrities [100]

Subject DL 98.4 95.8 69.5

Non-structured DL 95.9 94.3 67.7

Our method 100.0 98.2 72.8

Table 3.4: Average recognition rates of different dictionary learning approaches on

Honda/UCSD, CMU Mobo and YouTube Celebrities databases. Rank-1 recognition

accuracy are presented.

learned in our method is both discriminative and reconstructive. First, it is designed

to have small reconstruction errors for all the samples. Second, each sub-dictionary

could represent the corresponding subject well while different sub-dictionaries would

be exclusive to each other. In contrast, Subject DL only learns sub-dictionary for

representing the corresponding subject. Moreover, Non-structured DL only focuses

on reconstruction error of the samples. However, our method encourages face images

from the same subject to have similar representation by enforcing them to lie in a

low-dimensional subspace, which leads to independence from different subjects.

Parameter Sensitivity: In order to evaluate the effects of dictionary size n0

and hyper-parameters λ1, λ2 on our method, we run different choices of parameters

on the CMU Mobo database and plot the results in Figure 4.5.

Firstly, in Figure 4.5(a), we compare our method with JDSSL [211] and two

different learning strategies (Subject DL and Non-structured DL) under the same

number of sub-dictionary atoms for a fair comparison. It is seen that our approach

outperforms [211] and the other two dictionary learning algorithms, by a large mar-

57



gin for all the different number of atoms. This is because we learn more discrimi-

native and reconstructive dictionaries to preserve the structure of the samples from

videos, while [211] only learned each sub-dictionary to encode the samples from the

corresponding subject. We can also observe that increasing the size of sub-dictionary

from five to twenty five can result in improving the recognition performance. All the

methods achieve the best performance when n0 = 25. It is also interesting to note

that when the size of sub-dictionary is forty, the performance degenerates slightly

for all the methods. With a large sized dictionary, some redundant atoms in sub-

dictionaries may be learned without being useful for recognition, thus affecting the

partition-based decision to be made.

We also evaluate our approach with varying values of parameters λ1 and λ2

as shown in Figure 4.5(b) and Figure 4.5(c). It is observed that the performance is

more sensitive to the choice of λ1, which is associated with the reconstruction error

when using dictionary D for reconstruction. This is because our method learns

a discriminative and reconstructive global dictionary instead of concatenating the

sub-dictionaries together, which are learned class by class.

3.4 Template Regularized Sparse Coding for Face Verification

3.4.1 Task and Overall Approach

The definition of template-based face verification can be simplified as follows:

given a training set and a pair of templates from the test set, the objective is to

verify whether the pair of templates is from the same subject or not.
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Our approach for template-based face verification (1) learns a reference dictio-

nary DR (with the help of hierarchical clustering), and (2) learns more discrimina-

tive sparse codes for verification purposes through the proposed template regularized

sparse coding method, and (3) defines two distance-measures between template pairs

through reference score and template adaptive score for computing the final similar-

ity score.

The proposed approach consists of three steps. First, we learn two types of dic-

tionaries: a reference dictionary and template adaptive dictionaries. The reference

dictionary is learned only from the training set, which is disjoint from test templates.

The reference dictionary is used for learning the sparse representations of the test

templates. Two template adaptive dictionaries are constructed by augmenting the

reference dictionary with each template in the test pair respectively. Adding only

one template to construct the template adaptive dictionary would result in adapt-

ing the reference dictionary to better represent the other templates from the same

subject.

Second, we perform sparse coding both on the reference dictionary and tem-

plate adaptive dictionaries to obtain two types of sparse representations. In partic-

ular, we regularize the sparse codes of the samples in one template of the test pair

to be similar to each other.

Third, by using the two sparse codes obtained as discussed above, we compute

two different similarity scores: reference score and template adaptive score. The

reference score is defined as the similarity between the sparse codes of two templates

with respect to the reference dictionary. Template adaptive score measures the
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difference between two types of sparse codes of each template in the pair with

respect to two types of dictionaries.

The motivation behind the template adaptive score is that, if two templates

in a pair are from the same subject, then the sparse coding coefficients of samples

from one template corresponding to the augmented part (the added dictionary atoms

from the other template) will have a significantly high value, while other coefficients

corresponding to the reference dictionary will be smaller. On the other hand, if the

two templates are not from the same subject, the regularized sparse codes of two

templates will not change significantly. Therefore, a higher template adaptive score

indicates that the template pair, very likely comes from the same subject.

We first present the notations used in this section. Let X = [x1, ...,xP ] ∈ Rd×P

be the general template data matrix, where P is the total number of samples in the

template (P varies from template to template). Each xi ∈ Rd, 1 ≤ i ≤ P is the

feature encoded from image or video frames in the template with unit l2-norm. We

denote the training set as T , and a pair of templates XA = [xA1 , ...,x
A
PA

] ∈ Rd×PA

and XB = [xB1 , ...,x
B
PB

] ∈ Rd×PB from the test set.

3.4.2 Reference Dictionary and Template Adaptive Dictionaries Learn-

ing

The first step in the method is to learn a reference dictionary. Let n be the

number of subjects in the training set and ni be the number of templates from

subject i(∈ [1, n]). We define the data matrix Ti = [Xi
1, ...,X

i
ni

] to represent the
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subject i, where Xi
j(j ∈ [1, ni]) is the j-th template from person i. Consequently,

we represent the entire training set by T = [T1, ...,Tn].

A good reference dictionary should be able to represent the training set with

a compact set of dictionary atoms. To make the reference dictionary adequately

represent the training set, we perform hierarchical adaptive clustering on the train-

ing set. More specifically, for each subject data matrix Ti, i ∈ [1, n], we adaptively

determine the value of ki and select ki most representative samples by alternating

the following two steps: (a) Increasing k to k+1 (b) Applying the “k-medoids” algo-

rithm [144] on Ti until the stopping criterion in (3.13) is satisfied. The alternating

procedure is illustrated in Algorithm 4.

After we select ki representative samples from Ti, i ∈ [1, n] subject by subject,

the reference dictionary DR is constructed by concatenating all the representative

samples learned in Algorithm 4, i.e. DR = [c1
1, ..., c

1
k1
| ... |cn1 , ..., cnkn ]. We can rewrite

the reference dictionary as DR = [dR1 , ...,d
R
N ] ∈ Rd×N , where N = k1 + ...+kn is the

total number of atoms (columns) in the dictionary.

Furthermore, given a test pair of templates XA = [xA1 , ...,x
A
PA

] ∈ Rd×PA and

XB = [xB1 , ...,x
B
PB

] ∈ Rd×PB , we construct two template adaptive dictionaries DA,

DB by augmenting the reference dictionary with samples from each template as

follows: DA = [DR|XB] ∈ Rd×(N+PB) and DB = [DR|XA] ∈ Rd×(N+PA).
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Algorithm 4: Adaptive selection of ki representative samples

Input: Training data Ti = [Xi
1, ...,X

i
ni

] from subject i, stopping threshold τ .

Initialize: k = 1

while not converged do

Increase k to k + 1

Find k mediods {ci1, ..., cik} and corresponding clusters {Ci1, ..., Cik} by using “k-

mediods” clustering algorithm [144].

Compute r as follows:

r = max
1≤m≤k

max
xi
j∈Ci

m

‖xij − cim‖2 (3.13)

Check the convergence condition: r ≤ τ

end while

Output: ki and representative samples {ci1, ..., ciki}

3.4.3 Template Regularized Sparse Coding

In this section, we present our template regularized sparse coding algorithm

for the reference dictionary DR and template adaptive dictionaries DA and DB. We

learn the sparse codes of the samples in one template by regularizing them to be

similar as they are all from the same subject. For simplicity of notation, we drop

the superscript in DR, DA and DB and denote the given dictionary as D. Let the

template data matrix be X = [x1, ...,xP ] ∈ Rd×P . The template regularized sparse

62



codes are obtained as follows:

Z∗ = arg min
Z

P∑
i=1

(‖xi −Dzi‖2
2 + λ1‖zi‖1 + λ2‖zi‖2

2) +
β

2

P∑
i,j=1

(‖zi − zj‖2
2wi,j)

(3.14)

where Z = [z1, ..., zP ] are the corresponding sparse codes of X and λ1, λ2, β are

the regularization parameters. The term ‖zi‖1 is the sparsity regularization term

and the term ‖zi‖2
2 ensures the stability of the solution as in [133]. The last term is

called the template regularization term, which sums the weighted difference of sparse

codes of any two samples in the template. Let W be the matrix with entry wi,j in

the i-th row and j-th column.

Constructing Matrix W: Given the sparse codes zi and zj of any two

samples xi and xj, wi,j is defined as follows:

wi,j =


e−

1
2
‖xi−xj‖22 , if i 6= j

0, otherwise

(3.15)

It is inversely proportional to the Euclidean distance between their original feature

(i.e. ‖xi − xj‖2). It means that when two samples are very close or similar in

the original feature space, the penalty associated with the difference of their sparse

codes will be large. As the pair of templates could have different template size, in

order to reduce the effect of the template size, we further normalize each column in

W by its l2-norm.

Optimization: We now discuss the optimization of (3.14). Equation (3.14)

can be rewritten as

Z∗ = arg min
Z

P∑
i=1

(‖xi −Dzi‖2
2 + λ1‖zi‖1 + λ2‖zi‖2

2) + β Tr(ZTZL) (3.16)
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where L is the Laplacian matrix L = A −W and A is a diagonal matrix whose

diagonal elements are the sum of row elements of W, i.e. ai,i =
∑P

j=1 wi,j.

Motivated by [80, 112], we optimize zi in a column by column fashion. Given

dictionary D, when updating zi by fixing other zj(j 6= i), the objective function

of (3.14) with respect to zi is reduced to:

z∗i = arg min
zi

‖xi −Dzi‖2
2 + λ1‖zi‖1 + λ2z

T
i zi + 2βzTi (ZLi)− βzTi ziLi,i (3.17)

The minimization of (3.17) is a L1-regularized least squares problem and we compute

zi by feature-sign search algorithm proposed in [112].

The analytical solution of zi could be derived by setting the first derivative

of (3.17) with respect to zi to be zero:

z∗i = [DTD + (λ2 + βLi,i)I]−1(DTxi − β
P∑
k=1
k 6=i

zkLk,i −
1

2
λθ) (3.18)

where θ is the coefficient sign vector of zi. We choose a small value of β to ensure that

the Hessian matrix [DTD + (λ2 + βLi,i)I] is positive semidefinite, which guarantees

the convexity of (3.16).

Thus, we learn four sets of regularized sparse codes of the templates (XA

or XB) with respect to the reference dictionary DR and the template adaptive

dictionary (DA or DB) which are denoted as follows:

ZA = [zA1 , ..., z
A
PA

] ∈ RN×PA coded with DR

Z̃A = [z̃A1 , ..., z̃
A
PA

] ∈ R(N+PB)×PA coded with DA

ZB = [zB1 , ..., z
B
PB

] ∈ RN×PB coded with DR

Z̃B = [z̃B1 , ..., z̃
B
PB

] ∈ R(N+PA)×PB coded with DB

(3.19)
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3.4.4 Reference Score and Template Adaptive Score

After we learn the template regularized sparse representations using (3.14), we

evaluate how similar the test templates are, by computing the reference score and

the template adaptive score. The reference score is defined as the average of the

cosine similarity between all the sample pairs from the two templates as follows:

REF(XA,XB) =
1

PA × PB

PA∑
i=1

PB∑
j=1

cos(zai , z
b
j) (3.20)

where cos(zAi , z
B
j )(i ∈ [1, PA], j ∈ [1, PB]) is computed as the cosine similarity be-

tween two sparse codes as in [140]

cos(zAi , z
B
j ) =

(zAi )TzBj
‖zAi ‖2‖zBj ‖2

(3.21)

In addition, in order to exploit the full power of the template regularized sparse

codes Z̃A and Z̃B , we also compute the template adaptive score of the template

pair [81]. Following the notation in (3.19), let us first define the sample adaptive

score of one sample xAi in the template XA as

adapt(xAi ) = 1− cos(zAi , z̃
A
i (1:N)) (3.22)

where cos metric is defined in (3.21). Similar to sample zBi in the template XB, we

have adapt(xBi ) = 1− cos(zBi , z̃
B
i (1:N)). Note that the higher sample adaptive score

indicates more significant change from the sparse code.

Therefore, the template adaptive score of the template pair is computed as:

ADP(XA,XB) =
1

PA × PB

Pa∑
i=1

Pb∑
j=1

1

2
[adapt(xAi ) + adapt(xBj )] (3.23)
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Finally, the similarity score of the tested template pair is computed as the

average of the reference score and the template adaptive score.

3.4.5 Experiments

In this section, we present the results of the proposed dictionary approach on

the challenging IARPA Janus Benchmark A(IJB-A) [103] dataset. We will first in-

troduce the dataset and experimental settings. This is then followed by a discussion

of the experimental results.

The IARPA Janus Benchmark A(IJB-A) [103] dataset contains 5, 397 images

and 2, 042 videos, which sampled to 20, 412 frames from total 500 subjects. Each

subject has 11.4 images and 4.2 video clips on average. The smallest representation

unit of each subject constitutes the template, which comprises a mixture of still

images and sampled video frames.

The evaluation of verification protocol from IJB-A is over 10 splits. Each

split consists of training and testing sets without any overlapping subjects between

them. The test set in one split contains around 11, 748 pairs of templates (1, 756

genuine and 9, 992 poster pairs). True Accept Rates(TAP) at different False Accept

Rates(FAR) are reported in the evaluation metric.

In our experiment, the faces are represented with deep features extracted using

the network discussed in [27]. More specifically, the deep CNN network is trained

on the CASIA-WebFace dataset [209] with non-overlapped 490, 356 face images of

10, 548 subjects to IJB-A dataset. We use the network presented in [27] to extract
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Figure 3.3: The average ROC curves of different dictionary learning and sparse

coding strategies for the IJB-A [103] verification protocol over 10 splits

the 320-dimensional feature vector for each template in training and testing sets.

Furthermore, following the setting in [40], in order to reduce the effect caused by the

unbalanced size of different media (images or videos) in one template, we compute

the mean feature to represent one video by averaging the features extracted from

the same video clips. Finally, all the features in one template are normalized to have

unit l2-norm, which we call it the template media average features. The template

media average features are used in all the experiments.

3.4.6 Results and Analysis

We perform two series of experiments to evaluate our approach for template-

based face verification on IARPA Janus Benchmark A(IJB-A) [103] dataset.
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Methods FAR = 0.001 FAR = 0.01 FAR = 0.1

RS-SSC 0.613±0.059 0.824±0.026 0.944±0.007

AL-SSC 0.696±0.057 0.860±0.016 0.950±0.005

RS-TRSC 0.713±0.041 0.869±0.014 0.952±0.006

AL-TRSC(Ours) 0.769±0.038 0.885±0.011 0.955±0.003

Table 3.5: Verification accuracy comparison of different dictionary learning and

sparse coding strategies for the IJB-A dataset [103]. The true accept rates(TAR) at

false accept rate (FAR) of 0.001, 0.01 and 0.1 are reported.

Comparison of Different Dictionary Learning and Sparse Coding

Strategies. To demonstrate the improvement of our approach (AL-TRSC) over [81]

in both dictionary learning and template regularized sparse coding, we compare it

with three methods:

• Random Sample + Single Sparse Coding (RS-SSC) [81]. We randomly select

samples from the training set to generate the reference dictionary and indepen-

dently compute the sparse codes of all the samples without the regularization

term in (3.14).

• Adaptive Leaning + Single Sparse Coding (AL-SSC). We learn the reference

dictionary as described in Section 3.4.2, followed by the same sparse coding

strategy above.

• Random Sample + Template Regularized Sparse Coding (RS-TRSC). We
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construct the reference dictionary by random sampling of the training set.

However, we learn the template regularized sparse codes as described in Sec-

tion 3.4.3

We plot the average ROC curves in Figure 3.3 of the four methods for the IJB-

A dataset over 10 splits. In addition, we report the average TAR at FAR= 0.001,

0.01 and 0.1 in Table 3.5. First, our method (AL-TRSC) consistently outperforms

AL-SSC, RS-TRSC and RS-SSC by a large margin. Compared with RS-TRSC,

the reference dictionary, which is learned adaptively, is able to better represent the

training set than random sampling. The AL-SSC algorithm only learns the sparse

codes of all samples without template regularization. However, our method regular-

izes the sparse codes from one template to be close, which yields more discriminative

sparse codes across template pairs. It is also noted that both AL-SSC and RS-TRSC

achieve improvements over RS-SSC [81]. This demonstrates that both adaptive ref-

erence dictionary learning and template regularized sparse coding are indispensable

for template-based face verification.

Comparison with State-of-the-art Approaches In order to evaluate the

effectiveness of our approach (AL-TRSC) for template-based face verification, we

further compare it with several state-of-the-art listed next: Joint Bayesian Met-

ric Learning [27], Triplet Similarity Embedding (TSE) [159], Template Adaptation

(TA) [40]. All the methods are implemented following the algorithm except [27].

The parameters are tuned based on the settings reported in their papers. We eval-

uate all the methods on the template media average features as a fair comparison,
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Figure 3.4: The average ROC curves of state-of-the-art and baseline methods for

the IJB-A [103] verification protocol over 10 splits

Methods FAR = 0.001 FAR = 0.01 FAR = 0.1

GOTS 0.198±0.008 0.406±0.014 0.627±0.012

COS 0.586±0.059 0.791±0.052 0.942±0.008

[27] - 0.818±0.037 0.961±0.010

TSE [159] 0.718±0.039 0.855±0.019 0.945±0.005

TA [40] 0.779±0.023 0.889± 0.012 0.955±0.007

AL-TRSC(Ours) 0.769±0.038 0.885±0.011 0.955±0.003

Table 3.6: Verification accuracy comparison with state-of-the-art approaches for

the IJB-A dataset [103]. The true accept rates (TAR) at false accept rate (FAR) of

0.001, 0.01 and 0.1 are reported.
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which is the same as the setting in [40]3.

In addition, we also compare it with two baseline methods, the first one, COS

computes the cosine similarity [140] from all the pair samples of two templates

and average them to get the final similarity score between the two templates. The

second baseline GOTS is from the commercial off-the-shelf matchers mentioned in

NIST FRVT studies [77].

We plot the IJB-A average ROC curves over 10 splits of TSE [159], TA [40]

and COS [140] in Figure 3.4. Furthermore, we also report the average TAR at

FAR= 0.001, 0.01 and 0.1 in Table 3.6. All the methods [27, 40, 159] and ours

improve the performance over COS and GOTS by a wide margin. Moreover, it can

been seen that our method outperforms metric-based methods [27,159] and achieves

results comparable to [40], which demonstrates the effectiveness of the proposed

approach.

Parameter Sensitivity: In order to evaluate the effects of the stopping

threshold τ in (3.13) and the hyper-parameters λ1, λ2, β in (3.14) of our method, we

run different choice of parameters and plot the TAR with respect to the parameters

at FAR = 0.001 and 0.01 in Figure 4.5.

Firstly, in Figure 4.5(a), it can been seen that both AL-SSC and AL-TRSC

exhibit the same tendency with respect to τ . We observe that as τ decreases from 2.0

to 1.9, the verification performance improves. It is also interesting to note that when

3Note that result DCNNft+m+c reported in [27] didn’t use template media average features, all

the other methods TA [40], TSE [159] and COS are evaluated on the same template media average

features.

71



5 10 15 20 25 30 35 40

88

92

96

100

Sub−dictionary Size(# of atoms)

A
v

e
 a

c
c

u
ra

c
y

 (
%

)

 

 

Ours

JDSSL

Subject DL

Non−structured DL

(a) stopping threshold τ

0.02 0.08 0.14 0.2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

λ
1

T
ru

e
 A

c
c

e
p

t 
R

a
te

 (
T

A
R

)

 

 

TAR@FAR = 0.001
TAR@FAR = 0.01

(b) parameter λ1

0.02 0.08 0.14 0.2
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

β

T
ru

e
 A

c
c

e
p

t 
R

a
te

 (
T

A
R

)

 

 

TAR@FAR = 0.001
TAR@FAR = 0.01

(c) parameter β

Figure 3.5: The effects of stopping threshold τ , hyper-parameters λ1 and β on

IRAPA IJB-A dataset [103].

τ = 1.7, the performance degenerates. With a large-sized reference dictionary, some

atoms selected from the samples may not be useful for verification, thus affecting

the regularized sparse coding. The final dictionary size is inverse proportional to

the stopping threshold τ , and in order to balance the time and accuracy, we choose

τ ∈ [1.85, 1.95] in all the experiments, which yields the reference dictionary size to

be between 400 and 500.

We also evaluate our method by varying parameters λ1 and β as shown in

Figures 4.5(b) and 4.5(c). It is observed that the performance is more sensitive to
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the choice of λ1, which is associated with sparse penalty. Our results are generated

by setting λ1 ∈ [0.08, 0.12] and β = {0.15, 0.1}. In addition, our approach is in-

sensitive to the regularization parameter λ2, which is set to 0.05 throughout all the

experiments.

3.5 Concluding Remarks

In this chapter, we presented two dictionary learning-based methods for face

recognition, especially for video-based face recognition and template-based face ver-

ification problems.

For video-based face recognition, we presented a novel structured dictionary

learning framework. We encouraged our sub-dictionaries to represent the corre-

sponding subject face images well, while also preserving the subspace structure by

enforcing the representation to be low-rank. This approach yielded a dictionary with

both discriminative and reconstructive properties for recognition purposes. More-

over, we proposed an efficient alternating optimization algorithm that converges

reasonably faster. Finally, we extensively evaluated our approach on three bench-

mark databases for video-based face recognition. The experimental results clearly

demonstrate the competitive performance over the state-of-the-art.

For template-based face verification, we presented a novel template regular-

ized sparse coding approach. First, we adaptively learned a reference dictionary

to adequately represent the training set. Then template adaptive dictionaries are

generated by adapting the reference dictionary with the test template pair. Second,
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we performed template regularized sparse coding on all the dictionaries to derive

the discriminative template sparse codes for verification purpose. Finally, both

reference and template adaptive scores are used to measure the similarity of the

pair templates. We extensively evaluated our approach on the benchmark IARPA

IJB-A dataset for template-based face verification. The experimental results clearly

demonstrate competitive performance over state-of-the-art.
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Chapter 4: Cross-domain Visual Recognition via Domain Adaptive

Dictionary Learning

4.1 Introduction

Domain adaptation has been receiving significant attention in computer vision

over the past decades. In real world scenarios, the assumption that the training

data (source domain) and test data (target domain) are sampled from the same

distribution is often challenged. For instance, training and testing images may be

acquired under different environments, viewpoints and illumination conditions in

application such as face recognition [4, 16], object recognition [70–72, 158], human

detection [176] and video concept detection [53, 54, 205]. Recently, many works

have been proposed to adapt the classifier trained using the source domain data

to perform well on target samples [8, 9, 46, 62, 125, 141, 143, 147, 163, 205]. This is

known as the domain adaptation (DA) problem. In this chapter, we focus on the

more challenging unsupervised DA problem where the samples in the target domain

are unlabeled. Moreover, it would be highly desirable for recognition systems to

automatically adapt to a different domain without any additional labeling effort.

Recently, the most promising approaches for the unsupervised DA problem
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Figure 4.1: Our domain adaptive dictionary learning framework. The overall learn-

ing process consists of three steps: (1) Dictionary learning in source and target

domains. At the beginning, we first learn the common dictionary DC , domain-

specific dictionaries D0 and Dt for source and target domains. (2) Domain-adaptive

sparse coding. At the k-th step, we enforce the recovered feature representations of

target data in all available domains to have the same sparse codes, while adapting

the newest obtained dictionary Dk to better represent the target domain. Then

we multiply dictionaries in the k-th domain with the corresponding sparse codes

to recover feature representations of target data Xk
t in this domain. (3) Dictionary

updating. We update Dk to find the next domain-specific dictionary Dk+1 by fur-

ther minimizing the reconstruction error in representing the target data. Then we

alternate between sparse coding and dictionary updating steps until the stopping

criteria is satisfied.
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focus on developing intermediate feature representations [71, 72, 141, 165] along a

virtual path connecting the source and target domains. [72] generated intermediate

subspaces by sampling the geodesic path connecting the source and target subspaces

on the Grassmann manifold. Instead of sampling a few intermediate subspaces as

in [72], [71] integrated an infinite number of intermediate subspaces to derive a

geodesic flow kernel to model the domain shift. However, the subspaces obtained

using principal component analysis (PCA) in both methods may not represent the

original data well and some useful information for adaptation may be lost. In order

to overcome the limitation of PCA subspaces, a recent work [141] used a dictionary

to represent each domain, as non-orthogonal atoms (columns) in the dictionary

provide more flexibility to model and adapt to the domain shift.

In this chapter, we propose a novel domain-adaptive dictionary learning ap-

proach to generate a set of intermediate domains which bridge the gap between

source and target domains. Our approach defines two types of dictionaries: a com-

mon dictionary and a domain-specific dictionary. The common dictionary shared

by all domains is used to extract domain-shared features, whereas the domain-

specific dictionary which is incoherent to the common dictionary models the domain

shift. The separation of the common dictionary from domain-specific dictionaries en-

ables us to learn more compact and reconstructive dictionaries for deriving domain-

adaptive features. All these dictionaries are learned using the procedure illustrated

in Figure 4.1. First, we learn a common dictionary DC by minimizing the recon-

struction error of both source and target data. Then combined with the common

dictionary, we learn a set of domain-specific dictionaries by alternating between the
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following two steps: 1) domain-adaptive sparse coding: we learn domain-adaptive

sparse codes Γ and Z by enforcing the feature representations of the target data

to have the same sparse codes in all available domains. 2) dictionary updating: we

update the current domain-specific dictionary to generate the next domain-specific

dictionary such that the reconstruction error of target data is further minimized.

This step not only guarantees that the next domain-specific dictionary will better

represent the target data, but also ensures that the intermediate domains gradually

adapt to the target domain. Finally, we apply domain-adaptive sparse codes com-

bined with domain dictionaries to construct the final domain-adaptive features for

recognition.

Ni et al.’s work in [141] may be the closest to our work in spirit. However, our

approach differs in the following three aspects: (1) The separation of the common

dictionary from domain-specific dictionaries. We aim to learn both the common

dictionary and domain-specific dictionaries to represent each intermediate domain

while [141] used only a single dictionary to represent each domain. Our approach

has two advantages over [141]. First, our approach can better represent the domain

data because the reconstruction error of domain data obtained using our method

is smaller as shown in Figure 4.4 in Section 4.5. Second, the domain-specific dic-

tionaries can better model the domain changes because the domain-shared features

are accounted for separately. (2) The regularization of sparse coding. In each step,

we regularize the representation of the target data along the path to have the same

sparse codes, which are further used for dictionary updating in the next step. How-

ever, the sparse codes used in [141] for dictionary updating are only adaptive between
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the neighboring domains. Therefore, the sparse representations of the target data

in [141] are not domain-adaptive, while the sparse representations in our approach

are domain-adaptive . Moreover, the intermediate domains generated by our ap-

proach are smoother and incorporate the domain change in a better way, which

will be verified and discussed in section 4.2. (3) The construction of final features.

We use the domain-adaptive sparse codes across all the domains multiplied by the

dictionaries to represent source and target data, while [141] only uses the sparse

code decomposed with source and target dictionaries respectively to represent the

new features. Therefore, compared to [141], our approach generates more robust

and domain-adaptive features. We make the following contributions:

• We learn a common dictionary to extract the features shared by all the domains

and a set of domain-specific dictionaries to encode the domain shift. The

separation of the common dictionary from domain-specific dictionaries enables

us to learn more compact and reconstructive representations for learning.

• We propose a new formulation to incrementally adapt the dictionaries learned

from the source domain to reduce the reconstruction error of target data.

• We recover the feature of source and target data in all intermediate domains

and extract novel domain-adaptive features by concatenating these intermedi-

ate features.

• We present empirical results for the tasks of object recognition and face recog-

nition across pose, illumination, and blur variations, that are better than state-

of-the-art algorithms.
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The rest of the chapter is organized as follows: In Section 4.2, we review

several dictionary learning methods for domain adaptation and other related domain

adaptation approaches. In Section 4.3, we present our domain adaptive dictionary

learning approach followed by an efficient optimization algorithm in Section 4.4. We

evaluate the proposed method for domain adaptation problem on two benchmark

databases in Section 4.5. Section 4.6 concludes the chapter with a brief summary.

4.2 Related Work

Recently, dictionary-based approaches [141, 147, 162] have been proposed for

unsupervised DA. [147] learned a parametric modeled dictionary by aligning dic-

tionaries from both domains. [162] jointly learned the projections of data in two

domains, and a latent dictionary which can represent both domains in the projected

low-dimensional space. [141] generated a set of intermediate domains and dictionar-

ies which smoothly adapt the source domain to the target domain.

Another fruitful line of work is the subspace-based approaches [62,71,72,163,

165]. [71, 72] created the intermediate domain subspaces along the geodesic on the

Grassmann manifold connecting the source and target domains. [163] proposed to

jointly learn domain-adaptive features and the classifiers on the target domain using

an information-theoretic measure. [165] proposed an approach based on the parallel

transport to incrementally learn the intermediate domains. [8,70,124,125] attempted

to match the distributions of the source and target samples by domain sample re-

weighting and feature matching.
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Semi-supervised DA methods mainly focus on using samples with labels in

the target domain to reduce the differences in data distribution [46, 70, 124, 143,

147, 158, 205]. Transformation-based methods [108, 158] learn linear or nonlinear

transformations such that samples of the same class from different domains become

closer. Classifier-based methods [5, 7, 99, 205] adapt the Support Vector Machine

(SVM) trained in the source domain to correctly classify labeled target samples. A

survey on visual domain adaptation could be found in [145].

4.3 Domain Adaptive Dictionary Learning

Let Xs ∈ Rd×Ns , Xt ∈ Rd×Nt be the feature representations of source and

target data respectively, where d is the feature dimension, Ns and Nt are the number

of samples in the two domains. The feature representations of recovered source

and target data in the k-th intermediate domain are denoted as Xk
s ∈ Rd×Ns and

Xk
t ∈ Rd×Nt respectively. The common dictionary is denoted as DC , whereas source-

specific and target-specific dictionaries are denoted as D0, Dt respectively. Similarly,

we use Dk, k = 1...N to denote the domain-specific dictionary for the k-th domain,

where N is the number of intermediate domains. We set all the dictionaries to be

of the same size ∈ Rd×n.

Our objective is to learn the common dictionary and a set of domain-specific

dictionaries for generating intermediate domains. Starting from D0 in the source do-

main, we sequentially learn the intermediate domain-specific dictionaries {Dk}Nk=1 to

gradually reduce the reconstruction error of the target data. Our domain-adaptive

81



dictionary learning approach (DADL) consists of three steps: (1) Dictionary ini-

tialization. At the beginning, we first learn the common dictionary DC and two

domain-specific dictionaries D0, Dt for the source and target domains respectively.

(2) Domain-adaptive sparse coding. At the k-th step, we learn domain-adaptive

sparse codes of target data and recover the feature representations of target data in

the k-th domain. (3) Dictionary updating. We update the current domain-specific

dictionary Dk to find the next domain-specific dictionary Dk+1 by further mini-

mizing the residual error in representing the target data. We alternate between

dictionary updating and sparse coding steps until the stopping criteria is satisfied.

4.3.1 Dictionary Learning in Source and Target Domains

At the beginning, we learn the common dictionary DC , source-specific dic-

tionaries D0 and target-specific dictionary Dt. Given source and target data Xs

and Xt, we solve for DC by minimizing the reconstruction error of both source and

target data as follows:

min
DC ,Z0,Zt

||Xs −DCZ0||2F + ||Xt −DCZt||2F

s.t. ∀i, ‖z0
i ‖0 ≤ T, ‖zti‖0 ≤ T

(4.1)

where Z0 = [z0
1 ...z

0
Ns

] ∈ Rn×Ns ,Zt = [zt1...z
t
Nt

] ∈ Rn×Nt are sparse representations of

Xs and Xt respectively, T specifies the sparsity that each sample has fewer than T

dictionary atoms (columns) in its decomposition.

Given the learned DC and corresponding sparse codes Z0 and Zt, we learn

domain-specific dictionaries D0 and Dt by further reducing the reconstruction error
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of source and target data. The objective function for learning D0 and Dt is given

as follows:

min
D0,Γ0

‖Xs −DCZ0 −D0Γ0‖2
F + λ‖D0DCT‖2

F

min
Dt,Γt
‖Xt −DCZt −DtΓt‖2

F + λ‖DtDCT‖2
F

s.t.∀i, ‖z0
i ‖0 + ‖α0

i ‖0 ≤ T, ‖zti‖0 + ‖αti‖0 ≤ T

(4.2)

where Γ0 = [α0
1...α

0
Ns

] ∈ Rn×Ns and Γt = [αt1...α
t
Nt

] ∈ Rn×Nt are sparse rep-

resentations of Xs and Xt with respect to D0 and Dt, and λ is the regularization

parameter. The first term in both functions in (4.2) is the reconstruction error of

domain data using both the common dictionary and corresponding domain-specific

dictionary. The second term is the inner product of the atoms from different dictio-

naries, which encourages DC to be incoherent to the domain-specific dictionaries.

This incoherence term minimizes the correlation between DC and {D0,Dt}, thus it

enables our approach to exploit domain-shared features and domain changes sepa-

rately. We describe the optimization of the objective functions in (4.2) in Section 4.4.

4.3.2 Domain-adaptive Sparse Coding

At the k-th step, assume we have already generated (k-1) intermediate domains

and domain-specific dictionaries denoted as {Xi
t}k−1
i=1 and {Di}k−1

i=1 respectively. Now

given a newly obtained domain-specific dictionary Dk for the k-th domain, we want

to obtain sparse representations of target data Xt in the k-th domain. In order

to achieve this goal, we not only reconstruct Xt using dictionaries from the k-th
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domain, but also reconstruct the recovered target data Xi
t in each intermediate

domain using dictionaries from that domain. Moreover, we regularize the sparse

representation of Xs, Xt and Xi
t to be the same. This regularization step ensures

that the sparse representations of target data across all available domains are the

same (i.e. domain-adaptive). We solve for domain-adaptive sparse codes across

all the available domains as follows:

Zk,Γk =arg min
Z,Γ

‖Xt −DCZ−DkΓ‖2
F +

k−1∑
i=0

‖Xi
t −DCZ−DiΓ‖2

F

+ ‖Xt −DCZ−DtΓ‖2
F s.t. ∀i, ‖zi‖0 + ‖αi‖0 ≤ T

(4.3)

where Zk = [zk1 ...z
k
Nt

],Γk = [αk1...α
k
Nt

] are the solved sparse representations of target

data in the k-th domain, Xi
t = DCZi+DiΓi are the recovered feature representations

of target data in the i-th domain obtained in previous iteration steps. The objective

function in (4.3) has two terms:

1. The first term is the reconstruction error of target data when encoded using

dictionaries from the k-th domain. This term is called domain shifting

term, because it adapts dictionaries in the k-th domain to better represent the

target data.

2. The second term in (4.3) sums the reconstruction errors of recovered feature

representations of target data in all the intermediate domains. The last term is

the reconstruction error of target data in the target domain. These two terms

are called domain adaptive terms. This is because we regularize both Xt

and Xi
t to have the same sparse codes. It means that feature representa-

tions of recovered target data in different domains will have the same sparse
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codes when encoded using dictionaries from each domain. This regularization

will guarantee that sparse codes are domain-adaptive, such that the domain

changes are encoded only in domain-specific dictionaries.

Then we recover the feature representations of target data in the k-th domain Xk
t

as follows: Xk
t = DCZk + DkΓk.

4.3.3 Domain-specific Dictionary Updating

After sparse coding at the k-th step, we will update Dk to find the next domain-

specific dictionary Dk+1 by further reducing the reconstruction error of target data

in the k-th domain. Let Jk denote the target reconstruction residue in the k-th

domain, which is computed as follows:

Jk = Xt −DCZk −DkΓk (4.4)

where Zk and Γk are the sparse codes obtained for reconstructing Xt in the k-th

step. We further reduce the target reconstruction residue Jk by adjusting Dk by

∆Dk ∈ Rd×n, which is solved as:

min
∆Dk
‖Jk −∆DkΓk‖2

F + η‖∆Dk‖2
F (4.5)

The objective function in (4.5) has two terms. The first term ensures that the

adjustment ∆Dk will further reduce the target reconstruction residue Jk. While

the second term penalizes the abrupt changes between two adjacent domain-specific

dictionaries so that the intermediate domains smoothly adapt to the target domain.

The parameter η controls the balance between these two terms. Since the problem in
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(4.5) is a ridge regression problem, we solve for ∆Dk by setting the first derivative

to be zeros as in [141] and obtain:

∆Dk = JkΓkT (ηI + ΓkΓkT )−1 (4.6)

where I ∈ Rn×n is the identity matrix. The next domain-specific dictionary Dk+1 is

obtained as: Dk+1 = Dk + ∆Dk. In addition, we normalize each column in Dk+1 to

be a unit vector.

Proposition 1. The residue Jk in (4.4) is non-increasing with respect to DC, Dk,

∆Dk and corresponding sparse codes Zk,Γk, i.e. ‖Jk −∆DkΓk‖2
F ≤ ‖Jk‖2

F .

The non-increasing property of the residue Jk ensures that the source-specific

dictionary D0 gradually adapts to the target-specific dictionary Dt through a set of

intermediate domain-specific dictionaries Dk. The proof is given in the Appendix.

After the domain-specific dictionary update, we increase k by 1, and alternate

between the sparse coding step in section 4.3.2 and the dictionary updating step in

section 4.3.3 until the stopping criteria is reached. We summarize our approach in

Algorithm 5.

4.3.4 Derivation of New Features for Domain Data

Until now we have obtained the common dictionary DC , domain-specific dic-

tionaries Dk, k ∈ [0, N ]. The transition path made up of Dc and the set of domain-

specific dictionaries Dk models the domain shift. We will make use of it to derive

new domain-adaptive representations for source and target data.
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Algorithm 5: Our domain adaptive dictionary learning framework

1: Input: source data Xs , target data Xt, sparsity level T , parameter λ, η, stopping

threshold δ

2: Output: DC , D0 and Dt

3: compute DC using (4.1)

4: compute D0, Dt by solving the objective function in (4.2).

5: k = 0

6: while stopping criteria is not reached do

7: compute domain-adaptive sparse codes Zk, Γk using equation (4.3)

8: compute the reconstruction error Jk using equation (4.4).

9: compute the adjustment ∆Dk using equation (4.6)

10: Dk+1 ← Dk + ∆Dk

11: normalize Dk+1 to have unit atoms.

12: Xk+1
t ← DCZk + DkΓk

13: k ← k + 1

14: Check the stopping criteria ‖∆Dk‖F ≤ δ

15: end while

16: Final Output: DC , Dk, k ∈ [0, N ] and Dt.

Since the recovered feature representations of target data Xk
t , k ∈ [0, N ] in all

intermediate domains are already available, we first recover feature representations

of source data Xk
s , k ∈ [0, N ] in each intermediate domain. We iteratively recover

Xk
s in a similar way as Xk

t . The only difference is that all the dictionaries are already

learned and fixed during the learning of Xk
s . Specifically, at the k-th iterative step,
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we obtain the sparse representations of source data that are adaptive across all

domains by solving the following problem:

Zk
s ,Γ

k
s = arg min

Z,Γ
‖Xs −DCZ−DtΓ‖2

F +
k−1∑
i=1

‖Xi
s −DCZ−DiΓ‖2

F

s.t. ∀i, ‖zi‖0 + ‖αi‖0 ≤ T

(4.7)

where Zk
s = [zks1 ...z

k
sNs

],Γk
s = [αks1 ...α

k
sNs

] are sparse representations of source data

in the k-th domain, Xi
s = DCZi

s + DiΓi
s are recovered feature representations of

source data in the i-th domain obtained in previous iteration steps. The objective

function in (4.7) consists of two terms. The first term is the reconstruction error of

source data using dictionaries from the target domain while the second term is the

sum of reconstruction error of recovered feature representations of source data in all

intermediate domains. Similarly, we enforce both X0
s and Xi

s to have the same sparse

codes. After sparse coding in the k-th step, we recover the feature representations

of source data in the k-th domain as follows: Xk
s = DCZk

s + DkΓk
s .

We use the sparse codes obtained in the last iterative step to derive the new

feature representations for source and target data. The new augmented feature

representation of source and target data are X̃s = [X̃0
s, ..., X̃

N
s ] and X̃t = [X̃0

t , ..., X̃
N
t ]

respectively, where X̃i
s = DCZN

s + DiΓN
s and X̃i

t = DCZN
t + DiΓN

t and ZN
s , ZN

t ,

ΓN
s , ΓN

t are the sparse codes obtained in the last iterative step where k = N .

The final stage of recognition across all the domains is performed using an SVM

classifier trained on new feature vectors after dimension reduction via the Principal

Component Analysis (PCA).
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4.4 Optimization

In this section, we provide the details of the optimization algorithms.

4.4.1 Source and Target Domain-specific Dictionaries Learning

The objective functions for learning source and target domain-specific dictio-

naries in (4.2) could be divided into two subproblems: (a) computing sparse codes

with fixed DC , D0 and Dt; (b) updating D0 and Dt with fixed sparse codes and DC .

Since the two objective functions in (4.2) are in the same form, we only describe the

optimization of D0 as shown below:

min
D0,Z0,Γ0

‖Xs −DCZ0 −D0Γ0‖2
F + λ‖D0DCT‖2

F

s.t. ∀i, ‖z0
i ‖0 + ‖α0

i ‖0 ≤ T

(4.8)

(a) Given fixed DC , D0, (4.8) is reduced to:

min
Z0,Γ0
‖Xs −

[
DC D0

]  Z0

Γ0

 ‖2
F

s.t. ∀i, ‖z0
i ‖0 + ‖α0

i ‖0 ≤ T

(4.9)

The minimization of (4.9) is a LASSO problem and we compute Z0,Γ0 using the

method proposed in [132].

(b) Given fixed sparse coefficients Z0,Γ0, (4.8) is reduced to:

min
D0
‖Js −D0Γ0‖2

F + λ‖D0DCT‖2
F

(4.10)

where Js = Xs −DCZ0 is a fixed matrix. Motivated by [104] and [220], we update

D0 = [d0
1, ..., d

0
n] atom by atom, i.e. updating the j-th atom d0

j by fixing other atoms
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in D0. Specifically, let Ĵs = Js−
∑

j 6=k d
0
jα

0
(j) where α0

(j) corresponds to the j-th row

of Γ0, then we solve the following problem for updating d0
j in D0:

d0
j = arg min

d0j

f(d0
j) = ‖Ĵs − d0

jα
0
(j)‖2

F + λ‖d0
k
T
DC‖2

F (4.11)

Let the first-order derivative of (4.11) with respect to d0
j equal to zero, i.e.

∂f(d0j )

∂d0j
= 0, then the closed form solution of d0

j is obtained as:

d0
j = (‖α0

(j)‖2
2 I + λDCDCT )−1Ĵsα

0
(j)
T (4.12)

Also note that as an atom of a dictionary, it should be normalized to unit

vector, i.e. d̂0
k = d0

k/‖d0
k‖2. Along with this, the corresponding coefficient should be

multiplied ‖d0
k‖2, i.e. α̂0

(j) = ‖d0
j‖2 α

0
(j).

We alternate between sparse coding and dictionary updating steps until the

objective function in (4.8) converges, yielding the source domain-specific dictionary

D0 and corresponding sparse coefficients Z0,Γ0.

4.4.2 Computing Domain-adaptive Sparse Codes

In (4.3), given fixed DC and domain-specific dictionaries Dk, k ∈ [0, K], the

objective function (4.3) could be rewritten as follows:

Zk,Γk = arg min
Z,Γ

‖X̃− D̃ [ Z Γ ]T ‖2
F (4.13)

where X̃ =
[
XT
t ,X

T
t ,X

0
t
T
, ...,Xk−1

t

T
]T

and D̃ =

 DtT ,DkT ,D0T , ...,Dk−1T

DcT ,DcT ,DcT , ...,DcT


T

.

We can solve (4.13) as a LASSO problem to compute the sparse codes as in [132].
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4.5 Experiments

4.5.1 Evaluation on CMU-PIE Face Dataset

The CMU-PIE dataset [166] is a controlled face dataset of 68 subjects with

a total of 41, 368 images. Each subject has 13 images under 9 different poses, 21

different illuminations and 4 different expressions. We first evaluated our approach

on the task of face recognition across blur and illuminations. Then we carried out

experiment of face recognition across pose variation.

4.5.1.1 Face Recognition Across Blur and Illuminations

We followed the protocol in [141] to construct source and target domains.

Specifically, we choose 34 subjects under first 11 illumination conditions to compose

the source domain. The target domain was formed by the remaining images with

the other 10 illumination conditions. The images in the source domain were labeled,

but not those in the target domain. We synthesized domain shift by applying two

different types of blur kernels to the target data: 1) Gaussian blur kernel with

different standard deviations from 2 to 8, and 2) motion blur kernel with different

lengths from 3 to 19 along Θ = 135o. In summary, the domain shift consist of

two components. The first is a change in illumination direction, 11 illumination

directions in the source domain and other 10 different illuminations directions in

the target domain. The second component is due to blur.

We compared our method with the following approaches: (1) K-SVD [1],
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which directly decomposes the target data with dictionaries from the source domain

and uses a nearest neighbor classifier on the resulting sparse codes for testing. (2)

GFK [71], which introduces the geodesic flow kernel on Grassmann manifold to cal-

culate the distance between the source and the target samples. (3) SIDL [141], which

creates a set of intermediate dictionaries to model the domain shift. (4) TJM [125],

which jointly performs feature matching and instance re-weighting across domains.

As in [141], we also compared with two other methods proposed in [4, 16]. [4]

introduced a blur insensitive descriptor which was called the Local Phase Quanti-

zation (LPQ) while [16] estimated an illumination robust albed map (Albedo) for

matching.

Tables 4.1 and 4.2 show the classification accuracies of different methods for

face recognition across Gaussian blur and motion blur respectively. The proposed

method achieves the best performance. This shows the benefits of our method

for bridging the domain shift by iterative domain dictionary learning. It is also

interesting to note that the baseline K-SVD which cannot handle the domain shift

between the training and testing sets performs poorly, while other DA methods

improve upon it. In addition, since both illumination and blur variations exist in

the domain shift, LPQ [4] which is only blur robust and albedo [16] which is only

illumination insensitive are not able to handle all the domain changes. Moreover,

our method outperforms the method most similar to ours [141], which also learned a

set of dictionaries to model the domain shift. This is because [141] only regularizes

two adjacent domains to have the same sparse codes and the learned dictionaries do

not fully capture the domain changes. However, our method encodes the domain
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σ 2 3 4 5 6 7 8

Ours 88.9 85.3 84.8 82.7 81.2 80.5 80.7

SIDL [141] 84.0 80.3 78.9 78.2 77.9 76.5 74.8

TJM [125] 67.4 65.6 65.3 64.4 63.8 63.8 63.5

GFK [71] 81.1 78.5 77.6 75.9 74.0 72.1 70.4

LPQ [4] 69.1 66.5 64.4 61.6 58.3 55.3 53.2

Albedo [16] 72.4 50.9 36.8 24.8 19.6 17.3 15.7

K-SVD [1] 49.1 41.2 36.8 34.6 32.7 29.2 28.0

Table 4.1: Recognition accuracies across different Gaussian blur kernels on the

CMU-PIE dataset [166]. Each column corresponds to Gaussian kernels with the

standard deviation σ = 2, 3, 4, 5, 6, 7, 8.

changes into domain-specific dictionaries well by encouraging feature representation

of different domain data to have domain-invariant sparse codes.

Benefit of learning the common dictionary and domain-specific dic-

tionaries separately: Here we illustrate the benefits of the separation of the

common dictionary and domain-specific dictionaries. Our method uses both the

common dictionary and domain-specific dictionaries that are incoherent to the com-

mon dictionary to represent each intermediate domain while [141] only uses a single

dictionary to represent it. We want to compare the difference between the synthe-

sized feature representations of the target data obtained by the above two methods.

Therefore, we compute and visualize the synthesized faces of one target face in in-
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L 3 7 9 11 13 15 17

Ours 97.9 89.7 88.2 82.5 77.4 75.0 70.8

SIDL [141] 95.6 86.5 85.9 81.2 75.7 72.3 63.2

TJM [125] 71.8 69.4 66.2 64.1 60.0 57.1 54.1

GFK [71] 91.3 84.9 82.4 77.6 70.7 66.9 59.8

LPQ [4] 81.8 77.4 73.8 62.6 54.5 47.1 43.4

Albedo [16] 82.3 70.7 60.9 45.9 35.1 26.4 18.9

K-SVD [1] 85.0 56.5 42.6 30.3 25.9 19.8 17.3

Table 4.2: Recognition accuracies across different motion blur kernels on the CMU-

PIE dataset [166]. Each column corresponds to motion blur with the length L =

3, 7, 9, 11, 13, 15, 17.

termediate domains using our method and the method proposed in [141] as shown in

Figure 4.2. In addition, our synthesized faces of the target face in the first two rows

have two components corresponding to the common dictionary and domain-specific

dictionaries respectively, we also visualize the two components in intermediate do-

mains in the first two rows of Figure 4.2. We observed that the synthesized faces

obtained by two methods gradually transit from clear images to blur images. More-

over, the components that correspond to the common dictionary in the synthesized

faces are always clear images while the components that correspond to domain-

specific dictionaries become more and more blurred. This shows that the common

dictionary has the ability to exploit features shared by all the domains, and only
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Figure 4.2: Synthesized face images of a target face along the intermediate domains.

The image in the last column denotes the original target face, while the images in

the first four columns are synthesized face images of the target face along four

different intermediate domains. The images in row 1 and row 2 are components

of our synthesized face images corresponding to the common dictionary and the

domain-specific dictionaries respectively. The face images in row 3 and row 4 are

synthesized face images generated by our approach and [141] respectively.

the domain-specific dictionaries are used to exploit the domain shift. In addition, it

can also be seen that better reconstruction is achieved by our method, specifically

for the region around the mouth where the motion blur is dominant. It further

demonstrates that the separation of the common dictionary from domain-specific

dictionaries enables us to learn more compact and discriminative representations

for learning.
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Methods c11 c29 c05 c37 average

Ours 86.7 98.5 95.6 89.7 92.6

SIDL [141] 76.5 98.5 98.5 88.2 90.4

TJM [125] 83.8 98.5 95.6 82.4 90.1

GFK [71] 63.2 92.7 92.7 76.5 81.3

Eigen light-field [75] 78.0 91.0 93.0 89.0 87.8

K-SVD [1] 48.5 76.5 80.9 57.4 65.8

Table 4.3: Recognition accuracies across pose variation on the CMU-PIE dataset

[166].

4.5.1.2 Face Recognition Across Pose Variation

The second experiment we carried out on the CMU-PIE data set is face recog-

nition across pose variation. There are 5 different poses of face images ranging from

frontal to ±45o. The four non-frontal poses are denoted as c05 (yaw about −22.5o),

c29 (yaw about 22.5o), c11 (yaw about 45o) and c37 (yaw about −45o). We selected

the front-illuminated face images to be labeled source domain. Face images with the

same illumination condition under four non-frontal poses formed faces in the target

domain. The task is to classify the unlabeled face images in the target domain. We

compared our method with the following methods: K-SVD [1], GFK [71], SIDL [141]

and TJM [125]. In addition, we compare with Eigen light-field [75], which uses the

appearance model to tackle pose variations in face recognition.

96



Figure 4.3: Recovered face images of a target face image along the intermediate

domains. The first image is the original target face image, the second image is

the component of the recovered face image corresponding to the common dictio-

nary. The remaining six images are the components of the recovered face images

corresponding to domain-specific dictionaries.

As shown in Table 4.3, our method outperforms its direct competitor [141]

under all cases except the case where the target pose is c05. It is interesting to note

that when the pose variations are large, [75] which relies on a generic training set to

build pose model has higher average recognition accuracies than the unsupervised

DA method proposed in [71]. However, our method demonstrates improved perfor-

mances over both [75] and other domain adaptation approaches [71, 125, 141] when

pose variations are large.

Benefit of learning the common dictionary and domain-specific dic-

tionaries separately: In addition, we chose a target face with pose ID c11 and

synthesized feature representations of this face images in intermediate domains.

Since synthesized face images have two components corresponding to the common

dictionary and domain-specific dictionaries respectively, we visualize the two com-

ponents of synthesized face images separately in Figure 4.3. It can be seen that

the components corresponding to domain-specific dictionaries in intermediate do-

mains gradually adapt from frontal face to non-frontal face. This demonstrates that
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the domain-specific dictionaries have the ability to encode the domain shift due to

different yaw angles.

4.5.2 Visual Object Recognition

In this section, we present the results generated by our approach for object

recognition using the benchmark domain adaptation dataset introduced in [158].

This dataset contains visual objects across four different domains, i.e. Caltech,

Amazon, DSLR, Webcam. Images from the first two domains Caltech [74] and

Amazon are downloaded from Google and Amazon websites respectively. The last

two domains include images captured by a digital SLR (DSLR) and a webcam

(Webcam). Following [71], we selected 10 object classes common to all four domains

with a total of 2533 images for our experiment. Image representation is based

on SURF [13] features that are similar to those in [71, 158]. Specifically, all the

images were resized to have the same width and converted to grayscale. The SURF

detector [13] was then used to extract local scale-invariant interest points. Then a

random subset of these interest point descriptors was quantized to 800 visual words

by k-means clustering. Each image was represented by a 800-dimensional histogram.

We evaluated our approach following the protocol introduced in [158]. In the

source domain, we randomly selected 20 labeled images per category when Amazon,

Webcam and Caltech are used as source domains, and 8 labeled images when DSLR

is the source domain. We compared our method with K-SVD [1], GFK [71], SA [62],

SIDL [141], TJM [125], DIP [8] and SIE [9]. We ran 20 different trials corresponding

98



Methods C→A C→D C→W A→C A→W A→D

K-SVD [1] 38.0 19.8 21.3 33.9 23.5 22.3

GFK [71] 40.4 41.1 40.7 37.9 35.7 36.3

SA [62] 39.0 39.6 23.9 35.3 38.6 38.8

SIDL [141] 43.3 42.3 36.3 40.4 37.9 33.3

TJM [125] 46.7 44.6 38.9 39.4 42.0 45.2

DIP [8] 50.0 49.0 47.6 43.3 46.7 42.8

SIE [9] 51.9 52.5 47.3 44.5 48.6 43.2

Ours 54.7 53.7 48.1 45.3 44.5 45.8

Methods W→C W→A W→D D→C D→A D→W

K-SVD [1] 17.1 16.7 46.5 22.6 14.3 46.8

GFK [71] 29.3 35.5 85.9 30.3 36.1 79.1

SA [62] 32.3 37.4 77.8 38.9 38.0 83.6

SIDL [141] 36.3 38.3 86.2 36.1 39.1 86.2

TJM [125] 30.2 30.0 89.2 31.4 32.8 85.4

DIP [8] 37.0 42.5 86.4 39.0 40.5 86.7

SIE [9] 39.9 44.1 89.3 38.9 39.1 88.6

Ours 40.1 41.8 93.6 39.3 41.7 92.4

Table 4.4: Object classification accuracies of different approaches on the benchmark

dataset [158]
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to different selections of labeled source data and report the average recognition

accuracy in Table 4.4. It can be seen that our method achieves the best performance

for a majority of combinations of source and target domains. In particular, our

method consistently outperforms SIDL [141] which is most similar to ours. This is

because [141] only regularizes two adjacent domains to have the identical pairwise

sparse codes and the learned dictionaries do not fully capture the domain changes.

However, our method encodes the domain changes in the domain-specific dictionaries

by encouraging feature representation of different domain data to have the same

domain-adaptive sparse codes.

Decrease of reconstruction error along the transition path: We also

show how the average reconstruction error of target data using both the common

dictionary and domain-specific dictionaries changes along the transition path we

have learned in Figure 4.4. First, we observe that reconstruction residues obtained

by our method and [141] are gradually decreasing along the transition path, which

provides empirical support to Proposition 1. Second, the proposed method achieves

much lower reconstruction error. This demonstrates that our approach can learn

more compact and more reconstructive dictionaries by learning the common and

domain-specific dictionaries separately. Last but not the least, the proposed learning

algorithm generally terminates within 8 to 10 steps, which demonstrates that the

generated intermediate domains bridge the gap between source and target domains.
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(a) clear v.s. motion blur frontal face (L = 5) (b) frontal face v.s. face images at pose c05

(c) Amazon v.s. Caltech (d) Webcam v.s. Amazon

Figure 4.4: Average reconstruction error of the target data decomposed using dic-

tionaries along the intermediate domains. We compare with SIDL [141]. The source

and target domains are: (a) clear frontal face v.s. motion blur frontal face (L = 5)

(b) frontal face images v.s. face images at pose c05 (c) Amazon v.s. Caltech in

Office dataset [158] (d) Webcam v.s. Amazon in Office dataset [158].
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Figure 4.5: The effects of dictionary size and stopping threshold δ on office

datasets [158].

4.5.3 Parameter Sensitivity

In order to evaluate the effect of dictionary size on our approach, we choose

two different combinations of source and target domains and plot the results in

Figure 4.5(a). Our approach yields significant improvement over K-SVD [1] since

we bridge the domain shift by generating intermediate domains. Our approach also

outperforms SIDL [141] by a large margin of 4.5%. This is because we learn more

compact and reconstructive dictionaries to represent target data, which leads to

much lower reconstruction errors, as demonstrated in Figure 4.4. The dictionary

size is set to be 128 or 256 based on the source sample size in all the experiments.

We also evaluate our approach with varying values of stopping threshold δ as shown

in Figure 4.5(b). It can be seen that both [141] and the proposed approach converge

in fewer steps with increasing value of δ, thus generating fewer intermediate domains.

In addition, our approach is insensitive to the regulization parameter η, which is
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chosen from 1500 to 2500 throughout all the experiments. The final dimensionality

after PCA is between 60 and 140.

4.6 Concluding Remarks

In this chapter, we presented a novel domain adaptive dictionary learning ap-

proach for unsupervised domain adaptation. We first learned a common dictionary

to recover features shared by all domains. Then we acquired a set of domain-specific

dictionaries, which generates a transition path from source to target domains. The

common dictionary is essential for reconstruction while domain-specific dictionar-

ies are able to bridge the domain shift. Final feature representations are recovered

by utilizing both common and domain-specific dictionaries. We extensively evalu-

ated our approach on two benchmark datasets and the experimental results clearly

confirm the effectiveness of our approach.

103



Chapter 5: Deep Regionlets: Blended Learning of Regionlets and

Deep Learning for Generic Object Detection

5.1 Introduction

In this chapter, we study another fundamental problem in computer vision: ob-

ject detection. Object detection has been extensively studied in the computer vision

over several decades [18,20,43,45,61,67,68,92,117,153,177,184–186,196,197,213,217]

due to its appeal to both academic research explorations as well as commercial ap-

plications. While designing object detection algorithms, two key issues need to be

carefully addressed: where the candidate locations are in images and how to discern

whether they are the objects of interests. Because of these two issues, object de-

tection has become one of the most valuable pattern recognition tasks, with great

benefits in scene understanding [114], face recognition [149, 150, 175, 218], action

recognition [96, 146], robotics and self-driving vehicles, etc. Although studied over

several decades, accurate detection is highly challenging when generating bound-

ing boxes for specific object categories, due to cluttered backgrounds, occlusions,

variations in object scale, pose, viewpoint and even part deformations.

Prior works in object detection before the deep learning era addressed object
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deformations with several strategies based on hand-crafted features (i.e. histogram

of oriented gradients (HOG) [45], local binary pattern (LBP) [2], HOG-LBP [184],

scale-invariant feature transform (SIFT) [126]). One of the earliest works, the classi-

cal Adaboost [178] detector deployed an ensemble classifier of fast features to model

local variations, especially for the detection of faces or pedestrians. The deformable

part model (DPM) [61] first proposed to model object deformations explicitly using

latent variables, improved localization precision. However, these approaches usually

involve exhaustive search for possible locations, scales and aspect ratios of the ob-

ject, by using the sliding window approach. Furthermore, spatial pyramid matching

of bag-of-words (BoW) models [50] in object recognition, has been adopted for ob-

ject detection, providing robustness to large deformations. The computational cost

has been alleviated by using thousands of object-independent candidate detection

windows instead of millions of sliding windows, yet still inefficiently as it employed

a large codebook to encode the features.

Owing to its ability to efficiently learn a descriptive and flexible object repre-

sentation, Wang et al.’s regionlet-based detection framework [185] has gained a lot

of attention. It provides the flexibility to deal with different scales and aspect ratios

without performing exhaustive search. It first proposed the concept of regionlet

by defining a three-level structural relationship: candidate bounding boxes (sliding

windows), regions inside the bounding box and groups of regionlets (sub-regions

inside each region). It operates by directly extracting features from regionlets in

several selected regions within an arbitrary detection bounding box and performs

(max) pooling among the regionlets. Such a feature extraction hierarchy is capa-
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ble of dealing with variable aspect ratios and flexible feature sets, which leads to

improved learning of robust feature representation of the object for region-based

object detection.

Recently, deep learning has achieved significant success on many computer

vision tasks such as image classification [87, 107], semantic segmentation [123] and

object detection [67,68] Despite the superior performance of deep learning-based de-

tection approaches, most network architectures [43,122,153] do not take advantage of

successful conventional ideas such as DPM or regionlets. Those conventional meth-

ods have been shown to be effective for modeling object deformation, sub-categories

and multiple aspect ratios. As deep convolutional neural networks [111] exhibit su-

perior capability in learning hierarchical and discriminative features (deep features),

it motivates us to think how to bridge the deep neural network and conventional

object detection schemes.

Recent advances [44, 138, 142] have answered the question by combining the

conventional DPM-based detectors with deep neural network architectures and achiev-

ing promising results. Yet few methods [186,226] have been explored for conventional

regionlet detection schema. Zou et al. [226] made the preliminary attempt to utilize

deep features instead of hand-crafted features. They introduced the dense neural

pattern (DNP) to extract features from an image with arbitrary resolution using a

well-trained deep convolutional neural network (i.e AlexNet [107]). Activations from

same receptive fields but different feature maps can be extracted by back-tracking

to exact coordinates in the original image. Though [226] presented effective perfor-

mance boost with deep features, several limitations make DNP [226] not applicable
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Figure 5.1: Architecture of the Deep Regionlets detection approach. It consists

of a Region Selection Network (RSN) and a deep regionlet learning module. The

region selection network performs non-rectangular region selection from the detec-

tion window proposal generated by the region proposal network. Deep regionlet

learning module learns the regionlets through a spatial transformation and a gating

network. The entire pipeline is end-to-end trainable. For better visualization, the

region proposal network is not displayed here.
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to deep neural networks developed recently (i.e. VGG [168], ResNet [87]). First,

as DNP uses selective search to generate the region proposal, it would be extremely

inefficient to extract the feature activations with more sophisticated deep neural net-

works. Second, end-to-end training is not feasible as DNP [226] directly extracted

features on well-trained deep neural network for classification tasks.

These observations motivate us to establish a ”real” bridge between deep con-

volutional neural networks and conventional regionlet object detection schema. In

this chapter, we incorporate the conventional regionlet method into an end-to-end

trainable deep learning framework. Despite being able to handle arbitrary bounding

boxes, several drawbacks arise when directly integrating the regionlet methodology

into the deep learning framework. First, both regionlet [185] and DNP [226] pro-

posed to learn cascade object classifiers after hand-crafted/deep feature extraction

in each regionlet, thus end-to-end learning is not feasible in both approaches. Sec-

ond, regions in regionlet-based detection have to be rectangular, which does not

effectively model object deformation. Moreover, both regions and regionlets are

fixed after training is completed.

To this end, we propose a novel object detector named ”Deep Regionlets”

by blending deep learning and the traditional regionlet method [185,226]. The pro-

posed framework ”Deep Regionlets” is able to address the limitations of both tra-

ditional regionlet and DNP extension, leading to significant precision improvement

by exploiting the power of deep convolutional neural networks.

The overall design of the proposed detection system is illustrated in Figure 5.1.

It consists of a region selection network and a deep regionlet learning module. The
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region selection network (RSN) performs non-rectangular region selection from the

detection window proposal1 (RoI) to address the limitations of the traditional re-

gionlet approach. We further design a deep regionlet learning module to learn the

regionlets through a spatial transformation and a gating network. By using the

proposed gating network, which is a soft regionlet selector, the final feature repre-

sentation is more suitable for detection. The entire pipeline is end-to-end trainable

using only the input images and ground truth bounding boxes.

We conduct a detailed analysis of our approach to understand its merits and

properties. Extensive experiments on two detection benchmark datasets, PASCAL

VOC [58] and Microsoft COCO [118] show that the proposed deep regionlet ap-

proach outperforms several competitors [43, 44, 138, 153, 213]. Even without seg-

mentation labels, we outperform state-of-the-art algorithms Mask R-CNN [85] and

RetinaNet [117].

To summarize, the major contributions of this chapter are four-fold:

• We propose a novel approach for object detection, ”Deep Regionlets”. Our

work blends the traditional regionlet method and the deep learning framework.

The system could be trained in a fully end-to-end manner.

• We design a region selection network, which first performs non-rectangular

regions selection within the detection bounding box generated from a detection

window proposal. It provides more flexibility in modeling objects with variable

1The detection window proposal is generated by a region proposal network [43, 68, 153]. It is

also called region of interest (ROI)
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shapes and deformable parts.

• We propose a deep regionlet learning module, including feature transformation

and a gating network. The gating network serves as a soft regionlet selector

and lets the network focus on features that benefit detection performance.

• We present empirical results on object detection benchmark datasets, which

demonstrates the competitive performance over state-of-the-art.

5.2 Related Work

Generic object detection accuracy has improved over years. Such improvement

is due to more effecive handling of multi-viewpoints, modeling deformations [61], and

the success of deep learning techniques [67, 68, 87, 153, 168]. A complete survey of

the object detection literature is beyond the scope of this dissertation.

Briefly speaking, many approaches based on traditional representations [61,

177, 185] and deep learning [20, 36, 43, 44, 64, 67, 68, 86, 89, 97, 97, 115, 122, 138, 151,

153, 190, 213, 217] have been proposed. Traditional approaches mainly used hand-

crafted features (i.e. LBP [2], HOG) [45]) to design object detectors using the sliding

window paradigm. One of the earliest works [177] used boosted cascaded detectors

for face detection, which led to its wide adoption. Deformable part models [60]

further extended the cascaded detectors to more general object categories. Due to

the rapid development of deep learning techniques [87, 107, 168], the deep learning-

based detectors have become dominant object detectors.

Deep learning-based detectors could be further categorized into two classes,
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single-stage detectors and two-stage detectors, based on whether the detectors have

proposal-driven mechanism or not. The single-stage detectors [64, 101, 105, 109,

116, 117, 122, 151, 160, 213, 217] apply regular, dense sampling windows over object

locations, scales and aspect ratios. By exploiting multiple layers within a deep CNN

network directly, the single-stage detectors achieved high speed but their detection

accuracy was low compared to two-stage detectors.

Two-stage detectors [34–36,43,44,68,78,85,121,138,153,169,170,225] first gen-

erate a sparse set of candidate proposals of detection bounding boxes by the region

proposal network (RPN). After filtering out the majority of negative background

boxes by RPN, the second stage classifies the detection bounding box proposals

and performs regression to predict the object categories and their corresponding

locations. The two-stage detectors consistently achieve higher accuracy than single-

stage detectors and numerous extensions have been proposed [43,44,68,85,138,153].

Our method follows the two-stage detector architecture by taking advantage of the

region proposal network without the need for dense sampling of object locations,

scales and aspect ratios.

5.3 Traditional Regionlets for Detection

In this section, we review traditional regionlet-based approach and its dense

neural pattern extension as our work is directly motivated by the regionlet detec-

tion scheme. We incorporate regionlet into an end-to-end trainable deep learning

framework. The proposed deep regionlets framework overcomes the limitations of
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both traditional regionlet method [185] and the DNP [226], leading to significant

improvement in detection performance.

5.3.1 Regionlets Definition

A regionlet is a base feature extraction region defined proportionally with

respect to a sliding window or a detection bounding box) at arbitrary resolution

(i.e. size and aspect ratio). Wang et al. [185, 186] first introduced the concept of

regionlets, illustrated in Figure 5.2.

Figure 5.2 shows a three-level structure consisting of a detection bounding box,

number of regions inside the bounding box and a group of regionlets (sub-regions

inside each region). In Figure 5.2, the yellow box is a detection bounding box. A

rectangular feature extraction region inside the detection bounding box is denoted

as R (purple rectangle). Furthermore, within this region R, we spot some small

sub-regions (small magenta rectangles) ri{i=1...N}(e.g. r1, r2) and define them as a

set of regionlets. One of the motivations behind the term regionlet is that the hand-

crafted features extracted from these sub-regions will be aggregated into a single

feature representation of R.

To summarize, one detection bounding box is represented by several regions,

each of which consists of a small set of regionlets. By using the relative positions

and sizes of regionlets and regions, the difficulty of the arbitrary detection bounding

box has been well addressed. Therefore, the regionlet-based representation is able

to model relative spatial layouts inside an object and can be efficiently applied to
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arbitrary bounding boxes at different scales and aspect ratios. However, the initial-

ization of regionlets possess randomness and both regions (R) and regionlets (i.e.

r1, r2) are fixed after training is completed. Moreover, it is based on hand-crafted

features (i.e. HOG [45] or LBP descriptors [2]) in each regionlet respectively. The

proposed deep regionlet-based approach in Section 5.4 mitigates such limitations.

𝑅
𝑟# 𝑟$

Figure 5.2: Illustration of structural relationships among the detection bounding

box, feature extraction regions and regionlets. The yellow box is a detection bound-

ing box and R is a feature extraction region shown as a purple rectangle with filled

dots inside the bounding box. Inside R, two small sub-regions denoted as r1 and r2

are the regionlets.

5.3.2 Dense Neural Pattern Extension

Despite the success of the sophisticated regionlet detection method [185], the

features employed are still hand-crafted representations such as LBP [2], HOG [45]

or covariance-based on the gradients of the image.
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Recently, the deep convolutional neural network has demonstrated promis-

ing performance on object detection [67, 68]. The dramatic improvements are due

to hierarchically learning more complex features (deep features) from deep neural

networks. One intuitive way to improve the traditional regionlet-based approach

is to utilize deep features instead of hand-crafted features. Zou et al. [226] made

the first attempt to incorporate the regionlet detection scheme in the deep neural

network. [226] introduced DNP to extract features from an image with arbitrary res-

olution using a well trained classification-based deep convoluttional neural network

(i.e. AlexNet [107]).

However, there are several limitations which make DNP [226] not applicable

to recent deep neural networks (i.e. VGG [168], ResNet [87]). First, DNP [226]

directly extracted features on well-trained deep neural network for classification

task hence end-to-end training is not feasible. Second, it used the sliding window

approach (i.e. selective search) to generate region proposals, which would become

extremely inefficient with more sophisticated deep neural networks. The proposed

deep regionlet-based approach overcomes both traditional regionlet method and

DNP, leading to significant improvement in detection accuracy.

5.4 Deep Regionlets

In this section, We first present the overall design of the proposed deep region-

let approach with end-to-end training and then describe each module in detail.
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5.4.1 System Architecture

Generally speaking, an object detection network performs a sequence of con-

volutional operations on an image of interest using a deep convolutional neural

network. At some layer, the network bifurcates into two branches. One branch,

RPN, generates a set of candidate bounding boxes2 while the other branch per-

forms classification and regression by pooling the convolutional features inside the

proposed bounding box generated by RPN [43, 153]. Taking advantage of this de-

tection network, we introduce the overall design of the proposed object detection

framework, named ”Deep Regionlets”, as illustrated in Figure 5.1.

The general architecture consists of an RSN and a deep regionlet learning

module. In particular, RSN is used to predict transformation parameters to select

regions given a candidate bounding box, which is generated by the RPN. The re-

gionlets are further learned within each selected region defined by the RSN. The

system is designed to be trained in a fully end-to-end manner using only input im-

ages and the ground truth bounding box. The RSN as well as the regionlet learning

module can be simultaneously learned over each selected region given the detection

bounding box proposal.

5.4.2 Region Selection Network

We design the RSN to have the following properties:

• End-to-end trainable.

2 [43, 68,153] also called the detection bounding box as detection window proposal.
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Figure 5.3: Initialization of one set of projective transformation parameters and

affine transformation parameters. Normalized projective transformation parameters

Θ0 = [1
3
, 0,−2

3
; 0, 1

3
, 2

3
; 0, 0, 1] (θi ∈ [−1, 1]) and affine transformation parameters

Θ∗0 = [1
3
, 0,−2

3
; 0, 1

3
, 2

3
] (θ∗i ∈ [−1, 1]) selects the top-left region in the 3 × 3 evenly

divided detection bounding box, shown as the purple rectangle.

• Possess simple structure without introducing too many parameters.

• Generate regions with arbitrary shapes.

Keeping these in mind, we design the RSN to predict a set of projective trans-

formation parameters. By using these projective transformation parameters, as well

as not requiring the regions to be rectangular, we have more flexibility in modeling

an object with arbitrary shape and deformable parts.

Specifically, we design the RSN using a small neural network with three
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fully connected layers. The first two fully connected layers have output size of

256, with ReLU activation. The last fully connected layer has the output size

of nine, which is used to predict the set of projective transformation parameters

Θ = [θ1, θ2, θ3; θ4, θ5, θ6; θ7, θ8, θ9]. It is noted that in our preliminary work [196],

RSN is only designed to predict the set of affine parameters Θ∗ = [θ1, θ2, θ3; θ4, θ5, θ6]

Note that the candidate detection bounding boxes proposed by RSN have ar-

bitrary sizes and aspect ratios. In order to address this difficulty, we use the relative

positions and sizes of the selected region within a detection bounding box. The

candidate bounding box generated by the region proposal network is defined by

the top-left point (w0, h0), width w and height h of the box. We normalize the

coordinates by the width w and height h. As a result, we could use the normalized

projective transformation parameters Θ = [θ1, θ2, θ3; θ4, θ5, θ6; θ7, θ8, θ9] (θi ∈ [−1, 1])

to evaluate one selected region within one candidate detection window at different

sizes and aspect ratios without scaling images into multiple resolutions or using

multiple-components to enumerate possible aspect ratios, like anchors [64,122,153].

5.4.2.1 Initialization of Region Selection Network

Taking advantage of the relative and normalized coordinates, we initialize the

RSN by equally dividing the whole detecting bounding box to several sub-regions,

named as cells, without any overlap among them.

Figure 5.3 shows an example of initialization from one projective transforma-
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tion and one affine transformation in [196]. (i.e. 3× 3). The first cell, which is the

top-left bin in the whole region (detection bounding box) could be defined by initial-

izing the corresponding projective transformation parameters Θ0 = [1
3
, 0,−2

3
; 0, 1

3
, 2

3
; 0, 0, 1]

or affine transformation parameters Θ∗0 = [1
3
, 0,−2

3
; 0, 1

3
, 2

3
]. The other eight of 3× 3

cells are initialized in a similar way.

5.4.3 Deep Regionlet Learning

After regions are selected by the RSN, regionlets are further learned from

the selected region defined by the normalized projective (affine) transformation pa-

rameters. Note that our motivation is to design the network to be trained in a

fully end-to-end manner using only input images and ground truth bounding boxes.

Therefore, both the selected regions and regionlet learning should be able to be

trained by deep neural networks. Moreover, we would like the regionlets extracted

from the selected regions to better represent objects with variable shapes and de-

formable parts.

Inspired by the spatial transform network [95,222], any parameterizable trans-

formation including translation, scaling, rotation, affine or even projective transfor-

mation can be learned by a spatial transformer. In this section, we introduce our

deep regionlet learning module to learn the regionlets in the selected region, which

is defined by the projective transformation parameters. It is noted that affine trans-

formation is the special case of projective transformation obtained by setting θ7 = 0,

θ8 = 0, θ9 = 1 in Θ.
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More specifically, we aim to learn regionlets from one selected region defined

by one set of projective transformation Θ to better match the shapes of objects.

This is done with a selected region R from RPN, transformation parameters Θ =

[θ1, θ2, θ3; θ4, θ5, θ6; θ7, θ8, θ9] predicted by RSN and a set of feature maps U = {Ui, i =

1, . . . , n}. Without loss of generality, let Ui be one of the feature map out of the n

feature maps. A selected region R is of size w × h with the top-left corner (w0, h0).

Inside the Ui feature map, we present the regionlet learning module as follows:

Let s denote the source and t denote target, we define (xsp, y
s
p) as the p-th

spatial location in the original feature map Ui and (xsp, y
s
p) as the corresponding

spatial location in the output feature maps after projective transformation. First,

a grid generator [95] generates the source map coordinates (xsp, y
s
p, 1) based on the

transformation parameters, given the p-th spatial location (xtp, y
t
p, 1) in target feature

maps. The process is generated using (5.1) given below.


xsp

ysp

1

 =
1

zsp


θ1 θ2 θ3

θ4 θ5 θ6

θ7 θ8 1




xtp

ytp

1

 (5.1)

where θ9 = 1 and zsp = θ7x
t
p + θ8y

t
p + 1 to ensure the third dimension of (xsp, y

s
p, 1) is

1.

Next, the sampler samples the input feature U at the generated source coor-

dinates. Let U c
nm be the value at location (n,m) in channel c of the input feature.

The total output feature map V is of size H ×W . V (xtp, y
t
p, c|Θ, R) be the output

feature value at location (xtp, y
t
p) (xtp ∈ [0, H], ytp ∈ [0,W ]) in channel c, which is
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computed as

V (xtp, y
t
p, c|Θ, R) =

H∑
n

M∑
m

U c
nm max(0, 1− |xsp −m|) max(0, 1− |ysp − n|) (5.2)

5.4.3.1 Back Propagation through Spatial Transform

To allow back propagation of the loss through the regionlet learning module,

we can define the gradients with respect to the feature maps and the region selection

network. In this layer’s backward function, we have partial derivative of the loss

function with respect to the feature map variable U c
mn and projective transform pa-

rameter Θ = [θ1, θ2, θ3; θ4, θ5, θ6; θ7, θ8, θ9]. Motivated by [95], the partial derivative

of the loss function with respect to the feature map is:

∂V (xtp, y
t
p, c|Θ, R)

∂U c
nm

=
H∑
n

M∑
m

max(0, 1− |xsp −m|)×max(0, 1− |ysp − n|) (5.3)

Moreover, during back propagation, we need to compute the gradients with re-

spect to the projective transformation parameter vector Θ = [θ1, θ2, θ3; θ4, θ5, θ6; θ7, θ8, 1].

Note that we set θ9 = 1 in (5.1) hence we only need to calculate the gradient of

V with respect to eight projective parameters. In this way, RSN could also be up-

dated to adjust the selected region. Although (5.2) may not be differentiable when

xsp = m or ysp = n, this seldom happens in practice because the possibility that the

calculated xsp or ysp are integers is extremely low. We empirically set the gradients

at these points to be 0 as their effect on the back propagation process is negligible.
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We consider θ1 and θ7 as examples due to space limitations and similar deriva-

tive can be computed for other parameters θi(i = 2, . . . , 6, 8) respectively (See Ap-

pendix for a complete derivation). Denote V (xtp, y
t
p, c|Θ, R) as Vp for simplicity,

after applying the chain rule for the differentiable points:

𝑓

Figure 5.4: Design of the gating network. f denotes the non-negative gate function

(i.e. sigmoid)

∂Vp
∂θ1

=
∂Vp
∂xsp

∂xsp
∂θ1

=
xtp
zsp

∂Vp
∂xsp

∂Vp
∂θ7

=
∂Vp
∂zsp

∂zsp
∂θ7

= (
∂Vp
∂xsp

∂xsp
∂zsp

+
∂Vp
∂ysp

∂ysp
∂zsp

)xtp

= −
xtp
zsp

(
∂Vp
∂xsp

xsp +
∂Vp
∂ysp

ysp)

(5.4)

where

∂Vp
∂xsp

=

H∑
n

M∑
m

U cnm max(0, 1− |ysp − n|)η(xsp −m)

η(xsp −m) =



0, if |m− xsp| ≥ 1

1, if m > xsp

−1, if m < xsp

(5.5)
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It is worth noting that (xtp, y
t
p) are normalized coordinates in range [−1, 1] so that

they can to be scaled with respect to w and h with start position (w0, h0).

5.4.3.2 Gating Network

The gating network, which serves as a soft regionlet selector, is used to assign

regionlets with different weights and generate regionlet feature representation. We

design a simple gating network using a fully connected layer with sigmoid acti-

vation. The output values of the gating network are in the range [0, 1]. Given the

output feature maps V (xtp, y
t
p, c|Θ, R) described above, we use a fully connected layer

to generate the same number of outputs as feature maps V (xtp, y
t
p, c|Θ, R), which is

followed by an activation layer sigmoid to generate the corresponding weight re-

spectively. The final feature representation is generated by the product of feature

maps V (xtp, y
t
p, c|Θ, R) and their corresponding weights.

5.4.3.3 Regionlet Pool Construction

Object deformations may occur at different scales. For instance, deformation

could be caused by different body parts in person detection. Same number of re-

gionlets (size H × W ) learned from small selected region have higher extraction

density, which may lead to non-compact regionlet representation. In order to learn

a compact and efficient regionlet representation, we further perform the pooling

(i.e. max/ave) operation over the feature maps V (xtp, y
t
p, c|Θ, R) of size (H ×W ).

We reap two benefits from the pool operation: (1) Regionlet representation is
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compact (small size). (2) Regionlets learned from different size of selected regions

are able to represent such regions in an efficient way, and handle object deformations

at different scales.

5.5 Relations to Recent Works

We review the traditional regionlet-based approach and its DNP extension in

Section 5.3. Besides this, our deep regionlet approach is related to some recent object

detection works in different aspects. In this section, we discuss both similarities and

differences in detail.

5.5.1 Spatial Transform Networks

Jaderberg et al. [95] first proposed the spatial transformer module to provide

spatial transformation capabilities into a deep neural network. It only learns one

global parametric transformation (scaling, rotations as well as affine transformation).

Such learning is known to be difficult to apply on semi-dense vision tasks (e.g., object

detection) and the transformation is on the entire feature map, which means the

transformation is applied identically across all the regions in the feature map.

The proposed RSN learns a set of projective transformation and each trans-

formation can be considered as the localization network in [95]. However, regionlet

learning is different from image sampling [95] method as it adopts a region-based

spatial transformation and feature wrapping. By learning the transformation locally

in the detection bounding box, our method provide the flexibility of learning a com-
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pact, efficient feature representation of objects with variable shape and deformable

parts.

5.5.2 Deformable Part Model and its deep learning extensions

Deformable part models [60] explicitly represent spatial deformations of object

parts via latent variables. A root filter is learned to model the global appearance

of the objects, while the part filters are designed to describe the local parts in

the objects. However, DPM is a shallow model and the training process involves

heuristic choices to select components and part sizes, making end-to-end training

inefficient.

Both works [44,138] extend the DPM with end-to-end training in deep CNNs.

Motivated by DPM [61] to allow parts to slightly move around their reference po-

sition (partition of the initial regions), they share the similar idea of learning part

offsets3 to model the local element and pool the features at their corresponding

locations after the shift. While [44, 138] show promising improvements over other

deep learning-based object detectors [68,153], it still lacks the flexibility of modeling

non-rectangular objects with sharp shapes and deformable parts.

It is noticeable that the deep regionlet learning module in the proposed method

on the selected region is a generalization of Deformable RoI Pooling in [44, 138].

First, we generalize the selected region to be non-rectangular by learning the pro-

jective transformation parameters. Such non-rectangular regions could provide the

capabilities of scaling, shifting and rotation around the original reference region. If

3 [44] uses term offset while [138] uses term displacement
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we only enforce the RSN to learn the shift, our regionlet learning mechanism would

degenerate to deformable RoI pooling as in [44,138]

5.5.3 Spatial-based RoI Pooling

Traditional spatial pyramid pooling [110] performs pooling over hand crafted

regions at different scales. With the help of deep CNNs, [86] proposes to use spatial

pyramid pooling in deep learning-based object detection. However, as the pooling

regions over image pyramid still need to be carefully designed to learn the spatial

layout of the pooling regions, the end-to-end training strategy is not well facilitated.

In contrast, the deep regionlet learning approach learns pooling regions end-to-end

in deep CNNs. Moreover, the region selection step for learning regionlets accommo-

dates different sizes of the regions. Hence, we are able to handle object deformations

at different scales without generating the feature pyramid.

5.6 Experiments

In this section, we present comprehensive experimental results of the proposed

approach on two challenging benchmark datasets: PASCAL VOC [58] and MS-

COCO [118]. There are in total 20 categories of objects in PASCAL VOC [58]

dataset, which includes rigid objects such as cars and deformable objects like cats.

We follow the common settings used in [18, 43, 68, 153] to draw compelete compar-

sions. More specifically, we train our deep model on (1) VOC 2007 trainval and (2)

union of VOC 2007 trainval and VOC 2012 trainval and evaluate on the VOC
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2007 test set. We also report results on the VOC 2012 test set with the model

trained on the VOC 2007 trainvaltest and VOC 2012 trainval. In addition,

we report results on the VOC 2007 test split for ablation analysis. Mean average

precision (mAP) is reported for all the experiments on PASCAL VOC.

MS-COCO [118] is a widely used challenging dataset, which contains 80 object

categories. Following the official settings in COCO website4, we use the COCO 2017

trainval split (union of 135k images from train split and 5k images from val split)

for training. We report the COCO-style average precision (mmAP) on test-dev

2017 split, which requires evaluation from the MS-COCO server5 for testing.

For the base network, we use both VGG-16 [168] and ResNet-101 [87] to

demonstrate the generalization of our approach regardless of which network back-

bone we use. The á trous algorithm [123, 135] is adopted in stage 5 of ResNet-101.

Following the suggested settings in [43, 44], we also set the pooling size to 7 by

changing the conv5 stage’s effective stride from 32 to 16 to increase the feature

map resolution. In addition, the first convolution layer with stride 2 in the conv5

stage is modified to 1. Both backbone networks are intialized with the pre-trained

ImageNet [87,107] model.

In the following sections, we report the results of a series of ablation experi-

ments to understand the behavior of the proposed deep regionlet approach. Further-

more, we present comparisons with state-of-the-art detectors [43,44,85,116,117,153]

4http://cocodataset.org/#detections-challenge2017

5The updated settings (2017) are different from the previous settings (2016, 2015) in [18,43,44,

117,117], as it includes different train/val sets.
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Methods Regionlet [185,186] DNP [226] Ours-A (AlexNet)

mAP@0.5(%) 41.7 46.1 63.2

Methods Ours-A (VGG16) Ours-A (ResNet-50) Ours-A (ResNet-101)

mAP@0.5(%) 73.0 74.2 75.3

Table 5.1: Ablation studies on the improvement of the proposed deep regionlets

method over traditional regionlets [185, 186] and its extension DNP [226]. Re-

sults are reported on different network architecture backbones, i.e AlexNet [107],

VGG16 [168] ResNet-50 [87] and ResNet-101 [87]. Ours-A denotes RSN predicting

affine transformation parameters.

on both PASCAL VOC [58] and MS COCO [118] datasets.

5.6.1 Ablation Study on PASCAL VOC

In this section, we comprehensively evaluate the deep regionlets method on

the PASCAL VOC [58] detection benchmark to understand its behavior. Unless

otherwise stated, all ablation studies are performed with RSN predicting the affine

transformation parameters in the proposed approach.

5.6.1.1 Comparison with the conventional Regionlets detection schema

We first evaluate how the deep regionlets approach improves over the conven-

tional Regionlets detection schema [185,186] and its DNP extension [226]. It is noted

that DNP [226] first attempted to utilize the deep features using AlexNet [107]. In

order to draw a fair comparison, we train our model on VOC 2007 trainval and
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Methods Global RSN Offset-only RSN [44,138] Non-gating Ours-A

mAP@0.5(%) 30.27 78.5 81.3 (+2.8) 82.0 (+3.5)

Table 5.2: Ablation studies of each component in deep regionlet approach. Output

size H ×W is set to 4 × 4 for all the baselines. Ours-A denotes RSN predicting

affine transformation parameters.

XXXXXXXXXXXXXXXXXXXXXXXX
# of Regions

Regionlets Density
2× 2 3× 3 4× 4 5× 5 6× 6

4(2× 2) regions 78.0 79.2 79.9 80.2 80.3

9(3× 3) regions 79.6 80.3 80.9 81.5 81.3

16(4× 4) regions 80.0 81.0 82.0 81.6 80.8

Table 5.3: Results of ablation studies when an RSN selects different number of

regions and regionlets are learned at different level of density.

evaluate on the VOC 2007 test set using AlexNet [107]. The shorter side of image

is set to be 600 pixels and training is performed for 60k iterations with single mini-

batch size on 1 GPU. The learning rate is set at 10−3 for the first 40k iterations and

10−4 for the remaining 20k iterations.

Results of improvements over traditional regionlets [185, 186] and DNP [226]

are shown in Table 5.1. First, although DNP [226] improved over traditional re-

gionlet [185,186] by almost 5% with the help of deep features, our approach provide

huge improvement over both traditional regionlet [185, 186] and DNP [226] (more

than 20% in terms of mAP) with the power of end-to-end trainable framework.

Second, the mAP can be significantly increased by using deeper and more powerful
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networks like ResNet-50 and ResNet-101 [87]. All these observations support the

effectiveness and success of the integration of traditional regionlet method into the

end-to-end trainable deep learning framework.

5.6.1.2 Ablation study on each component

Next, we investigate the proposed approach to understand each component and

its behavior. For a fair comparison, we adopt ResNet-101 as the backbone network

for ablation studies. We train our model on the union set of VOC 2007 + 2012

trainval as well as their horizontal flip and evaluate on the VOC 2007 test set.

The shorter side of image is set at 600 pixels, as suggested in [43, 44, 68, 153]. The

training is performed for 60k iterations with an effective mini-batch size of 4 on 4

GPUs, where the learning rate is set at 10−3 for the first 40k iterations and at 10−4

for the rest 20k iterations. We investigate the proposed approach to understand each

component (1) RSN, (2) Deep regionlet learning and (3) Soft regionlet selection by

comparing it with several baselines:

1. Global RSN. RSN only selects one global region and it is initialized as identity

affine transformation (i.e. Θ∗0 = [1, 0, 0; 0, 1, 0]). This is equivalent to global

regionlet learning within the RoI.

2. Offset-only RSN. We set the RSN to only learn the offset by enforcing θ1, θ2, θ4, θ5

(in affine parameters) to not change during the training process. In this way,

the RSN only selects the rectangular region with offsets to the initialized re-

gion. This baseline is similar to the Deformable RoI Pooling in [44] and
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[138].

3. Non-gating selection: deep regionlet without soft selection. No soft regionlet

selection is performed after the regionlet learning. In this case, each regionlet

learned has the same contribution to the final feature representation.

Results are shown in Table 5.2. First, when the RSN only selects one global

region, the RSN reduces to the single localization network [95]. In this case, region-

lets are extracted in a global manner. It is interesting to note that selecting only one

region by the RSN is able to converge, which is different from [43, 153]. However,

the performance is extremely poor. This is because no discriminative regionlets

could be explicitly learned within the region. More importantly, the results clearly

demonstrate that RSN is indispensable in the deep regionlet approach.

Moreover, offset-only RSN could be viewed as similar to deformable RoI pool-

ing in [44,138]. These methods all learn the offset of the rectangle region with respect

to its reference position, which lead to improvement over [153]. However, non-gating

selection outperforms offset-only RSN by 2.8% with selecting non-rectangular region.

The improvement demonstrates that non-rectangular region selection could provide

more flexibility around the original reference region, thus could better model non-

rectangular objects with sharp shapes and deformable parts. Last but not least, by

using the gate function to perform soft regionlet selection, the performance can be

further improved by 0.7%.

Next, we present ablation studies on the following questions in order to under-

stand more deeply the RSN and regionlet learning modules. We report the results
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where the RSN predicts the affine transformation parameters:

1. How many regions should we learn by RSN?

2. How many regionlets should we learn in one selected region (density is of size

H ×W )?

5.6.1.3 How many regions should we learn by RSN?

We investigate how the detection performance varies when different number

of regions are selected by the RSN. All the regions are initialized as described in

Section 5.4.2 without any overlap between regions. Without loss of generality, we

report results for 4(2× 2), 9(3× 3) and 16(4× 4) regions in Table 5.3. We observe

that the mean AP increases when the number of selected regions is increased from

4(2 × 2) to 9(3 × 3) for fixed regionlets learning number, but gets saturated with

16(4× 4) selected regions.

5.6.1.4 How many regionlets should we learn in one selected region?

Next, we investigate how the detection performance varies when different num-

ber of regionlets are learned in one selected region by varying H and W . Without

loss of generality, we set H = W throughout our experiments and vary the H from 2

to 6. In Table 5.3, we report results when we set the number of regionlets at 4(2×2),

9(3× 3), 16(4× 4), 25(5× 5), 36(6× 6) before the regionlet pooling construction.

First, it is observed that increasing the number of regionlets from 4(2 × 2)

to 25(5× 5) results in improved performance. As more regionlets are learned from
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one region, more spatial and shape information from objects could be learned. The

proposed approach could achieve the best performance when regionlets are extracted

at 16(4 × 4) or 25(5 × 5) density level. It is also interesting to note that when the

density increases from 25(5 × 5) to 36(6 × 6), the performance degrades slightly.

When the regionlets are learned at a very high density level, some redundant spatial

information may be learned without being useful for detection, thus affecting the

region proposal-based decision to be made. Throughout all the experiments, we

report the results from 16 selected regions from RSN and set output size H ×W =

4× 4.

5.6.2 Experiments on PASCAL VOC

In this section, we present experimental results on PASCAL VOC dataset and

compare our results thoroughly with several methods described below:

• Traditional regionlet method [185] and DNP [226].

• Popular deep learning-based object detectors: Faster R-CNN [153], SSD [122],

R-FCN [43], soft-NMS [18], DP-FCN [138] and DF-RCNN/D-RFCN [44].

• State-of-the-art deep learning-based object detectors: MLKP [179], RefineDet [213],

PAD [219], DES [217] and STDN [223], RFB-Net [121], PFPNet-R [101], C-

FRCNN [34], DFPN-R [105].
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Methods training data mAP@0.5(%) training data mAP@0.5(%)

Regionlet [185] 07 41.7 07 + 12 N/A

DNP [226] 07 46.1 07 + 12 N/A

Faster R-CNN [153] 07 70.0 07 + 12 73.2

R-FCN [43] 07 69.6 07 + 12 76.6

SSD512 [122] 07 71.6 07 + 12 76.8

Soft-NMS [18] 07 71.1 07 + 12 76.8

Ours-A 07 73.0 07 + 12 79.2

Ours-P 07 73.3 07 + 12 79.5

Ours-A§ 07 73.8 07 + 12 80.1

Ours-P§ 07 73.9 07 + 12 80.3

Table 5.4: Detection results on PASCAL VOC2007 using VGG16 as backbone ar-

chitecture. Training data: ”07”: VOC2007 trainval, ”07 + 12”: union set of

VOC2007 and VOC2012 trainval. Ours-A(Ours-P)§ denotes applying the soft-

NMS [18] in the test stage.

5.6.2.1 PASCAL VOC 2007

We follow the standard settings as in [18, 43, 44, 153] and report mAP scores

using IoU thresholds at 0.5.

We first evaluate the proposed deep regionlet approach on the small training

dataset VOC 2007 trainval. For the training stage, we set the learning rate at

10−3 for the first 40k iterations, then decrease it to 10−4 for the next 20k itera-

tions with single GPU. Next, we evaluate our approach on a large training dataset,
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Methods mAP@0.5(%) Year Methods mAP@0.5(%) Year

Fast R-CNN [68] 70.0 2015 Faster R-CNN [153] 78.1 2016

OHEM [164] 74.6 2016 SSD∗ [122] 77.1 2016

ION [14] 79.4 2016 DP-FCN [138] 78.1 2017

DF-RCNN(ROI Pooling) [44] 78.3 2017 DF-RCNN [44] 79.3 2017

D-RFCN(ROI Pooling) [44] 81.2 2017 D-RFCN† [44] 82.6 2017

MR-CNN [65] 78.2 2015 LocNet [66] 78.4 2016

DSSD [64] 78.6 2017 PAD [219] 79.5 2018

MLKP [179] 80.6 2018 DES∗ [217] 81.7 2018

RefineDet [213] 80.0 2018 STDN [223] 80.9 2018

RFB-Net [121] 82.2 2018 PFPNet-R [101] 82.3 2018

C-FRCNN [34] 82.2 2018 DFPN-R [105] 82.4 2018

Ours-A 82.2 Ours-A§ 83.1

Ours-P 82.5 Ours-P§ 83.3

Table 5.5: Detection results on PASCAL VOC2007 test set. For a fair comparison,

we only list the results of single model without multi-scale training/testing, ensem-

ble, iterative bounding box regression or additional segmentation label. Training

data: union set of VOC 2007 and 2012 trainval. ∗: the results are reported us-

ing new data augmentation trick. D-RFCN†: this entry is obtained from [44] using

OHEM [164]. Ours-A(Ours-P)§ denotes we apply the soft-NMS [18] in the test stage.

created by merging VOC 2007 and VOC 2012 trainval. Due to using more train-

ing data, the number of iterations is increased. More specifically, we perform the

same training process as described in Section 5.6.1. Moreover, we use 300 RoIs at

test stage from a single-scale image testing with setting the image shorter side to
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be 600. It is noted that for a fair comparison, we do not deploy the multi-scale

training/testing, ensemble, iterative bounding box regression, online hard example

mining(OHEM) [164], although it is shown in [18,44] that such enhancements could

lead to additional performance boost. We report our results from RSN predict-

ing both projective transformation parameters (Ours-P) and affine transformation

parameters (Ours-A).

PASCAL VOC 2007 using VGG16 Backbone The results on VOC2007

test using VGG16 [168] backbone are summarized in Table 5.4. We first compare

with traditional regionlet method [185], DNP [226] and several popular object detec-

tors [18,122,153] when training using small size dataset (VOC2007 trainval). Next,

we evaluate our method as we increase the training dataset (union set of VOC 2007

and 2012 trainval). With the power of deep CNNs, the deep regionlet approach

has significantly improved the detection performance over the traditional regionlet

method [185] and DNP [226]. We also observe that more data always helps. More-

over, it is encouraging that soft-NMS [18] is only applied in the test stage without

modification in the training stage, which could directly improve over [153] by 1.1%.

In summary, our method is consistently better than all the compared methods and

the performance could be further improved if we replace NMS with soft-NMS [18].

PASCAL VOC 2007 using ResNet-101 Backbone Next, we change the

network backbone from VGG16 [168] to ResNet-101 [87] and present correspond-

ing results in Table 5.5. This is also the common settings for evaluating deep

learning-based object detectors. Besides basic object detection framework, Faster R-

CNN [153], SSD [122], R-FCN [43], soft-NMS [18], we also compare with our direct

135



competitors DF-RCNN/D-RFCN [44] and DP-FCN [138] as discussed in Section 5.5.

In addition, we also compare with most recent object detectors, MLKP [179], Re-

fineDet [213], PAD [219], DES [217] and STDN [223] 6.

First, compared to the performance in Table 5.4 using VGG16 [168] backbone

architecture, the mAP can be significantly increased by using deeper networks like

ResNet-101 [87]. Second, we outperform DP-FCN [138] and DF-RCNN [44] by

4.4% and 3.2% respectively. This provides the empirical support that our deep

regionlet learning method could be treated as a generalization of Deformable RoI

Pooling in [44, 138], as discussed in Section 5.5. Moreover, the results demonstrate

that selecting non-rectangular regions from our method provide more capabilities

including scaling, shifting and rotation to learn the feature representations.

Furthermore, we compare the proposed deep regionlet approach with the most

recent published methods, PAD [219], MLKP [179], DES∗ [217], RefineDet [213] and

STDN [223], RFB-Net [121], PFPNet-R [101], C-FRCNN [34], DFPN-R [105]. It

can be seen that our method outperforms all the recent published methods including

DES∗ [217] (0.8%), which used new data augmentation trick described in SSD∗ [122].

Such a trick is proven to boost the performance as shown in [64, 122, 217]. It is

also noted that D-RFCN [44] reported 82.6% using OHEM [164] while we do not

deploy OHEM. We achieve comparable result compared to D-RFCN [44] that uses

OHEM. In summary, our method achieves state-of-the-art performance on object

detection task when using ResNet-101 as backbone network. Note that all the other

6To the best of our knowledge, we report the results from original papers under the same

settings. Some papers reported best results using different networks and settings.
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results [14,34,65,66,101,105,121,179,213,219,223] are reported without using extra

training data (i.e. COCO data), multi-scale training/testing [170], OHEM, ensemble

or other post processing techniques.

Complete Object Detection Results We present the complete object de-

tection results of the proposed deep regionlet method on the PASCAL VOC 2007

test set. Other results are reported from either the updated model [64, 122], the

complete detection results reported in the paper [34, 105] or the official code pro-

vided by the authors with suggested settings [43,44,153,213] 7. Note that we produce

slightly lower performance 81.4% than 82.6% reported in [44]. The difference may

come from sampling order of the images from the training set. Keeping this in mind,

it is observed that our method achieves best average precision on majority on all

the 20 classes in VOC 2007 test set.

5.6.2.2 PASCAL VOC 2012

We also present our results evaluated on VOC 2012 test set in Table 5.7. We

follow the same experimental settings as in [43,64,122,138,153] and train our model

using VOC”07++12”, which consists of VOC 2007 trainvaltest and VOC 2012

trainval set. It can be seen that our method achieves state-of-the-art performance.

In particular, we outperform DP-FCN [138], which further proves the generalization

of our method over Deformable ROI Pooling in [138].

7We only list the methods, which either reported complete detection results on VOC 2007 or

the code is public available
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5.6.3 Experiments on MS COCO

In this section, we evaluate the proposed deep regionlet approach on the

MS COCO [118] dataset and compare with other state-of-the-art object detectors:

Faster R-CNN [153], SSD [122], R-FCN [43], Deformable F-RCNN/R-FCN [44],

Mask R-CNN [85], RetinaNet [117].

We adopt ResNet-101 [87] as the backbone architecture of all the methods for

a fair comparison. Following the settings in [43,44,85,117], we set the shorter edge of

the image to 800 pixels. The training is performed for 280k iterations with effective

mini-batch size 8 on 8 GPUs. We first train the model with 10−3 learning rate for

the first 160k iterations, followed by learning rate 10−4 and 10−5 for another 80k

iterations and the next 40k iterations. Five scales and three aspect ratios are used

for anchors. We report results using either the released models or the code from the

original authors. It is noted that we only deploy single-scale image training (no scale

jitter) without the iterative bounding box average throughout all the experiments,

although these enhancements could further boost performance.

Table 5.8 shows the results on 2017 test-dev set8, which contains 20, 288

images. Compared with the baseline methods Faster R-CNN [153], R-FCN [43] and

SSD [122], both Deformable F-RCNN/R-FCN [44] and our method provide huge

improvements over [43,122,153] (+3.7% and +8.5%). Moreover, it can be seen that

our method outperform Deformable F-RCNN/R-FCN [44] by wide margin(∼4%).

8MS COCO server does not accept 2016 and 2015 test-dev evaluation. As a result, we are not

able to report results on 2016, 2015 test-dev set.
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This observation further supports that our deep regionlet learning module could

be treated as a generalization of [44, 138], as discussed in Section 5.5. It is also

noted although the most recent state-of-the-art object detectors based on Mask

R-CNN9 [85] also utilized multi-task training with segmentation labels, we still

improve over [85] by 1.1%. In addition, the main contribution focal loss in [117],

which overcomes the obstacle caused by the imbalance of positive/negative samples,

is complimentary to our method. We believe it can be applied in our method to

further boost the performance. In summary, compared with Mask R-CNN [85],

RetinaNet10 [117] and other recent detectors [20, 89, 213, 225], our method achieves

competitive performance compared to state-of-the-arts on MS COCO when using

ResNet-101 as a backbone network.

5.6.4 Complexity Analysis: Parameters and Speed

In this section, we present the analysis on the speed and parameter of the

proposed deep regionlets approach.

Runtime Speed: We evaluate the runtime of our approach and compare with

other two-stage object detectors, Faster R-CNN [153], R-FCN [43] using the origi-

nal Caffe implementation and ResNet-101 backbone with Batch Normalization(BN)

layers for a fair comparison. The time is reported on single Nvidia TITAN X GPU

9Note [85] reported best result using ResNeXt-101-FPN [195]. We only compare the results

in [85] using ResNet-101 [87] backbone for fair comparison.
10 [117] reported best result using multi-scale training for 1.5× longer iterations. We only

compare the results without scale jitter during training.
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including image resizing, network forward and post-processing. On average, Faster

R-CNN [153] takes 0.37s and R-FCN [43] takes 0.24s per image, while our method

take 0.49s per image. In addition, we also report the runtime for DF-RCNN/D-

RFCN [44] on the same machine configuration for reference purpose. DF-RCNN

takes about 0.34s and D-RFCN takes 0.25s per image, note that DF-RCNN/D-

RFCN [44] uses a different MXNet framework instead of Caffe and some python

layers in RPN have been optimized with CUDA implementation.

Number of Parameters: The RSN has three fully connected layers (First

two connected layer have output size of 256, last fully connected layer has the output

size of 9), giving about 5.28M ( 16× (1024×256+256×256+256×9) ) parameters,

while deep regionlet learning module and gating network do not introduce new

parameters. According to [43,89,153,219], in total, Faster R-CNN has about 58.3M

parameters, R-FCN has about 56.4M parameters. Therefore, the total number of

parameters is about 63.6M on top of Faster R-CNN framework. The increase in the

number of parameters could be considered minor.

5.7 Concluding Remarks

In this chapter, we present a novel deep regionlet-based approach for object

detection. The proposed region selection network can select non-rectangular region

within the detection bounding box, by which an object with rigid shape and de-

formable parts can be better modeled. We also design the deep regionlet learning

module so that both the selected regions and the regionlets can be learned simul-

140



taneously. Moreover, the proposed system can be trained in a fully end-to-end

manner without additional efforts. Finally, we extensively evaluate our approach on

two detection benchmarks for generic object detection. Experimental results show

competitive performance over state-of-the-art.
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Methods FRCN [153] YOLO9000 [152] FRCN OHEM DSSD [64] SSD∗ [122] ION [14]

mAP@0.5(%) 73.8 73.4 76.3 76.3 78.5 76.4

Methods R-FCN [43] DP-FCN [138] Ours-A Ours-P Ours-A§ Ours-P§

mAP@0.5(%) 77.6 79.5 80.4 80.6 81.2 81.3

Table 5.7: Detection results on VOC2012 test set using training data ”07++12”:

the union set of 2007 trainvaltest and 2012 trainval. SSD∗ denotes the new

data augmentation. Ours-A(Ours-P)§ denotes we apply the soft-NMS [18] in the

test stage.
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Methods Training Data mmAP 0.5:0.95 mAP @0.5 mAP small mAP medium mAP large

Faster R-CNN [153] trainval 24.4 45.7 7.9 26.6 37.2

SSD∗ [122] trainval 31.2 50.4 10.2 34.5 49.8

DSSD∗ [64] trainval 33.2 53.5 13.0 35.4 51.1

R-FCN [43] trainval 30.8 52.6 11.8 33.9 44.8

DF-RCNN [44] trainval 33.1 50.3 11.6 34.9 51.2

D-RFCN [44] trainval 34.5 55.0 14.0 37.7 50.3

CoupleNet [225] trainval 34.4 54.8 13.4 38.1 50.8

RefineDet512 [213] trainval 36.4 57.5 16.6 39.9 51.4

RelationNet [89] trainval 39.0 58.6 - - -

Cascade-RCNN [20] trainval 42.7 62.1 23.7 45.5 55.2

Mask R-CNN [85] trainval 38.2 59.6 19.8 40.2 48.8

RetinaNet800 [117] trainval 39.1 59.1 21.8 42.7 50.2

Ours-A trainval 39.3 59.8 21.7 43.7 50.9

Ours-P trainval 39.9 61.7 22.9 44.1 51.7

Table 5.8: Object detection results on MS COCO 2017 test-dev using ResNet-

101 [87] as backbone acchitecture. Training data: union set of 2017 train and 2017

val set. SSD∗, DSSD∗ denote the new data augmentation
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Chapter 6: Conclusions and Direction for Future Work

6.1 Summary

In Chapter 2, we presented a simple thresholded feature learning algorithm

under spare support recovery. Motivated by support recovery theoretical guarantees,

we proposed a novel approach to learn a dictionary which is optimized for applying

the thresholded feature. The competitive performance and superior efficiency of

the proposed approach are extensively studied using both synthetic simulations and

real-data experiments.

In Chapter 3, we presented two novel sparse representation-based methods for

face-based biometrics. (i.e. video-based face recognition and template-based face

verification). In the first part, we presented a novel structured dictionary learning

framework for video-based face recognition. We learned a structured dictionary with

both discriminative and reconstructive properties for recognition purposes. Specif-

ically, we encouraged our sub-dictionaries to better represent the corresponding

subject face images, while also preserving the subspace structure by enforcing the

representation to be low-rank. Moreover, inspired by [21, 119], we proposed an ef-

ficient alternating optimization algorithm that converges reasonable faster. Finally,

we extensively evaluated our approach on three benchmark databases for video-
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based face recognition. The experimental results clearly demonstrate the competi-

tive performance over state-of-the-art.

In the second part, we presented a template regularized sparse coding approach

for template-based face verification task. First, we adaptively learned a reference

dictionary to adequately represent the training set. Then template adaptive dictio-

naries were generated by adapting the reference dictionary with the test template

pair. Second, we performed template regularized sparse coding on all the dictio-

naries to derive the discriminative template sparse codes for verification purposes.

Finally, both the reference score and template adaptive score were used to measure

the similarity of the pair templates. We evaluated our approach on the benchmark

IARPA IJB-A dataset for template-based face verification. The experimental results

clearly demonstrate competitive performance over existing methods.

In Chapter 4, we addressed the problem of domain shift in computer vision

applications. We presented a novel domain adaptive dictionary learning framework

for domain adaptation problem. We first learned a common dictionary to recover

features shared by all domains. Then we acquired a set of domain-specific dictionar-

ies, which generates a transition path from source to target domain. The common

dictionary is essential for reconstruction while domain-specific dictionaries are able

to bridge the domain shift. Final feature representations were recovered by utiliz-

ing both common and domain-specific dictionaries. We extensively evaluated our

approach on both face recognition and object classification and the experimental

results clearly confirmed the superior performance of our approach.

Finally, in Chapter 5, we studied another fundamental problem in computer
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vision: generic object detection. We presented a deep representation-based, named

deep regionlets for object detection. It consists of a region selection network and a

deep regionlet learning module. The proposed region selection network can select

non-rectangular region within the detection bounding box, by which an object with

rigid shape and deformable parts can be better modeled. We also designed the

deep regionlet learning module so that both the selected regions and the regionlets

can be learned simultaneously. Moreover, the proposed system can be trained in

a fully end-to-end manner without additional efforts. Finally, we presented the re-

sults of ablation studies and extensively evaluated our approach on two detection

benchmarks for generic object detection. The proposed algorithm outperforms sev-

eral state-of-the-art algorithms, such as RetinaNet and Mask R-CNN, even without

additional segmentation labels.

6.2 Directions for Future Work

In this section, we outline several promising future directions that could be

further explored and some preliminary results where applicable.

6.2.1 Exploring a Deeper Potential

Sparse coding is a technique to learn an efficient and compact representation

of data using a small number of basis vectors [112, 132]. It has been sufficiently

studied to discover the high-level feature representations from unlabeled samples.

Recently, deep learning has gained great attentions in feature learning problems.
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One of the advantages of deep learning lies in its composition of multiple non-

linear transformations, which result in more descriptive and discriminative feature

representations. However, there has been little work [82, 188] on the deep sparse

architectures. [188] proposed Deep l0 Encoders, to model l0 sparse approximation

as feed-forward neural networks. [82] proposed Deep Sparse-coded Network (DSN),

a deep architecture for sparse coding as a principled extension of its single-layer

counterpart. The results are very preliminary and only reported on the small dataset

like CIFAR-10.

The proposed DLTF approach in Chapter 2 is mainly for unsupervised learning

task, while recognizing a potential link between DLTF and (supervised) deep mod-

els. Eqn. (2.1) can be viewed as a fully-connected layer followed by a non-linearity

function, one of the standard building blocks in existing deep models. Here maxk

could be thought either as a generalization of max pooling without reducing dimen-

sion, or a locality-aware neuron. Thus, DLTF can also be viewed as a variant of

AE, where maxk acts as the nonlinear function to promote sparsity in hidden layer

activations. Its objective is to recover the sparse support besides maintaining a

faithful reconstruction. Then a natural question arises: will DLTF be a competitive

alternative in layer-wise unsupervised pre-training of deep models?

We conducted preliminary experiments on comparing AE and DLTF in pre-

training neural networks for classifying the MNIST dataset. More specifically, we

constructed two fully connected network models for the 10-class MNIST classifi-

cation benchmark (note the different setting with clustering experiments). Model

1 takes 784-dimensional inputs, followed by a 1000-dimensional hidden layer and
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Pre-Training Random (No) AE DLTF

Model 1 1.62% 1.08% 1.04%

Model 2 1.26% 0.89% 0.81%

Table 6.1: The error rate comparison for MNIST classification, using different pre-

training strategies.

optimized using softmax loss. Model 2 has one additional 1000-dimensional hidden

layer appended before the loss function. For Model 1, we performed DLTF with n =

784,m = 1000 and choose k = 100, to learn the dictionary as the initialization for its

hidden layer. For Model 2, we performed DLTF with n = 784,m = 1, 000, k = 200

for the first hidden layer; we then fix the first layer, and perform DLTF on the first

layer outputs with n = 1, 000,m = 1, 000, k = 100, for the second layer. We com-

pared DLTF pre-training with random initializations (no pre-training), and classical

AE pre-training. All models are then tuned from end to end, and dropout with a

ratio of 0.5 is applied to all fully-connected layers during fine-tuning. Table 6.1

compares the error rates, where DLTF shows an advantage.

Table 6.1 potentially implies that identifying the correct parameter subspace

is a more promising goal for layer-wise pre-training, than minimizing the MSE. This

hypothesis, if validated further, could lead to new insights on pre-training or even

training deep models. We would like to conduct more experiments to verify if DLTF

pre-training can benefit the training of more general deep models.

Despite being preliminary, the results suggest that identifying the correct
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(sparse) parameter subspace (i.e., the nonzero support) may be a more promis-

ing goal for layer-wise pre-training, than solely minimizing the reconstruction error.

It is interesting to further explore the potential link between DLTF and (supervised)

deep models.

6.2.2 Domain Generalization for Face Recognition

Domain adaptation tackles the problem where data from training set (source

domain) and test set (target domain) have different underlying distributions. It

adapts the classifier trained using the source domain to perform well on target

samples by taking advantage of the unlabeled target data. However, as a related re-

search problem, domain generalization differs from domain adaptation by assuming

the target domain samples are not available during the training process. In other

words, domain generalization aims to better classify testing data from any unseen

target domain.

One of the applications for domain generalization techniques is template adap-

tation. In this case, the source domain may be a well-learned metric to measure the

similarity for the pair of template for face verification. The target domain is the

set of template pairs from never before seen subject. [40] investigated the template

adaptation by using one-vs-rest linear SVMs. More specifically, it learned two linear

SVMs classifiers, where each of them is designed using the positive features from one

template in the pair to the large negative features from the training set. Then the

final similarity score is calculated by fusing the two SVM margins evaluated on the
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other mated template. Although it achieved encouraging performance, it treated

each template as one positive feature without considering the intra-class variation.

Motivated by [203], one promising direction is exploiting the low-rank structure from

the samples within one template.

Another applications for the domain generalization is template-based face ver-

ification using the external training set. Given the model trained from the training

set and a pair of test template, the assumption that test pair is sampled from the

same data distribution as the source domain is usually violated. It is more likely

that the test pair is sampled from the unseen target domain. Therefore, develop-

ing an adaptive domain generalization method to adapt the model trained from

the training set to facilitate the verification performance is necessary and of great

importance. One promising directions to address this problem is to use recently

proposed meta learning algorithm which involves hierarchical levels of learning in

statistics.

6.2.3 Measurement of Domain Shifts

Although the domain adaptation problem has been extensively studied, the

sub-problem of characterizing the domain shift is still an open question. Taking pose

variations as example, different yaw angles correspond to geometric domain shifts.

The illumination variations corresponds to the appearance shifts. One promising

direction is to develop statistical models to represent the domain shifts due to pose

and illumination variations. Some public face datasets such as CMU MultiPIE [166]
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could be used to explore the effectiveness of the statistical model. Another promis-

ing direction is to develop principled methods to measure such domain shift and

to predict the adaptation ability of the statistical model so that the appropriate

adaptation techniques can be employed.

6.2.4 Fast and Accurate Object Detection

Two key issues need to be carefully addressed when designing object detection

algorithms,: where the candidate locations are in images and how to discern whether

they are the objects of interest. Although studied over several decades, accurate and

fast detection is highly challenging when generating bounding boxes for specific ob-

ject categories, due to cluttered backgrounds, occlusions, variations in object scale,

pose, viewpoint and even part deformations. In order to push the boundary of fast

and accurate object detection, more fundamental and radically different approaches

are needed to achieve a quantum leap in detection performance. Several promising

directions are: optimization of deep neural networks, as back-propagation often re-

sults in a local optimal, re-designing of the backbone network architectures, which

could accelerate the computing time. In addition, pre-training is indispensable to

achieve good performance on visual recognition tasks and training without sufficient

data could lead to a local optimum. How to efficiently search through the weight

space in the deep neural network through alternate optimization techniques will

make great difference in computer vision applications including object detection.
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Appendix A: Proof of Theorem 1: The Weak Recovery Guarantee

Proof. Denote y = W>x = W>Wz. Then for 0 ≤ i ≤ k:

|yi| = |zi +
k∑

j=1,j 6=i

〈wi,wj〉zj|

≥ |zi| − µW
k∑

j=1,j 6=i

|zj| ≥ |zk| − kµW |z1|

(A.1)

On the other hand, for i > k:

max
i>k
{|yi|} = max

i>k

{
|

k∑
j=1

〈wi,wj〉zj|

}
≤ kµW |z1| (A.2)

So if 2kµW |z1| ≤ |zk|, the first k entries of y are guaranteed to have greater magni-

tudes than the rest, and thus will be correctly identified.

Theorem 1 reveals a sufficient condition on the required number of samples to

guarantee the selection consistency, and a similar conclusion could be found in [134].

Following a similar analysis, additional results with regard to the decay rate of

nonzeros may be obtained. Moreover, based on the random matrix theory [56] and

that µW ≤ 1 due to the normalization of W , µW will decay to 0 with the rate log(n)
m

if W is a sub-Gaussian random matrix.

153



Appendix B: Proof of Theorem 2: The Strong Recovery Guarantee

Proof. Define Ωz = supp(z),Ωz̄ = supp(z̄), S = Ωz ∪ Ωz̄. Let [z]S denotes the

subvector indexed by the set S. First we have

‖z̄ −W>x‖2 =‖z̄ − z‖2 + ‖z −W>x‖2

+ 2〈z̄ − z, z −W>x〉.
(B.1)

Since ‖z̄ −W>x‖2 ≤ ‖z −W>x‖2 due to the projection property, we have

‖z̄ − z‖2 ≤ 2〈z̄ − z,W>x− z〉

= 2〈z̄ − z, [W>x− z]S〉

≤ 2‖z̄ − z‖‖[W>x− z]S‖

(B.2)

It follows

‖z̄ − z‖ ≤ 2‖[W>x− z]S‖

=2‖[W>x− z +W>(Wz − x)−W>(Wz − x)]S‖

≤2‖[W>x− z +W>(Wz − x)]S‖+ 2‖[W>(Wz − x)]S‖

=2‖z − [W>x+W>(Wz − x)]S‖+ 2‖[W>(Wz − x)]S‖

=2‖z − [W>Wz]S‖+ 2‖[W>e]S‖.
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Using Assumption 1, we have

‖z − [W>Wz]S‖2

=‖z‖2 + ‖[W>Wz]S‖2 − 2〈z, [W>Wz]S〉

≤‖z‖2 + ((1 + δW )− 2)〈z, [W>Wz]S〉

≤‖z‖2 − (1− δW )2‖z‖2 = (2δW − δ2
W )‖z‖2

δW ∈ (0, 1−
√

3
2

) is required to ensure 2δW − δ2
W > 0. Also considering |S| ≤ 2k, we

have

‖z̄ − z‖ ≤ 2
√

2δW − δ2
W‖z‖+ 2

∥∥max2k(W>e)
∥∥ (B.3)

Therefore, if the smallest nonzero element zk of z is no less than the right side of

(B.3), z̄ and z must have the same support set. It completes the proof.

The Restricted Isometry Property (RIP) has been a fundamental concept in

sparse recovery [22,204]. Both RIP and mutual coherence require W to behave like

an orthonormal system. A recent result [187] reveals both to be special forms of a

more generalized sufficient condition for sparse recovery.
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Appendix C: Proof of Theorem 3

To use Algorithm 1 to solve the proximal mapping problem (2) for any c ∈ Rm,

we first turn the input c into positive vector c′ by taking its absolute values (i.e.

c′ = |c|). The solution to the original problem can be obtained by using the sign of

c because we know that the sign of the proximal mapping proxk
′,2
γ (c) is the same

as of c. Secondly, we sort the elements in c′, which will meet the input requirement

of Algorithm 1. Then we can use Algorithm 1 to get the proximal mapping. The

sorting procedure costs O(m logm) time, and the Algorithm 1 costs O(m) time, so

the total time complexity is O(m logm).

When the elements of c are in increasing order, Lemma 5 converts the problem

(11) to:

min
q
‖q − c‖2 + γ

m∑
i=m−k′+1

q2
i , (C.1)

s.t. q1 ≤ q2 ≤ ... ≤ qm

Dropping some constant terms, the objective can be further written as:

min
q

m−k′∑
j=1

(qj − cj)2 +
m∑

j=m−k′+1

(1 + γ)(qj −
1

λ+ 1
cj)

2 (C.2)

s.t. q1 ≤ q2 ≤ ... ≤ qm

which can be solved by Algorithm 1.
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Appendix D: Proof of Lemma 4

Proof. We prove by contradiction. Suppose that ci < cj and q∗i > q∗j , we will

show that we can get a better solution v′ by swapping q∗i and q∗j , which makes a

contradiction.

Firstly, we have q∗i ≤ ci, q
∗
j ≤ cj since q∗ is optimal. Let the objective value be

o1 before we swap q∗i and q∗j , and be o2 after swap. From the objective definition,

the objective value will change:

o1 − o2 = (ci − q∗i )2 + (cj − q∗j )2 − (ci − q∗j )2 − (cj − q∗i )2 (D.1)

Let a = (ci − q∗i ), b = (ci − q∗j ), d = ci − q∗i + cj − q∗j , then

o1 − o2

=a2 + (d− a)2 − b2 − (d− b)2

=2(a2 − b2 − d(a− b))

=2(a− b)(a+ b− d)

where a− b = q∗j − q∗i < 0, and a+ b− d = ci− cj < 0, so o1 > o2, which contradicts

the assumption that o1 is optimal. It completes the proof.
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Appendix E: Proof of Lemma 5 and Lemma 6

Proof. We first prove Lemma 6 by contradiction. Assume uj > uj+1 and x∗j 6= x∗j+1,

then we have x∗j < x∗j+1 because we have the constraint (11). Next the contradiction

will be shown below by illuminating all six scenarios. We essentially will show there

always exists a solution pair (x′j,x
′
j+1) satisfying x′j = x′j+1 ∈ [x∗j ,x

∗
j+1] which gives

a better solution than (x∗j ,x
∗
j+1) in every scenario.

• x∗j ≤ uj+1 < uj ≤ x∗j+1: We can choose x′j = x′j+1 = uj;

• uj+1 ≤ x∗j < x∗j+1 ≤ uj: We can choose x′j = x′j+1 = x∗j ;

• x∗j < uj+1 ≤ x∗j+1 ≤ uj: We can choose x′j = x′j+1 = x∗j+1;

• uj+1 ≤ x∗j < uj ≤ x∗j+1: We can choose x′j = x′j+1 = uj;

• uj+1 < uj ≤ x∗j < x∗j+1: We can choose x′j = x′j+1 = x∗j ;

• x∗j < x∗j+1 ≤ uj+1 < uj: We can choose x′j = x′j+1 = x∗j+1.

This completes the proof of Lemma 6.

Now let us merge two successive variables xj and xj+1 if we find uj > uj+1.

From Lemma 6, we know xj should be equal to xj+1. Introduce a new variable

xj∨j+1 to denote the value of xj and xj+1. It follows that the original problem in
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Lemma 5 is equivalent to solving

min
x1≤···≤xj−1≤xj=xj+1≤xj+2≤···≤xJ

J∑
j=1

tj(xj − uj)
2 (E.1)

⇔ min
x1≤···≤xj−1≤xj∨j+1≤xj+2≤···≤xJ

tj + tj+1

(
xj∨j+1 −

tjuj + tj+1uj+1

tj + tj+1

)2

+
∑

i/∈{j,j+1}

ti(xi − ui)
2

⇔ min
x1≤···≤xj−1≤xj∨j+1≤xj+2≤···≤xJ

tj∨j+1 (xj∨j+1 − uj∨j+1)2 +
∑

i/∈{j,j+1}

ti(xi − ui)
2 (E.2)

where in the last line

tj∨j+1 = tj + tj+1 uj∨j+1 =
tjuj + tj+1uj+1

tj + tj+1

.

Therefore, if we define

u′ = [u1, · · · ,uj−1,uj∨j+1,uj+2, · · · ,uJ ]>

t′ = [t1, · · · , tj−1, tj∨j+1, tj+2, · · · , tJ ]>,

then we reduce the problem dimension to J − 1. It should be noticed that we do

not need to solve the reduced problem from the beginning, since u′1:j−1 = u1:j−1. By

this way, Algorithm 1 can be completed in linear time O(m).

Then the solution to the original one (E.1) can be recovered by extending the

jth element of Reduce(u′, t′, j − 1) to the (j + 1)th element. We can keep check-

ing if there are any two successive components in u′ disobeying the nondecreasing

monotonicity. As long as we find one pair, we can reduce the original problem by
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one dimension. Therefore, this problem can be recursively solved by the subroutine

“Reduce” in Algorithm 1. This completes the proof of Lemma 5.
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Appendix F: Proof of Proposition 1

.

Proof. Define the Singular Value Decomposition (SVD) of Γk ∈ Rn×Nt as Γk =

UΛVT , where UUT = I ∈ Rn×n and VVT = I ∈ RNt×Nt , and Λ = [Λ̃,0] ∈ Rn×Nt

is a rectangular diagonal matrix, with Λ̃ = diag(λ1, ..., λn) being a diagonal matrix.

We decompose V = [V1,V2] where V1 ∈ RNt×n and evaluate the following term

below:

ΓkT (ηI + ΓkΓkT )−1Γk =VΛTUT (ηI + UΛΛTUT )−1UΛVT

=[V1,V2]ΛTUT (ηI + UΛ̃2UT )−1UΛ[V1,V2]T

=[V1,V2]ΛTUT (U(ηI)UT + UΛ̃2UT )−1UΛ[V1,V2]T

=V1Λ̃(ηI + Λ̃2)−1Λ̃VT
1 (F.1)

=V1ΘVT
1

where Θ = diag(
−→
θ ) = diag(

λ21
λ21+η

, ..., λ2n
λ2n+η

).
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Next, we replace ∆Dk with (4.6) and have

‖Jk −∆DkΓk‖2
F − ‖Jk‖2

F

=‖Jk − JkΓkT (ηI + ΓkΓkT )−1Γk‖2
F − ‖Jk‖2

F (F.2)

=tr(JkJk
T

)− tr(2ΓkT (ηI + ΓkΓkT )−1ΓkJk
T
Jk)

+tr(ΓkT (ηI + ΓkΓkT )−1ΓkJk
T
JkΓkT (ηI + ΓkTΓk)−1Γk)− tr(JkJkT )

=tr(ΓkT (ηI + ΓkΓkT )−1ΓkJk
T
JkΓkT (ηI + ΓkTΓk)−1Γk)

− tr(2ΓkT (ηI + ΓkΓkT )−1ΓkJk
T
Jk)

We plug (F.1) in (F.2) and obtain:

‖Jk −∆DkΓk‖2
F − ‖Jk‖2

F

=tr(V1ΘVT
1 Jk

T
JkV1ΘVT

1 )− tr(2V1ΘVT
1 Jk

T
Jk)

=− tr((2Θ−Θ2)VT
1 Jk

T
JkV1)

=− tr(QVT
1 JTk JkV1Q) (F.3)

=− ‖JkV1Q‖2
F ≤ 0

where Q = diag(−→q ) = diag(

√
λ41+2ηλ21
λ21+η

, ...,

√
λ4n+2ηλ2n
λ2n+η

)
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Appendix G: Derivatives of the loss function with respect to the pro-

jective transformation parameters

We present complete derivatives of the loss function with respect to the pro-

jective transformation parameters Θ. Denote V (xtp, y
t
p, c|Θ, R) as Vp:
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∂Vp
∂θ1

=
∂Vp
∂xsp

∂xsp
∂θ1

=
xtp
zsp

∂Vp
∂xsp

∂Vp
∂θ2

=
∂Vp
∂xsp

∂xsp
∂θ2

=
ytp
zsp

∂Vp
∂xsp

∂Vp
∂θ3

=
∂Vp
∂xsp

∂xsp
∂θ3

=
∂Vp
∂xsp

∂Vp
∂θ4

=
∂Vp
∂ysp

∂ysp
∂θ4

=
xtp
zsp

∂Vp
∂ysp

∂Vp
∂θ5

=
∂Vp
∂ysp

∂ysp
∂θ5

=
ytp
zsp

∂Vp
∂ysp

∂Vp
∂θ6

=
∂Vp
∂ysp

∂ysp
∂θ6

=
∂Vp
∂ysp

∂Vp
∂θ7

=
∂Vp
∂zsp

∂zsp
∂θ7

= (
∂Vp
∂xsp

∂xsp
∂zsp

+
∂Vp
∂ysp

∂ysp
∂zsp

)xtp

= −xtp(
θ1x

s
p + θ2y

s
p + θ3

zsp
2

∂Vp
∂xsp

+
θ4x

s
p + θ5y

s
p + θ6

zsp
2

∂Vp
∂ysp

)

= −
xtp
zsp

(
∂Vp
∂xsp

xsp +
∂Vp
∂ysp

ysp)

∂Vp
∂θ8

=
∂Vp
∂zsp

∂zsp
∂θ8

= (
∂Vp
∂xsp

∂xsp
∂zsp

+
∂Vp
∂ysp

∂ysp
∂zsp

)ytp

= −ytp(
θ1x

s
p + θ2y

s
p + θ3

zsp
2

∂Vp
∂xsp

+
θ4x

s
p + θ5y

s
p + θ6

zsp
2

∂Vp
∂ysp

)

= −
ytp
zsp

(
∂Vp
∂xsp

xsp +
∂Vp
∂ysp

ysp)

(G.1)
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where

∂Vp
∂xsp

=

H∑
n

M∑
m

U cnm max(0, 1− |ysp − n|)η(xsp −m)

∂Vp
∂ysp

=

H∑
n

M∑
m

U cnm max(0, 1− |xsp −m|)η(ysp − n)

η(xsp −m) =



0, if |m− xsp| ≥ 1

1, if m > xsp

−1, if m < xsp

η(ysp − n) =



0, if |n− ysp| ≥ 1

1, if n > ysp

−1, if n < ysp

(G.2)
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